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RESUME

La validation rigoureuse de la précision et de la cohérence
des produits dérivés des données satellitaires représentant
des variables biophysiques de surface est essentielle au
progrés de lobservation de la Terre en tant qu'outil
d'analyse. La validation permet d'assurer que les produits
dérivés rencontrent les caractéristiques techniques
décrites et garantir que les résultats générés a l'aide de
leur utilisation peuvent étre considérés comme fiables. A
titre de composante d'une approche globale de contréle de
la qualité, pratique d'usage courant dans la plupart des
procédés de production, la validation est particuliérement
importante pour les produits dérivés des données de
télédétection parce que Uinformation est déduite et que le
rapport du signal sur le bruit enregistré lors des mesures
est fréquemment bas. Dans cet article, la validation des
produits de télédétection est analysée en deux phases : la
validation initiale qui permet d'établir la fiabilité d'un
produit et la validation continue qui permet d'assurer la
qualité et la fiabilité & plus long terme du produit. La
discussion est axée sur les données satellitaires optiques et
leurs applications terrestres, principalement dans
l'environnement boréal, On y présente des exemples de
produits d'applications au sol dérivés de données satellitaires,
incluant un apercu des difficultés réelles rencontrées lors
de la validation initiale. Plusieurs stratégies sont
proposées pour rendre la procédure de validation plus per-
formante et efficace.

SUMMARY

Rigorous validation of the accuracy and consistency of
satellite-derived products representing surface biophysical
. variables is at the heart of the success of Earth observation
as a practical tool. Such validation ensures that the derived
products meet the claimed specifications and thus results
produced with their use can be viewed with confidence. As
part of an overall quality control, which is involved in most
production processes, validation is especially important for
products derived from remote sensing data because the
information is inferred and because the signal to noise ratio
in the measurements is frequently low. In this paper, the
validation of remote sensing products is considered in two

phases: initial validation which establishes the soundness
of a product; and continuing validation which ensures the
ongoing quality and reliability of such a product. The
discussion is focused on optical satellite data and their
terrestrial applications, primarily in the boreal environment.
Examples are given for land products derived from satellite
data, including the practical difficulties in the initial
validation. Several strategies are suggested to make the

validation process more efficient and effective.

INTRODUCTION

he generation of information products from raw satellite

measurements is difficult due to the complexity of the three-
dimensional, often time-varying target medium; the variety of
information sought from a limited number of measurement types;
and ‘the often tenuous relationship between the signal and the
phenomenon of interest on one hand and the strength of the inter-
fering effects on the other. Nevertheless, the development and
implementation of the procedures for routine extraction of the
information of interest as ‘standard’ products is critical to the
expansion of the client community for the Earth observation tech-
nology, beyond the relatively limited number of remote sensing
specialists who now constitute the bulk of the users. Importantly,
the products must be of known guality, with accuracy information
attached, so that the potential users can make informed decisions
about the relevance of the product for their purpose.

The transformation of raw satellite measurements into an
accurate biophysical or geophysical product involves a number
of steps (Figure 1). The first stage is the conversicn of the raw
data into radiance or reflectance so that it represents the signal
just after leaving the target of interest. This involves sensor
calibration and atmospheric corrections. The data are then
transformed into a product which represents a biophysical
parameter describing the state or process in the Earth-
atmosphere system. The transformation relies on an algorithm
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Product validation in relation to the data handling stream from raw
data to the use of the product.

or a model, usually derived from field or laboratory measure-
ments, computer simulation, or a combination of these methods.
To be considered for routine use, the algorithm itself must first
be extensively tested and its accuracy and robustness proven as
part of the initial algorithm definition and development
process; we call this step ‘initial validation’ (Figure 1). Initial
validation involves the study of the basic relationships between
the reflected or emitted radiation and the variable of interest. It
may require laboratory studies of this relationship; field
measurements under a range of environmental conditions;
coincident field, airborne and/or satellite measurements;
modelling of the relationship between the variable of interest
and the reflected or emitted radiation with various assumptions
and degrees of complexity; or, more typically, a combination of
these approaches. During initial validation, sets of calibration
data are produced for use in establishing the feasibility and
accuracy of the retrieval of the variable of interest from remotely
sensed data. When completed, the initial validation yields an
algorithm for retrieving the variable of interest from remotely
sensed data, together with the detailed specifications of the
retrieval procedures and parameters to be used, the accuracy,
and error analysis.

Once a product is routinely generated from the satellite data
using the above algorithm, further validation is required as part
of quality assessment (Figure 1). The second validation step
assesses whether the product continues to reflect reality (as
described by independent observations). The two-step validation
is necessary to avoid generating unsatisfactory products even
with a good algorithm. In this context it is useful to distinguish

various levels of products. Using the nomenclature defined by
the Committee on Earth Observation Satellites (CEQS), three
praduct levels are relevant to the discussion: level 2 (retrieved
environmental variables at the same resolution and location as
level 1 data, i.e. calibrated data in satellite projection); level 3
(retrieved environmental vartables that have been spatially
and/or temporally resampled); and level 4 (model output or
results from analyses of lower level data). Since all three levels
have a strong remote sensing heritage, albeit to various
degrees, the Earth observation community needs to be
concerned with the validation at all three levels. In this paper,
we consider some issues related to both validation stages and
specifically those associated with the quality of the final infor-
mation products about the land surface.

The challenge of satellite product validation can thus be
expressed by the following question: how closely does the
product correspond to the same variable in reality, in both
magnitude and distribution? Using the above terminology it
includes both initial and continuing validation; the various
steps included in the two phases, from basic research on the
radiation — target interactions to operational satellite data
acquisitton, processing and product generation; and the
assumptions, uncertainties and other limitations or errors in this
process. The type and relative importance of these factors may
vary with product and application. A comprehensive, detailed
analysis of the various steps is beyond the scope of this paper.
Thus, we address some generic and some specific issues based
on our research experience, mainly in relation to biophysical
land variables and the boreal environment.

PRODUCT VALIDATION

Initial validation

By initial validation we mean the process of establishing the
quality of an algorithm by assessing the product generated by
the algorithm. Several approaches are possible.

(i) A common methaod is the comparison of the product with an
independently obtained data set representing the same information
(time/space/variable domain). Such data sets are obtained
through a variety of sources, most frequently in field data
collection campaigns. If products are validated with independent
data sets, it is implicitly assumed that the latter are a 100%
accurate tepresentation of reality. In practice, that is rarely the
case as data collected in situ usually have errors and may be
biased through sampling, measurement methods, etc. Some
errors are random, caused by noise from many unwanted
instrumental and environmental variations, and can be largely
reduced by multiple or repeat measurements. Others are bias
errors that cannot be removed after data averaging operations.
Bias errors can usually be found using independent or improved
techniques but they are difficult to assess unless such techniques
are available. Note that geophysical measurements may be corre-
lated in time and space if they are collected continuously and con-
secutively, thus violating the independence assumption of classi-
cal statistical analysis (e.g., Li and Leighton, 1992).
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(ii) Another validation approach is to compare independent-
ly derived (data source and algorithm) products from satellite
data sets, i.e. measuring the same variables in different ways.
The comparison is strengthened if one set has already been
validated against ground data. For example, Li {(1995) com-
pared two satellite-based surface radiation budget products.
Weaknesses and strengths of both products were identified by
analyzing the differences caused by the different input data and
algorithms. The analysis of discrepancies between the two data
sets may thus yield new understanding of the algorithms or of
data from which the products were derived, thus giving an oppor-
tunity for further improvements. When interpreting the results of
inter-comparisons, it should be kept in mind that the agreement
between two independent products does not necessarily confirm
the accuracy of either. It is not uncommon that both products
are subject to the same deficiencies or bias errors or that errors
caused by some factors may be canceled out by others, leading
to a false agreement.

(iii) Alternatively, the derived products may be compared to
outputs of physically based models that describe the underlying
physical and biophysical processes governing remote sensing
signals from the target of interest. Frequently, the algorithm
used to generate the product itself results from a simplification
of a more complex model, after exercising the latter under a
variety of conditions. Models of this type can be extrapolated
to areas where field data are not available and the model
assumptions remain valid. Models thus greatly enhance the
usefulness of limited data sets and their potential should not be
underestimated. However, they also have limitations.

(1) They are always to some degree simplified mathematical
descriptions of reality. Details ignored by models that are
insignificant in some cases can become important in
other cases.

(2) In formulating mathematical descriptions and model
simplifications, assumptions have to be made. The
assumptions are usually subject to the level of under-
standing of the modeled process and to the tools and
facilities available to that modeler. In making predictions
or extrapolations using models, the results are reliable only
if the assumptions remain valid. In reality, assumptions are
usually violated to some extent, incurring errors.

(3) Physically-based models often require input variables
that cannot be obtained remotely. These variables are
sometimes acquired by “tuning” models to produce the
desired output. Retuning a model is often needed when
applied to a new area. This problem of intrinsic remote
sensing dimensionality being smaller than the required
modeling dimensionality imposes a serious limitation to
the usefulness of many models {Hall et al., 1995b).

(4) Computationally, models are usually further simplified
for applications over large areas, introducing additional
uncertainties in derived products.

For the above reasons, an optimum approach to product
validation is to use both field data and models in a parallel and
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interactive manner (Hall et al., 1992). Meodels need to be
validated with some ground-truth data, but in turn they can
provide guidance for improving field experimental strategy and
extending the validation. For example, further collection of field
data can be directed toward testing some crucial assumptions
made in models. Models may also reveal inadequacies of input
data, e.g. sampling or measurement biases.

Continuing validation

Once algorithms for the conversion of data into information
products are developed and proven to perform well, several
questions remain:

» How well does the algorithm perform in the same area but
ancther year?

* How well does the algorithm perform in another geographic
area, in the same or somewhat different ecological setting?
* How well does the algorithm perform with different satellite

data sets?

If the characteristics of the input data do not change, the
product should continue to retain its accuracy over extended
periods. Thus, the principal reason for concern is the fact that
in practice, the input data are not likely tc remain static even for
a given sensor, as the sensor response tends to vary with time.
The calibration of input data and their stability with time there-
fore become critical for the performance of the algorithm used
and the consistency of the final product. Continuity of data sets
becomes a critical issue when data from various sensors are to
be used to produce a time series of a product. Such series may
consist of the same sensor type flown on successive platforms
or of different sensors making similar measurements. For
example, data from AVHRR onboard NOAA-7,-9,-11,-14;
EOS/MODIS; and SPOT/VEGETATION will form a time
series for the assessment of global vegetation dynamics over a
25-year period. How can the continuity and consistency of
products such as FPAR (fraction of photosynthetically active
radiation) and LLAT (leaf area index) be assured? Unless suitable
historical data sets exist, an independent assessment of
retrospective products becomes impossible, The most powerful
tool in this case is probably a comparison of the product for
overlapping periods when data from more than cne sensor are
obtained. When the compared sensors produce the same results
one is reassured that the product is likely satisfactory. However,
if discrepancies are found, it may not be clear why they occur
and which product is closer to the actual values. In any case, the
continuity of the calibrated measurements is critical and an
assumption must be made that the fundamental relationship
between the remote sensing measurements and the biophysical
variables of interest has not changed.

To ensure the stability of information products derived from
satellite data, a strong need exists for a continuing or a periodic
independent data set with which the remote sensing products
may be compared. This is the case even in measurements where
the signal is quite strong, but it becomes critical when the signal
is mixed with various sources of noise, as for example the
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information about green vegetation phytomass in terrestrial
ecosystems. For land applications, networks that provide
ground data for periodic validation do not presently exist.
Although environmental variables (species composition,
canopy structure, leaf area index) are measured at some sites in
various countries, the measured variables are rarely obtained in
a way that yields a spatially and thematically representative and
independent data set. This situation has led to discussions about
a system for long-term observations of land variables that could
be used in conjunction with satelliee observation to detect global
change trends {Global Climate Observing System, 1995). It
should be noted that an independent data set obtained to assess the
accuracy of satellite-derived preducts must meet certain criteria
of representativeness, location specificity and accuracy that are,
at least in some respects, likely to exceed the specifications for
the same variables collected traditionally or for other reasons.

EXAMPLES

The validation issues for land surface variables are illustrated
below for three variables: boreal forest leaf area index, surface
solar radiation budget, and absorbed photosynthetically active
radiation.

Boreal forest leaf area index

Although boreal forests often consist of single species in
fairly even age stands that have simpler foliage structure than
tropical and temperate forests, they also present a challenge to
assessing the leaf area index (LAI) over large areas. The major
problems in the two-stage validation process for LAI algo-
rithms include the following (the first six concern initial vali-
dation, the last one relates to continuing validation):

(1) Ground data collection. Because of the labour involved
and the impact on the forest, only limited destructive sampling
of LAI is possible. Therefore, indirect methods are the principal
means for obtaining actual leaf area data. Deriving LAI based
on allometric methods (relating easily measured stand variables to
leaf area) can cause large errors because stand conditions change
considerably across the landscape. Allometric relationships are
often stand specific and depend on species, age, stand density
and other conditions {(Smith, 1993). They require destructive
sampling which is laborious and usually involves substantial
errors (Chen, 1996a).

Since boreal forest canopies, especially conifers, have a
highly organized architecture, LAl measurements by many
. existing optical instruments are biased if the spatial distribution of
foliage is assumed to be random. Nevertheless, optical methods
can be more accurate than allometric methods if the effect of
foliage architecture on LAI measurements can be estimated.
Chen and Cihlar (1995a) developed a sunfleck-LAI instrument
called TRAC (Tracing Radiation and Architecture of Canopies)
to measure the effect of foliage clumping at scales larger than
shoots based on a new canopy gap size analysis theory (Chen
and Cihlar, 1995a). Although optical measurements of LAI
have been substantially improved with the use of TRAC, the

problem with foliage clumping within shoots still remains.
Techniques for determining this small-scale clumping effect
are available (Fassnacht et al., 1994; Chen, 1996a) but a large
number of shoots need to be processed to characterize a stand.
Chen (1996a) determined this within-shoot clumping effect for six
boreal conifer stands at three stages during the growing season and
found that the effect varies about 15% between species and ages.
It appears that combined use of the LI-COR LAI-2000 (for foliage
angle distribution) and the TRAC (for foliage spatial distribution)
can allow rapid estimation of LAI for large areas, with an
accuracy comparable to ground sampling (20 - 30%).

(2) Choice of vegetation indices. For LAI mapping, vegetation
indices remain simple and effective tools although alternatives
have been developed using simple inversion models (Kuusk,
1991; Hall e al., 1995a). Chen (1996b) found that near infrared
(NIR) reflectance is insensitive to the changes in LAI of boreal
forest stands because the increased reflection by green leaves
with increasing LAI is counter-balanced by the increased tree
crown shadows, which have low reflectance. The major signal
of LAI lies in the red band where an increase in LAI causes
monetonic decrease in reflectance; this is because the shadow
effect augments the decrease in leaf reflection with increasing
LAL The small sensitivity of NIR reflectance to LAI disqualifies
those vegetation indices designed to maximize the information
content in NIR measurements. For LAI mapping, the NIR
channel is most effectively used in indices based on the ratio of
NIR to red reflectance, such as the Simple Ratio (SR) and the
Normalized Difference Vegetation Index (NDVI) because the ratio
reduces many unwanted sources of environmental noise in both
channels (Figure 2). There are many sources of environmental
noise, including subpixel clouds and shadows, dissimilar surface
features, subpixel water bodies, edge effects, etc. All these
sources of noise generally cause simultaneous increase or
decrease in the reflectance for both red and NIR channels in
about the same proportion, and they are largely reduced when
the ratioc between these channels is taken. In the boreal forest
environment where the background is usually composed of
green moss and understory which differ relatively little from
the overstory greenness, the noise reduction mechanism of
ratio-based indices (NDVI, SR) is extremely important in the
success of LAI mapping using remote sensing measurements.
Chen (1996b) showed that the SAVI (Huete, 1988) and other
indices formulated for suppressing the effect of background on
vegetation information retrieval are not suitable for the boreal
environment because they are not in accord with the ratio
principle (Figure 2}. Chen (1996b) also showed that better linear
relationships exist between SR and LAI than between NDVI
and LAI. The usefulness of SR for mapping LAI in temperate
forests is shown in the recent study by Fassnacht er al. (1997).
The mid-infrared band can also be used to modify SR for
improving LAI derivation (Nemani et al., 1993),

(3) Species dependence. Chen and Cihlar (1996) correlated
ground- based LAl measurements with Landsat 5 TM NDVI
and found only small differences between black spruce and
jack pine species. However, the small sample size and noise in
the data made it difficult to assess if the difference is significant.
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Figure 2.

The coefficient of determination (r’) between two-band vegetation
indices derived from Landsat TM and LAI values measured in 20
conifer (jack pine and black spruce) stands in Saskatchewan and
Manitoba in late spring 1994. The indices include the Simple Ratio
(SR), Modified Simple Ratio (MSR}, Normalized Difference Vegetation
Index (NDVI), Non-Linear Index (NLI), Renormalized Difference
Vegetation Index (RDVI), Soil Adjusted Vegetation Index (SAVI), and
Global Environmental Monitoring Index (GEMI). Refer to Chen
(1996b} for more detail.

The background (moss cover and understorey) spectral
measurements from these two types of stands were significantly
different (Miller et al., 1997). The optical properties of jack
pine and black spruce needles were also found to be different
(Middleton ef al., 1997). These recent results indicate that it might
be necessary to distinguish between these two species in LA
algorithm development. The NDVI and other vegetation indices
are considerably greater over deciduous forests (aspen) than over
coniferous forests (L.oechel ef al., 1997).This suggests that for LAl
estimation, a corresponding forest cover map with classes of
conifer, deciduous and mixed forests (as a minimum) is necessary.

(4) Understory effect. Boreal forests are open with con-
siderable understory growth. The amount and species of under-
story vary depending on the density and species of the overstory.
Many understory species in the boreal forest (including alder,
labrador tea, cranberry, blueberry, sphagnum moss, feather
moss) have NDVI values that are only (.15 and 0.25 smaller
than those of overstory vegetation (White er al., 1995). This
makes it difficult to determine the overstory LAL This problem
is reduced when NDVI is measured in early spring before the
understory growth occurs (Chen and Cihlar, 1996). However, to
achieve an accuracy of LAI within 25%, NDVI should be
known to within 0.05. This implies the need for very accurate
solar zenith angle, view geometry and atmospheric corrections
and very accurate sensor-to-sensor calibrations when algorithms
derived for one satellite sensor are used for other sensors.

(5) Scale effect. Boreal landscape is heterogeneous with a
large fraction of open water. The large contrast between water
and forest poses a problem for moderate and coarse reselution
images. Large pixels frequently contain (often small) open
water bodies that introduce a large bias in LLAI estimation based
on algorithms derived and validated using high resolution data.
After an intensive study on the effect of small water bodies we
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concluded that a correction factor can be applied for LAI
estimation based on percent water cover in the pixel. This
suggests that for accurate determination of biophysical
variables over large areas, an open water mask at a higher
spatial resolution is required (Chen, 1998),

(6) Temporal stability. Vegetation indices of both deciduous
and coniferous boreal forests exhibit strong seasonal dynamics.
Most boreal conifer trees carry the same needles forup to4 - 10
years. New needles during the growing season contribute to
about 25 - 30% of the total foliage area (Chen, 1996a).
However, NDVI from conifer stands has much larger seasonal
variability (Cihlar et al., 1997a). This may be due to the under-
story condition and the effects of seasonal changes on the chloro-
phyli content. The temporal variability should be considered in
developing algorithms for both coniferous and deciduous
forests. The dependence of NDVI on solar zenith angle should
also be considered when images from different seasons and
latitudes are compared (e.g. Hall et al., 1995), or when
measurements made at the same location but at different times
are compared (Leblanc et al., 1997).

(7) Change of satellite data sources. Because of the high
sensitivity of estimated LLAI to vegetation indices, algorithms
are generally sensor-specific, i.e. a small difference in NDVI
due to sensor calibration or spectral bandwidth choices can
cause large errors in the derived products (Teillet et al., 1997).
Careful sensor cross-calibration is needed when algorithms
develeped for one sensor are used for data from other sensors.

Surface solar radiation budget

While numerous atternpts have been made to retrieve and validate
surface solar radiation budget (SRB} (Gautier et al., 1980; Pinker
and Laszlo, 1992; and Damnell et al., 1992; among others), the
discussion here is concentrated on the work of Li and his
colleagues who examined several aspects of product validation.

Li et al. (1993a) developed an algorithm for retrieving the
SRB from top-of-the-atmosphere (TOA) reflected solar radiation
measured with satellite sensors. Since the algorithm is based
exclusively on radiative transfer modeling, comprehensive initial
validation was carried out using both ground-based observations
and an independent data set. A direct validation was done by
comparing co-located (in time and area) satellite-based estimates
with surface measurements (Li ef al., 1993b). Although surface
data were taken from a tower that increased the field-of-view
(FOV) of the surface radiometer to better match satellite pixels,
differences in space and time between the two types of data are
still considerable, which obscures the actual discrepancies.
Since such space-time differences are essentially random, the
scatter of the comparison is generally much larger than the
inherent random error of the satellite-based product. On the
other hand, the mean difference between the satellite and
surface values can represent the real bias error, provided that
sufficient samples are available. This turns out to be close to
zero under all-sky conditions (Li er al., 1993b).

An indirect estimation of the random error embedded in the
satellite-based SRB products took advantage of the variable
density of global surface radiation network (Li er al., 1993).
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Since the standard deviation of the differences between
observed and estimated grid-mean SRB decreased rapidly with
the density of ground stations (Figure 3), the scatter of the
points stems mainly from the time-space mismatch of the two
data sets. By fitting the trend with an empirical function, one
can isolate the real random error as the asymptotic value
corresponding to infinite density of surface stations, which was
found to be around 5 Wi~ for the monthly mean SRB product
(Li et al., 1995).
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Figure 3.

The variation of the standard deviation of differences between observed
and estimated surface solar radiation budget with the average number
of surface observation stations within a grid cell of 280 km by 280 km.
Surface measurements were taken from the global radiation networks,
while satellite-based estimates were derived from the Earth Radiation
Budget Experiment. Both data are for the period of 1985 to 1989.

In addition to the global comparisons described above, an
analysis of the spatial and/or temporal pattern of the differences
can also be helpful in revealing some characteristics of a remote
sensing product. If the pattern resembles the distribution of a
variable that is related to the derived parameter, the variable may
be treated inadequately. For example, when the satellite SRB data
were compared with  global surface observations, large
differences occurred over the tropical regions with active biomass
~ burning (Whitlock et al., 1996; Li, 1997). This revealed deficien-
cies in the algorithm’s treatment of smoke-related aerosols.

As another example, consider surface albedo which is an
important component of the surface solar radiation budget. Li
and Garand (1994) developed an algorithm for retrieving clear-
sky surface albedo from TOA satellite observed albedo. Global
monthly mean surface albedos at a resolution of 2.5° by 2.5°
were obtained by applying the algorithm to the Earth Radiation
Budget Experiment data. Due to the lack of grid-mean ground-
truth measurements, an assessment of this product was made by

comparing with other satellite-based products (e.g., Staylor and
Wilber, 1990). Unfortunately, large discrepancies appear to
occur among the existing products, although Li and Garand’s
(1994) estimates agree with most of the data available. The
algorithm was validated using tower measurements made in
Boulder, Colorado, and Saskatoon, Saskatchewan, No bias and
small random errors were found (Li and Garand, 1994),

Although the above tests conducted during initial validation
confirm the adequacy of a particular data set, the longer-term
problem regarding SRB measurements remains. The main
satellite input for retrieving SRB and surface albedo is the TOA
albedo or reflected flux that is derived from TOA radiance
measurements after radiometric calibration and bidirectional
correction. Both corrections are sensor-dependent and therefore
the quality of the retrieved surface products may vary from one
sensor to another, unless the corrections are free from uncertain-
ties or the uncertainties remain constant. Since Li and Garand’s
(1994) algorithm is fully based on radiative transfer theory, its
performance has minimal regional dependence, but the quality of
input data may vary considerably from cne region/time to another
and so could the output data. Therefore, long-term observations
from a widely distributed surface radiation network such as the
Baseline Surface Radiation Network are essential for the con-
tinuing validation of global long-term SRB products.

Canopy absorbed photosynthetically active
radiation (APAR)

Photosynthetically active radiation (PAR) refers to the solar
radiation in the spectral range 400-700 nm. A new technique
for remote sensing of the PAR absorbed by the green foliage of
the canopy, APAR, was proposed (Li and Moreau, 1996) that
first estimates the amount of radiation absorbed by all materials
below the top of the canopy (APART). APAR is then computed
from APART, the fraction of the PAR absorbed by green foliage
(FPAR), and PAR surface albedo. The estimation of APART
employs a physically-based algorithm that requires the inputs of
upwelling PAR at the TOA, ozone amount, and aerosol optical
thickness and its absorbing property (Li and Moreaun, 1996).
Upwelling PAR at the TOA is the most important variable
whose changes largely drive the variation of APART. Surrogate
measurements of upwelling PAR can be obtained from the
visible channels of many existing and future satellite sensors. The
accuracy of information on aerosol is of secondary importance
(Li and Moreau, 1996).

Similar to the validation of SRB, matching surface and space-
borne observations is the most critical aspect in the initial
validation of the APART accuracy. Unfortunately, very few
upwelling and downwelling PAR measurements made at the
top of the canopy, and even fewer co-located with satellite
observations. To date, PAR measurements have been made
almost exclusively in field experiments of short duration, such
as FIFE and BOREAS. Preliminary validations were done
using these field measurements (L.i and Moreau, 1996; Li et al.,
1997).

The fraction of APART absorbed by the canopy can be
determined following the method described by Moreau and Li
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A comparison of the variations in understory net PAR (down minus up) measured below tree crown
with the TRAC and the Normalized Difference Vegetation Index (NDVI) measured above the
canopy with the CASI airborne sensor. The observations were taken at a young jack pine site in the
BOREAS southern study area during 1994. The two types of data sets were co-registered.

(1996) or from FPAR. Initial validation of these methods
requires measurements of downwelling and upwelling PAR
fluxes at the top and bottom of canopies, together with
information pertaining to the greenness of the canopy under
study (e.g., using NDVI). Surface NDVI can be derived from
satellite visible and near-infrared measurements after atmos-
pheric corrections, or directly from near-surface airborne data.
Validation of the proportion of PAR absorbed by canopies is
thus much more difficult than of APART. Not only are there
few coincident in situ and remote measurements available,
these measurements also suffer considerable differences in
spatial representation. The problem is further hampered by the
variability of vegetation coverage in the scale comparable to
the size of a tree crown. To resolve such local variability, data
collected with the TRAC instrument (Chen, 1996a) over an area
or along a transect are needed. TRAC uses walking and high-
frequency sampling techniques with upward- and downward-
facing PAR sensors to obtain measurements at a spatial interval of
10 mm along 150-350 m transects beneath the canopy, about
0.5 m above the soil surface.

As an example of the complexity of the initial validation of
FPAR, Figure 4 shows the correspondence between two data sets,
airborne and below-canopy. CASI airborne data obtained during
BOREAS were processed to compute NDVI at a resolution of 3m
by 3m (Miller et al., 1995) and compared with net PAR flux mea-
sured below canopy with the TRAC. Since the above canopy PAR
is much less variable over short distances, the fluctuations in
Figure 4 reflect mainly the below-canopy PAR difference (down
minus up) in relation to NDVI. In many instances the two vari-
ables change out of phase, i.e. larger PAR differences correspond
to smaller NDVL This is understandable as smaller NDVI implies
fewer leaves, allowing more PAR photons to pass through the
canopy. However, this relation is by no means universal as indi-
cated by the nearly in-phase variation in the middle part of the

one cannot expect any correlation between
the two quantities. Because of these and
other factors, validation of FPAR and other
vegetation attributes inferred from remote
sensing is a complex undertaking that
involves numerous inherent uncertainties.

VALIDATION STRATEGIES

The basic strategy for the initial validation has been the use of
comprehensive field campaigns. These have been carried out
for diverse land, ocean, and atmospheric applications. For land,
they have been conducted in various biomes: grassland (Sellers
et al., 1992), grassland/savannah (Prince et al., 1995), boreal
forest (Sellers ez al., 1995}, and others. Algorithm development
and initial validation, supported by field measurements, are major
objectives in these experiments. These experiments often generate
a number of remote sensing data sets, algorithms and products
with the initial validation results (e.g., Cihlar et al., 1997b).

Ongoing product validation implies an approach in which the
characteristics of the generated product are systematically assessed
against ‘expectations’ and any deviations are flagged for more
detailed analysis. Such validation must be built into the product
generation cycle. The ‘expectations’ refer to the expected values of
the geophysical product, which may be known only for a sample
of the domain, at best. This sample can be produced from a set of
reference sites where the parameter is routinely measured. Various
qualitative assessments are also possible, e.g. the values should not
exceed certain thresholds under given conditions. However, the
overall accuracy of the product is very difficult to ascertain, The
process can be expensive and time-consuming, but also as
intellectually stimulating as the development of new models or
discovery of new relationships in experimental data. It is a critical
and essential ingredient in ensuring the success of Earth observa-
tion science and technology from space. Below are some
suggested approaches that should reduce the effort needed to
produce consistent time series of derived products. Some of these
have been illustrated in the preceding sections, They are divided
into two groups, those relevant to validation strategies and those
aimed at obtaining appropriate remotely sensed data sets.
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For research:

» Use algorithms that scale easily. For example, algorithms
based on linear relationships between satellite measurements
and the geophysical variable can be transferred much more
readily from high resolution (e.g. TM) to lower resolution
(AVHRR, MODIS) data since only the spectral equivalence needs
to be formulated. Such products should be easier to validate if
produced by sensors with different spatial resolutions.

» Use other sensors as a bootstrap to span discontinuities. For
example, AVHRR pixels may be characterized using TM data,
in turn described with ground data obtained directly.

« Use products derived independently from various input
data/sensors to assess consistency of results.

« Use model sensitivity tests to determine whether particular
environmental variables are important and should be included
in ground data collection and algorithm validation efforts.

« Use various models (developed independently with different
assumptions) as an interim step in validation.

*» Results of the applications of the data in models, i.e. higher
level products, may also provide useful input into validation.
This is because the deficiencies may not become evident in the
product itself but will appear in the final result because of the
amplification of the errors by the additional processing or
because of other inputs.

Regarding remote sensing data:

« Qverlap operations of different sensors so that products can
be compared for the common period. It is important to include
a representative range of conditions in the comparison.

« When field data collection activities are undertaken, remote
sensing data from as many potentially applicable sensors as
possible should also be obtained, together with measurements
of all algorithm input and output variables.

The above approaches are not mutually exclusive, and in
fact many can be used as part of the validation scheme for a
particular product. As satellite remote sensing becomes
increasingly more relied on to deliver quantitative information
such validation strategies must be incorporated as an integral
component of the product generation cycle.
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