Meto611
Problem Set 8 tropical air/sea interaction

1. (Borrowed from D. Battisti) The state of tropical Pacific oscillates between *El Nino* conditions, in which the eastern tropical Pacific ocean is warmer than usual, with weaker than average Easterly winds, and a *La Nina* state, in which the opposite is true. The reversal in winds is associated with a change in the atmospheric surface pressure gradient across the tropical Pacific Basin known as the *Southern Oscillation*. We will investigate a simple mathematical model for this combined El Nino/Southern Oscillation or "*ENSO*" phenomenon, in terms of coupled ocean-atmosphere processes.

a. Let the *anomaly* (that is, the value relative to the "normal" state) in the strength of the *easterlies* be U, and the *anomaly* in eastern tropical Pacific temperatures be T. We will assume that

$$\frac{dU}{dt} = \alpha T$$ \hspace{1cm} (1)

where α is a positive constant, and t is time. What are the units of α? Physically, what type of ocean-atmosphere feedback process does this describe?

b. We will now also assume that

$$\frac{dT}{dt} = k U$$ \hspace{1cm} (2)

where k is also a positive constant. What are the units of k? Does this expression describe a *negative* or *positive* feedback? Physically, what process could this represent?

c. Combine (1) and (2) to get a single differential equation for temperature T. What is the solution to this equation? What fundamental feature of ENSO does this solution describe? What significance does the square root of the product of the constants α and k have (hint: what are its units?)