Effect of radiation on clouds: fog
Figure 11.4 Clear-sky cooling rates based on line-by-line computations for H$_2$O (dotted line), CO$_2$ (dashed line), and O$_3$ (dashed-dotted line). The solid line gives the total cooling rate.
Clear-sky heating rate: shortwave
Net flux:

\[F = F^+ - F^- \]

Net energy gain in a layer:

\[E = E_{\text{in}} - E_{\text{out}} \]

For a unit volume in the layer:

\[E = \frac{F^+(\tau_2) + F^-(\tau_1) - (F^-(\tau_2) + F^+(\tau_1))}{z_1 - z_2} = \frac{F(\tau_2) - F(\tau_1)}{z_1 - z_2} \]

measured in \(\frac{W}{m^3 \cdot \mu \text{on}} \)

For very thin layer:

\[H_\lambda = -\frac{dF_\lambda}{dz} \]

Heating rate (\(H \))

\[H = \int_0^\infty H_\lambda \cdot d\lambda = \int_0^\infty -\frac{dF_\lambda}{dz} \cdot d\lambda \]

If \(H < 0 \): cooling
If \(H > 0 \): heating

How does temperature change?

\[H = \frac{dE}{dt} \]

For a constant pressure:

\[dE = \rho \cdot c_p \cdot dT \]

Therefore the time change is:

\[H = \frac{dE}{dt} = \rho \cdot c_p \cdot \frac{dT}{dt} \]

This yields:

\[\frac{dT}{dt} = \frac{H}{\rho \cdot c_p} \]

(usually measured in K/day)
Heating rates in the Atmosphere - LW

• Assume that the Earth’s surface is a blackbody, and that the downward intensity at the top of the atmosphere is zero. Then we can write

\[
F^+(z) = \pi B^* T_F(z,0) + \int_0^z \pi B(z') \frac{dT_F(z,z')}{dz'} \, dz' \tag{1}
\]

\[
F^-(z) = -\int_z^{z_t} \pi B(z') \frac{dT_F(z,z')}{dz'} \, dz' \tag{2}
\]

• If we examine equation 1, the integrand can be viewed as \(u.dv\) in the relation \(d(uv)=vdu+udv\) and Eq 1 can be replaced by

\[
\int_0^z \frac{d[\pi B(z')T_F(z,z')]}{dz'} \, dz' - \int_0^z \frac{d[\pi B(z')]T_F(z,z')}{dz'} \, dz'
\]
Heating rates in the Atmosphere

which equals

\[\pi B(z) - \pi B(0) T_F(z,0) - \int_0^z \frac{d[\pi B(z')]}{dz'} T_F(z, z') dz' \]

and equation 1 becomes

\[F^+(z) = \pi B(z) + \left(\pi B^* - \pi B(0)\right) T_F(z,0) - \int_0^z \frac{d[\pi B(z')]}{dz'} T_F(z, z') dz' \]

If we apply the same procedure to Equation 2 we get

\[F^-(z) = -\int_z^{z_1} \frac{d[\pi B(z')]}{dz'} T_F(z, z') dz' + \int_z^{z_1} \frac{d[\pi B(z')]}{dz'} T_F(z, z') dz' \]

\[= \pi B(z) + \pi B(z_t) T_F(z, z_t) + \int_z^{z_1} \frac{d[\pi B(z')]}{dz'} T_F(z, z') dz' \]
The net flux $F_{net} = F^+ - F^-$ will consist of four terms

\[
F_{net} = -\int_0^z T_F(z, z') \frac{d[\pi B(z')]}{dz'} \, dz' - \int_0^{z_t} T_F(z, z') \frac{d[\pi B(z')]}{dz'} \, dz' \\
+ \pi B(z_t) T_F(z, z_t) + (\pi B^* - \pi B(0)) T_F(z, 0)
\]
Heating rates in the Atmosphere

- The heating rate at z is defined as follows:

$$H(z) = -\frac{dF_{net}(z)}{dz}$$

and will consist of four terms:

A. Exchange from below

$$H(z) = \int_{0}^{z} \frac{dT_{F}(z, z')}{dz} \frac{d[\pi B(z')]}{dz'} dz'$$

B. Exchange with above

$$+ \int_{z}^{z_{t}} \frac{dT_{F}(z, z')}{dz} \frac{d[\pi B(z')]}{dz'} dz'$$

C. Exchange with space

$$- \pi B(z_{t}) \frac{dT_{F}(z, z_{t})}{dz}$$

D. Exchange with surface

$$- \left[\pi B^{*} - \pi B(0)\right] \frac{dT_{F}(z, 0)}{dz}$$
Meaning of the Terms

- **A**: Exchange from below
- **B**: Exchange from above
- **C**: Cooling to space
- **D**: Exchange from surface
Heating rates in the Atmosphere

Let’s now examine the contribution that each term makes to the heating and cooling of the atmosphere.

But first we must examine the sign of the term \(\frac{dT_F}{dz} \)

This term can be defined as follows:

\[
\frac{dT_F}{dz} = \text{limit as } \Delta z \to 0 \frac{T_F(z + \Delta z, z') - T_F(z, z')}{\Delta z}
\]

for any \(z' \) greater than \(z \), \(T_F(z + \Delta z, z') > T_F(z, z') \)

and \(\frac{dT_F}{dz} \) will be positive because the distance from \((z + \Delta z) \) to \(z' \) is less than from \(z \) to \(z' \). Hence \(T \) is greater.
Heating rates in the Atmosphere

• By similar arguments it can be shown that for $z’$ less than z, dT/dz will be negative.

• Now we will examine the four terms for three classes of atmosphere.
 • Isothermal
 • One with a nominal lapse rate
 • One with a temperature inversion
Isothermal Atmosphere

- For an isothermal atmosphere dB/dz will be zero. Hence the terms A and B are zero.
- In an isothermal atmosphere the temperature at the surface is equal to the temperature of the atmosphere directly above the surface, hence term D is zero.
- Term C is the only term that survives. dT/dz is positive (z’>z) and B is positive. The sign in front of the term is negative, hence the overall term is negative – cooling.

<table>
<thead>
<tr>
<th>Term</th>
<th>dB/dz’</th>
<th>dT/dz</th>
<th>overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>
Heating rates in Isothermal Atmosphere

- The heating rate at z is defined as follows:

$$H(z) = -\frac{dF_{\text{net}}(z)}{dz}$$

and will consist of four terms:

(A) $\int_0^z \frac{dT_F(z, z')}{dz} \frac{d[\pi B(z')]}{dz'} \, dz'$

(B) $\int_z^{\infty} \frac{dT_F(z, z')}{dz} \frac{d[\pi B(z')]}{dz'} \, dz'$

(C) $-\pi B(z_t) \frac{dT_F(z, z_t)}{dz}$

(D) $-\left[\pi B^* - \pi B(0)\right] \frac{dT_F(z, 0)}{dz}$

Exchange from below Nil

Exchange with above Nil

Exchange with space Cooling

Exchange with surface Nil
Nominal lapse rate

- The temperature of the atmosphere decreases with z, hence dB/dz' is negative.
- The term dT_F/dz is negative for A, positive for B and positive for D. The signs can be summarized as follows:

<table>
<thead>
<tr>
<th>Term</th>
<th>dB/dz’</th>
<th>dT/dz</th>
<th>overall sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>-</td>
<td>+ (heating)</td>
</tr>
<tr>
<td>B</td>
<td>-</td>
<td>+</td>
<td>- (cooling)</td>
</tr>
<tr>
<td>C</td>
<td>+</td>
<td></td>
<td>- (cooling)</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>-</td>
<td>+ (heating)</td>
</tr>
</tbody>
</table>
Heating rates in the nominal atmosphere

- The heating rate at z is defined as follows:

$$H(z) = -\frac{dF_{net}(z)}{dz}$$
and will consist of four terms

$$H(z) = + \int_{0}^{z} \frac{dT_{F}(z, z')}{dz} \frac{d[\pi B(z')]}{dz'} dz'$$ \hspace{1cm} A.

$$+ \int_{z}^{z_{t}} \frac{dT_{F}(z, z')}{dz} \frac{d[\pi B(z')]}{dz'} dz'$$ \hspace{1cm} B.

$$- \pi B(z_{t}) \frac{dT_{F}(z, z_{t})}{dz}$$ \hspace{1cm} C.

$$- \left[\pi B^{*} - \pi B(0)\right] \frac{dT_{F}(z, 0)}{dz}$$ \hspace{1cm} D.

Exchange with below warming

Exchange with above Cooling

Exchange with space Cooling

Exchange with surface Warming
Temperature inversion

• Assume that z is at the inversion. dB/dz' changes sign at z:

<table>
<thead>
<tr>
<th>Term</th>
<th>db/dz'</th>
<th>dT/dz</th>
<th>Overall sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>+</td>
<td>-</td>
<td>- (cooling)</td>
</tr>
<tr>
<td>B</td>
<td>-</td>
<td>+</td>
<td>+ (heating)</td>
</tr>
<tr>
<td>C</td>
<td>+</td>
<td></td>
<td>- (cooling)</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td></td>
<td>+ (warming)</td>
</tr>
</tbody>
</table>

• Note that term A shows cooling, whereas for a nominal lapse rate it gave heating. The tendency of the atmosphere is to remove the inversion.
Heating rates in atmosphere of temperature inversion

- Temperature goes down with height

\[H(z) = -\frac{dF_{net}(z)}{dz} \]

and will consist of four terms

A. Exchange from below cooling

\[H(z) = + \int_{0}^{z} \frac{dT_{F}(z, z')}{dz} \frac{d[nB(z')]}{dz'} dz' \]

B. Exchange with above warming

\[+ \int_{z}^{z_{t}} \frac{dT_{F}(z, z')}{dz} \frac{d[nB(z')]}{dz'} dz' \]

C. Exchange with space cooling

\[- nB(z_{t}) \frac{dT_{F}(z, z_{t})}{dz} \]

D. Exchange with surface warming

\[- \left[nB^{*} - nB(0) \right] \frac{dT_{F}(z, 0)}{dz} \]
Profiles of clear sky upward and downward fluxes

1. Note that both the upward and downward fluxes decrease with increasing, but at different rates.
2. The upward flux decrease because the principle source of heating is the radiation from the ground, and this is attenuated with height.
3. The downward radiation fluxes increase towards the surface because the increasingly opaque atmosphere is emitting at progressively warmer temperatures.
Spectral contributions to the cooling rate – tropical atmosphere
Vertical profile of total longwave cooling
Radiative Heating by Clouds
Spectral dependence of cloud absorption

Factors increasing vapor absorption:

Influence of cloud altitude:
Cloud absorption: dependence on particle size

[Graphs and diagrams showing single scatter albedo and reflectance for different particle sizes and wavelengths.]
Longwave radiative cooling heating in clouds

Longwave radiative effects of clouds strongest at which wavelengths?

Heating/cooling inside cloud:

Net energy gain in a layer: \(E = E_{\text{in}} - E_{\text{out}} \)

Overall heating rate of entire cloud:

\[
H(\tau) \propto \left((F^+ (\tau^*) - B(T(\tau^*))) \cdot e^{-\tau/\tau^*} + (F^- (0) - B(T(0))) \cdot e^{-\tau/\tau^*} \right)
\]

Draw graph of vertical profile:
- middle of cloud
- near top
- near bottom
- below cloud
- above cloud

Blackbody Curves

Ground Level

Radiative heating

Altitude