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This is the first of two articles which explore the com- tained using the TM map. The performance of samples
selected by a combination of cover composition and con-bined use of coarse and fine resolution data in land cover

studies. It describes the development and evaluation of tagion index responded to the characteristics of individ-
ual tiles in terms of the selection criteria. A rigorous appli-an objective procedure to select a representative sample

of tiles of high resolution images that complements a cation of the algorithm with spatial heterogeneity measures
such as the contagion index is computationally very de-coarse resolution coverage of an entire region of interest.

The second article explores the use of the procedure for manding. It is concluded that PSA provides an efficient
and effective tool to select a representative sample for landan accurate estimation of cover type composition at the

regional scale. The Purposive Selection Algorithm (PSA) cover studies in which both large area coverage and local
detail are desired. Elsevier Science Inc., 2000assumes that a relationship exists between land cover

compositions at the two spatial scales. It selects one tile
at a time, seeking the sample which most closely resem-
bles the composition of the coarse resolution map. Two INTRODUCTION
selection criteria were used, fraction of cover types and The interest in land cover analysis at regional to global
contagion index. PSA was evaluated using two land cover scales has grown dramatically in the last decade, stimu-
maps for a 288 km3165 km area in central Saskatche- lated by global environmental change and by improved
wan, Canada derived from Landsat Thematic Mapper

mapping tools. The International Geosphere–Biosphereimages (30 m pixels) and Advanced Very High Resolution
Program (IGBP) identified a strong need for regionalRadiometer (AVHRR, 1000 m pixels), each divided into
and global land cover information (Townshend et al.,64 tiles. The performance of an intermediate sensor (480
1994) to serve a variety of IGBP projects. Earlier work inm pixels) was assessed by resampling the TM map. When
using NOAA AVHRR data for mapping land cover (e.g.,using cover type composition alone, it was found that the
Loveland et al., 1991) led to the execution of a global 1procedure rapidly converges on a representative set of
km data land cover mapping initiative formulated in re-tiles with land cover composition very similar to the full
sponse to the IGBP and other requirements (Eidenshinkcoverage. The match between the domain and sample
and Faundeen, 1994). Various regional studies have alsocover type fractions was very close, with errors less than
been undertaken, as were methodological studies to im-0.002% once about 1/5 to 1/3 of the tiles were selected
prove land cover information extraction procedures overand no discernible bias in the selected sample. Compared
large areas (e.g., Defries and Townshend, 1994; Belward,to the TM whole area coverage, samples selected with
1996; Cihlar et al., 1996). As a result, quality land coverAVHRR classification were as representative as those ob-
data sets over large terrestrial areas are emerging, and
they will become reality with improved data sources such
as provided by the MODIS instrument (Salomonson,* Canada Centre for Remote Sensing, Ottawa, Ontario

† Canadian Forest Service, Quebec City, Quebec 1988) and planned new activities, for example, the Global
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mation, not available until the recent advent of the ap- this methodology to estimate land cover composition
over a region in central Canada.propriate remote sensing technology and analytical know-

how. Nevertheless, they do not provide all the land cover
information needed for detailed analysis, primarily be-

SELECTION METHODOLOGYcause of the limitation by the spatial resolution. Even
The proposed method is intended to select subareas towith the planned sensors operating in the 200–300 m
be imaged at high resolution, using a coarse resolutionrange, the resolution will not be sufficient for analysis
map of an entire area. For example, the area may beand process studies at the local (stand or patch) scale.
mapped using AVHRR 1 km data, and the sample pro-Experience from the Boreal Ecosystem–Atmosphere
vided by Landsat images (full scenes or 1/4 scenes).Study (BOREAS; Sellers et al., 1995), the GAP Analysis

For the global land surface or any part thereofProject (Jennings, 1995), and similar investigations makes
(termed “domain” hereafter), one can readily obtain i)it clear that a resolution of 10–30 m (such as provided
complete coverage of images with coarse resolution databy the Landsat Thematic Mapper, TM, and the SPOT
(e.g., 1 km) and ii) the data acquisition framework (calledHigh Resolution Visible, HRV) is optimum for studies of
“tiles” below) describing the potential coverage with fineecological and other landscape processes. However, at
resolution data. For Landsat, the tiles are specified bythis stage it is not feasible to implement a sustained con-
the World Reference System (NASA, 1982) path andtinental or global mapping program which would provide
row lattice (or quarter scenes within the images whichconsistent, time-specific (e.g., within 1 year) land cover
are the smallest Landsat data granules); other satellitedata sets over large areas and at such high resolution.
fine resolution imaging sensors use similar reference sys-The limitations are of a practical nature, particularly the
tems. Given that land cover composition is available inabsence of suitable automated information extraction
map form at the domain level, one can also computetechnology and financial resources.
land cover composition for each tile, using the coarseThe premise of this study is that it should be feasible
resolution data. It is then postulated that a representativeto employ high and low resolution data in an optimum
sample of the domain is that ensemble of tiles that to-fashion to characterize land cover at the large (regional
gether provide the same domain-level information asor continental) scale through a judicious combination of
when the entire domain is mapped. The specific mean-coarse and fine resolution data. In this case, the coarse
ing of “information” depends on the goals of land coverresolution data would cover the entire domain of inter-
analysis but could include total area of land cover byest, while only a sample would be provided by the fine
type, spatial distribution of individual cover types, rela-resolution data. Such samples are useful for studies of
tive spatial distribution of several cover types, and others.land cover composition, in the design of terrestrial sam-
In developing the algorithm and its testing in the com-pling networks, and for the planning of large-scale exper-
panion article, we concentrated on composition by landiments. The principle of sampling for land cover analysis
cover type, and to a lesser extent on spatial distribution.is well established (e.g., Belward, 1996; Walsh and Burk,
However, in general the algorithm may need to be ad-1993). A key question is the sample selection strategy.
justed with respect to the objective of the sampling.Random sampling is statistically appealing because of the

Two descriptors of land cover are used below to de-applicability of the classical statistical procedures. How-
scribe composition and distribution, respectively. Forever, it is not generally an efficient approach. For this
composition, we employed the Euclidean distance EDreason, other sampling designs such as stratified random,
between the cover fractions at the domain and tile levels,systematic grid, and others (Cochran, 1963) may be pre-
respectively:ferred for land cover analysis. However, the sampling

problem is complicated by the nature of fine resolution
EDd,j5!o

n

i51
(fd,i2fj,i)2 , (1)satellite data. Since the data are acquired as orbits and

later subdivided the sampling unit is an image with a
where fj,i5fraction of the area covered by cover type ifixed size (e.g., a 185 km3185 km for a Landsat scene),
in tile j (dimensionless), d represents the domain, and nnot a single pixel. For reasons of costs and efficiency of
is the number of classes.using the acquired data, it is much preferable to select

In addition to an overall land cover composition, thescenes that will make the greatest contribution to the
patchiness of land cover at various spatial scales may alsocharacterization of land cover over the entire domain and
be important (Johnson et al., 1999). To describe the spa-at fine resolution.
tial distribution, we selected the contagion index CI pro-The purpose of this article is to outline an objective
posed by O’Neill et. al. (1988), as modified by Li andmethod for selecting a sample of fine resolution images
Reynolds (1993):for land cover analysis using a coarse resolution coverage

of the entire area of interest, and to test the performance CIj52n ln(n)1o
n

k51
o
n

m51
Pk,m ln(Pk,m), (2)

of the method. A companion article explores the use of



28 Cihlar et al.

3. Compute the Euclidean distance [Eq.(1)] be-
tween the composition of the domain and each
tile.

B. First tile
4. Select the first tile as that with minimum Eu-

clidean distance ED(d,j).

C. Second and subsequent tiles
5. For each tile j not yet selected, compute EDd,s

(i.e., the distance between the domain and the
sample tiles selected so far) and EDd,s1j (which
would result if j were added to the sample).
The change in ED is then determined as Eq.
(3):

Cj5|EDd,s2EDd,s1j| , (3)

where Cj is the change that would result from
adding tile j, and s1j is a hypothetical sample
that includes tiles already selected and tile j.
The absolute value is used because the differ-
ence could become temporarily negative.

6. Compute the relative change for each not-yet-
selected tile as in Eq. (4):

RCj5
Cmax2Cj

Cmax
, (4)

where Cmax is the maximum C value among all
the remaining tiles (including tile j).

7. Identify as “candidate tiles” those for which
RC(j)<Thr, where threshold Thr>0 is a user-
defined value to provide a window of opportu-Figure 1. Flowchart of the tile selection algorithm.
nity for the contagion index in the selection.
Note that if Thr50, the selection is based on

where Pk,m is the probability that a pixel of land cover ED only.
type k is found adjacent to a pixel of type m and n is 8. Among the candidate tiles that meet the Thr
the number of land cover types in tile j. CI thus quanti- criterion select the tile that has the closest CI
fies the likelihood that two adjacent randomly selected to the domain CI.
pixels in the map belong to cover types k and m, based 9. Return to Step 5 unless all tiles are selected.
on the fraction of these types within the map and their Thus, the algorithm seeks to select the minimum set of
spatial distribution. The reason for selecting CI was to tiles which most effectively represent the domain; for
characterize the degree of local intermixing of cover brevity, it is referred to below as PSA (purposive selec-
types. This index has been widely used in other studies tion algorithm).
(Turner, 1990; Graham et al., 1991; Gustafson and Par- The PSA algorithm produces a plot of selection step
ker, 1994). vs. ED based on which the sample can be selected. This

Given the two descriptors, a selection algorithm can is described in the following sections.
be defined for application to a domain map. It consists
of the following steps (see Fig. 1): Data and Analysis Procedure

A. Preparation The general approach to evaluating PSA was to prepare
1. Divide the domain land cover map into the de- a domain coverage with coarse and fine resolution data;

sired tiles, and identify the extent of each tile to test PSA with coarse resolution data, and to evaluate
on the domain map. the results with fine resolution data considered as “the

2. Determine f(d,i) and f(j,i) for the domain d truth.” For this reason, three land cover maps of the do-
and all tiles j. Also compute CI for each tile main were prepared: coarse resolution (AVHRR-derived);
and for the domain using Eq. (2). Put the re- fine resolution (TM-derived); and medium resolution,
sults into “source list,” which contains the can- obtained by generalizaing the fine resolution map to sim-

ulate future satellite data types, specifically MODIS.didate tiles.
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Table 1. Satellite Data Employed els window to all 30m pixels in that window. From this
map, another set of 64 tiles was created and is referredSensor Location Date Bands
to as P-MODIS. While the 30 m pixel size was retained

Landsat TM 36/22-23a 30 July 1996 3,4,5
in P-MODIS for analytical purposes, each tile was in fact37/22-23a 9 August 1991 3,4,5
equivalent to 75343, 480 m3480 m pixels. The third do-NOAA AVHRR Canada 1995 growing 1,2,Nmb

season main coverage was provided by AVHRR. The AVHRR-
derived map (1000 m pixels) was registered to the TMa Path/row.

b Mean value of the normalized difference vegetation index. map, and a 30 m pixel AVHRR coverage was created by
nearest-neighbour resampling. The tiles in all three data
sets were coregistered.

Input Data For each tile and domain, values of f, ED, and CI
A land cover classification of a part of the BOREAS Re- were computed. For CI the FRAGSTATS implementa-
gion (Sellers et al., 1995) was used to test the PSA meth- tion of Li and Reynolds (1993) formula was used
odology. The area includes various boreal forest cover (McGarigal and Marks, 1993). A weighted absolute dif-
types in the norther part, cropland and grassland cover ference (WAD) between the domain and the sample was
in the south. It is contained within two Landsat The- computed for various samples s as
matic Mapper (TM) scenes (Table 1). The TM scenes

WAD5o
n

i51

fd,i |fs,i2fd,i|,were classified using the enhancement–classification
method (ECM; Beaubien et al., 1999). The essence of
ECM is to optimally enhance the input data, compress fd,i5

NPd,i

NPd

,
these without losing significant land cover information
(as judged by a knowledgeable interpreter), and label the

fs,i5
NPs,i

NPs

, (5)clusters after nearest neighbour classification using ancil-
lary information.

where NP is the number of pixels, n is the number ofPrior to the classification, the two scenes were radio-
classes, and i refers to individual classes.metrically normalized using the overlapping area and

In addition to various combinations of data sets andtime-invariant targets as determined through visual inter-
Thr values, an additional test was made, a random selec-pretation. The resulting clusters were assigned to various
tion in which the tiles were chosen at random (withoutclasses of the classification legend (Table 2). A qualitative
replacement), using Thr50.evaluation of the accuracy of the classification was made

The differences between the domain and selectedthrough a comparison with color infrared, stereoscopic
sample were quantified using mean values for the abso-aerial photographs obtained in the summer of 1994 along
lute (DAB) and relative (DRE) difference between thetransects over parts of the BOREAS Region.
domain and the sample:The AVHRR data to be classified (Table 1) were

processed for the entire 1995 growing season [refer to
DAB5

1
no

n

i51

|fd,i2fs,i|, (6)Cihlar et al. (1997a) for details of the AVHRR pro-
cessing]. The classification was performed for all of Can-
ada (Cihlar and Beaubien, 1998). ECM was also em- DRE5

1
no

n

i51

|fd,i2fs,i|
fd,i

. (7)
ployed in this case, using the same basic steps, but the
resulting clusters were labeled using Landsat transparen-
cies or prints from various parts of Canada. A qualitative
assessment of the accuracy of the classification was car- RESULTS AND DISCUSSION
ried out by a comparison of the classified AVHRR image

Figure 2 shows the effect of tile selection for three datawith approximately 100 Landsat scenes, the latter being
sets (TM, P-MODIS, AVHRR) using Thr50. Two mea-interpreted visually in the process. As a cross-check on
sures express the difference between whole area and thethe AVHRR- map it may be noted that in comparison to
selected tiles, ED [Eq. (1)] and WAD [Eq. (5)]. In allthe independently obtained TM map, the average abso-
cases, the difference diminishes rapidly at first and thenlute difference [DAB, Eq. (6)] for the domain was 0.03%
very gradually until most tiles are selected. The differ-and the relative difference [DRE, Eq. (7)] 1.6%.
ence became quite small after about 1/6 (for WAD) to

Computation of f and CI 1/3 (ED) of the tiles were selected, depending on data
set and measure. It was smallest for the TM set andThe TM-derived map (960035504, 30 m pixels) was di-

vided into 64 tiles (Fig. 7), each consisting of 12003 largest for the AVHRR. This is likely because the small
scale variability was retained in case of TM, thus improv-688 pixels. Secondly, the TM classification was trans-

formed into an equivalent coarser classification by as- ing the representation of class proportions at the tile
level. For AVHRR, the local variability was reduced, andsigning the most frequent cover type within a 16316 pix-



30 Cihlar et al.

Table 2. Land Cover Types for the Landsat TM and AVHRR Classifications

2.1 Thematic Mapper Legend

Forest
Coniferous

1 High crown density (.60%)
2 High crown density younger (.60%)
3 Low crown density (25–40%)
4 Low crown density with lichens (25–40%)
5 Very low crown density often treed wetland (10–25%)
6 Very low crown density with lichens (10–25%)

Deciduous
7 High crown density (.50%)
8 Low crown density, mostly regeneration (25–50%)

Mixed
9 Coniferous .50%

10 Deciduous .50% (occasionally very open forest)
Open land (tree crown density open forest ,10%)

11 Burns
12 Burn with more vegetation (also very open lichen conifers)
13 Wetland
14 Wetland or cropland
15 String bogs

Cropland
16 High vegetation cover
17 Medium vegetation cover
18 Low vegetation cover
19 Very low or without vegetation

Others
20 Water bodies
21 Clouds

2.2 Advanced Very High Resolution Radiometer (AVHRR) Map Legend

Forest land
Evergreen needleleaf forest

1 High density
Medium density

2 Southern forest
3 Northern forest

Low density
4 Southern forest

Deciduous broadleaf forest
5 Northern forest
6 Deciduous broadleaf forest

Mixed forest
7 Mixed needleleaf forest

Mixed intermediate forest:
8 Mixed intermediate uniform forest
9 Mixed intermediate heterogeneous forest

10 Mixed broadleaf forest
Burns

11 Low green vegetation cover
12 Green vegetation cover

Open land
13 Transition treed shrubland
14 Wetland/shrubland (medium density)
15 Grassland

Developed land
Cropland

16 High biomass
17 Medium biomass

Mosaic land
18 Cropland-Woodland
19 Cropland-Other

Other
20 Water
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Figure 2. The mean Euclidean distance (ED) and the mean weighted absolute difference (WAD)
between the domain and the tiles selected using threshold Thr50.

the tile consisted of fewer pixels, thus requiring addi- which together can strongly contribute to the domain are
selected, the selection becomes so broad as to be effec-tional tiles to obtain a broader, more representative sam-

ple. The P-MODIS result was intermediate between the tively random. The selection is then more strongly influ-
enced by CI. For lower Thr (0.5), the selection is re-two. The rate of convergence of the sample to the do-

main would thus depend on the relationship between the stricted to a narrower range of tiles, and therefore the
point at which the influence of CI begins to dominatelandscape heterogeneity and pixel size, and secondly on

the size of the tile relative to that of the domain. Figure arrives later. This trend is the same for TM and for
P-MODIS, and also holds for WAD. For the AVHRR2 also shows that the trends of ED and WAD were simi-

lar, although ED had a wider range. This is because a (Fig. 3c), ED values for intermediate threshold values
(0.3, 0.5) were also between the Thr50 and randomlarge difference in a few classes will affect ED more than

WAD. Thus, ED is a more appropriate criterion for the cases throughout most of the selection process. The
trend shown in Figures 3a and 3b was present as wellselection of tiles because it leads to a faster convergence

of the sample to the domain. The advantage of ED is (initial ED decrease followed by an increase), but it
never reached the random case. On the other hand,obvious in some cases, for example, the third selection

step (Fig. 2) for which ED decreased strongly (signifying Thr51.0 produced the same ED as the random case. It
suggests that if the spatial distribution of cover types isfast convergence to domain values) but WAD increased

somewhat. also important (as described by CI), a larger number of
scenes will be required to represent a domain.Figure 3 illustrates the effect of adding the conta-

gion index as a selection criterion. The overall tendency A further insight into the effect of CI on the selec-
tion can be obtained from Figure 4 which shows CI val-is to approximate the random selection result (top curve,

Fig. 3a). For both the TM (Fig. 3a) and P-MODIS (Fig. ues for individual selected tiles. The CI values for the
domain were 21.5 (TM) and 57.1 (AVHRR). There is a3b) data sets, the difference between the selections with

Thr50 (i.e., no CI used) and Thr50.3 was small and not general trend to increasing CI values starting from the
domain value and the selection based on ED onlysystematic. At higher Thr values, ED initially followed

the Thr50 curve but then move towards the random se- (Thr50). In other words, the tiles with the highest diver-
sity of cover types (and thereby lowest CI) were selectedlection case. The point at which it starts to deviate de-

pends on Thr. At high Thr (1.0), the selection considers first, and subsequent scenes tended to be more homoge-
nous. Second, for low Thr the CI values of adjacent tilesa broad range of tiles at every step. Thus, after the tiles
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Figure 3. The mean Euclidean distance (ED) between the domain and the tiles selected using various
threshold values, and for a random tile selection: TM land cover map (a), P-MODIS map (b), AVHRR map (c).
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Figure 3. Continued

fluctuated substantially but this fluctuation was damp- 5a), it varied between 0% (class 3) and 97% (class 17:
true fraction 2.7%, estimated 0.1%). This was reflectedened as the Thr value increased. For higher Thr, the CI

values of selected tiles increased almost monotonically in the average errors for all classes, both absolute [DAB,
1.5%, Eq. (6)] and relative [DRE, 41.2%, Eq. (7)].once the heterogeneous tiles were used up. Thus, the se-

lection was guided by CI once the initial heterogeneous Increasing the number of tiles dampened the fluctu-
ation, leading to average DAB (DRE) errors of 0.3%scenes were exhausted. In effect, the RC values [Eq. (4)]

would differ less between the remaining tiles, thus per- (10%) for 10 tiles and 0.2% (10%) for 20 tiles (i.e., 31%
of the area). Although further reductions were obtained,mitting a larger number of tiles to become candidates for

selection (Step 7). The same trend was observed for TM they were relatively small. For example, by increasing
the number of tiles by 50% (to 30), the average absolute(Fig. 4a) and AVHRR (Fig. 4b). The main difference was

the earlier start of the monotonic increase for AVHRR, error decreased by only 0.1% and the relative error by
4.1%. It should be noted that the relative error wasthroughout the Thr50.3 as opposed to a second half of

Thr50.5 selection (TM). The TM curves also show that strongly influenced by two small classes, representing
0.7% and 0.3% of the area, respectively. Without thesethe monotonic increase was stronger for higher Thr val-

ues. Figure 4 thus implies that the ED trends in Figure classes, DRE was 7.6% (10 tiles), 5.9% (20), and 2.6% (30).
A similar trend was observed for the P-MODIS data3 result from the combined effect of cover type hetero-

geneity (in the candidate tiles) and the Thr value. When (Fig. 5b). From the high average values after one tile
(DAB52.0%; DRE562.7%), the magnitude decreased tothe former is low and the latter high, the ED curve for

the selected tiles will approximate random case and CI 0.2% absolute and 12.3% (9.2% without two small
classes) relative after 20 tiles. The addition of the nextwill increase monotonically for adjacent tiles. This trend

is due in part to the way CI is used in the algorithm 10 tiles reduced the errors by 0% and 5.1% (2.0% with-
out the two classes), respectively. The actual AVHRR(Step 8), and is discussed further below.

Figure 5 shows the effect of increasing sample size data behaved in a similar way, although the fluctuations
were larger. After one tile, the DAB (DRE) was 3.1%on the difference between the domain and selected tiles

within the same data set, both on individual classes and (155.4%). These were reduced to 0.5% (22.9%) after 10
tiles and to 0.3% (15.2%) after 20. As in the case of P-the combined effect. A value of Thr50 was used. For

one tile, the relative difference between the actual and MODIS, the addition of further tiles decreased ap-
preciably only DRE (to 8.8%) while absolute errorestimated area can fluctuate widely. In case of TM (Fig.
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Figure 4. The contagion index (CI) between the domain and the tile selected at each step for various
threshold values: TM land cover map (a), AVHRR map (b).
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Figure 5. The cover type area fraction and the absolute difference between the fraction of land cover type in
the domain map and the sample (right-hand y-axis), for individual cover types: TM (a), P-MODIS (b),
AVHRR (c). The difference is computed between the domain values for that date type and the sample.



36 Cihlar et al.

Figure 5. Continued

changed by 0.1%. This is because of three small classes Third, a comparison of Figures 6b and 6c shows that the
small classes magnified the overall relative error. For P-(0.6–0.9% of the area); without these, the DRE values

were 10.2% (with 10 tiles), 8.0% (20), and 4.8% (30). MODIS, the relative error was reduced by 30% when
leaving out the smallest class; for AVHRR, the reductionThe trends observed in Figure 5 suggest that the tile se-

lection scheme is less efficient if small classes are present was 20%. Fourth, when TM was used as a reference, the
difference in the DRE values between tiles selected us-and must also be well represented, unless they are spa-

tially associated with larger, more ubiquitous classes. ing AVHRR or TM was small: 14.5% (for 10 tiles), 0.9%
(20), and 0.1% (30). Similarly, the difference in relativeSince the TM map completely covered the area of

interest it is possible to accurately evaluate the extent to errors was also small for P-MODIS (0.5% for 10 tiles,
1.5% for 20, 0.1% for 30). This shows that full coveragewhich a sample of the AVHRR tiles would represent the

area if it were imaged at high resolution, that is, the fea- by coarse or medium resolution data can be successfully
used to select representative areas to derive statistics thatsibility of using coarse resolution coverage to select a

high resolution sample. Figure 6 shows DRE values for are nearly as accurate as if the sample were selected
from full coverage of high resolution data. Althoughthe three data types and different reference data

(Thr50): domain coverage by the same data type (Fig. there is an implied requirement for accurate coarse reso-
lution map, it is more important that the cover classes be6a); domain coverage by TM (Fig. 6b); and domain cov-

erage by TM but ignoring the smallest class (represent- internally consistent, that is, each coarse resolution class
should be comprised of a reasonably stable fractions ofing 0.3% of the area) in DRE computation. Several ob-

servations can be made. First, the relative error individual classes (that are resolved at high resolution).
Although comparable results after 20 or so tiles candecreased first rapidly and then more gradually, as also

noted in Figure 5. Only in one case (AVHRR, 10 tiles) be obtained, this does not mean that exactly the same
tiles will be selected. Figure 7 shows the tiles selecteddid a partial increase (Fig. 6b) occur. Second, the DRE

values for coarser resolution tiles were smaller when from the three data sets. Using the TM data set as a
reference, only seven identical tiles (35%) were selectedcompared to 30 m pixels (Fig. 6b) than to the same reso-

lution (Fig. 6a), by about 30% for 20 tiles and both from the P-MODIS data set and 11 (55%) from the
AVHRR data. On the other hand, the first five tiles wereAVHRR and P-MODIS. At the higher resolution, the in-

dividual classes appear to be represented more accu- chosen in the same order for TM and P-MODIS while
the entire selection sequence was different between therately because the small classes were not averaged out.
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Figure 6. The mean relative error (DRE) between the domain and the selected tiles with different ref-
erence data. a) Compared to the domain map of the same data type; b) compared to the TM domain
map; c) compared to the TM domain map and without the smallest class (occupying 0.3% of the domain).



38 Cihlar et al.

Figure 6. Continued

AVHRR and the TM. A full correspondence is not to be area. In this article, representativeness was considered in
expected because small differences in ED may lead to terms of the cover type composition, as expressed by the
different selection paths. Once a different tile is selected, fractions occupied by each class and by the spatial distri-
it affects the subsequent sequence because those tiles bution measured by the contagion index. Using cover
are selected to balance the ones already chosen. The fractions only, the tiles selected with 480 m or 1000 m
similarity of the relative errors after a number of tiles resolution maps provided virtually the same statistics as
were selected (Fig. 6) means that various combinations tiles selected with 30 m data once approximately 1/4 to
of tiles can provide similar results. 1/3 of the area was selected. The number of tiles in-

How closely do the statistics for the selected tile ap- cluded in the coverage would depend somewhat on the
proximate the domain, and are they unbiased? Figure 8 importance of small classes. If the representation of such
shows the mean difference per class between the domain classes is not critical, a smaller number of tiles can be
(TM map) and the sample with sign considered, com- used. After a certain point, more tiles makes only a small
puted as in the Eq. (6) without the absolute values. For contribution to the cover type composition, as evidenced
Thr50, the curves rapidly converged to 0%, especially by the increase from 20 to 30 tiles (31–47% of the area)
for TM and P-MODIS. The convergence was more grad- which decreased the residual errors only marginally. Fig-
ual for AVHRR, but even there the mean difference was ure 2 indicates that the difference between the sample
only 0.0017% after 20 tiles were selected. The difference and domain statistics was appreciably reduced further
from 0 (and thus the bias) is therefore negligible, even

only when almost all tiles were selected.without taking into consideration other sources of error
When using CI as a selection criterion, the process(such as classification accuracy) in the domain data sets.

becomes more complicated because of the combinationsFor Thr50.5, the curve behaved more erratically. This
of land cover distribution within individual tiles. The al-is because the importance of the contagion index in-
gorithm performed as expected, that is, it selected, as farcreases at some stage of the selection process (refer also
as possible, scenes with CI similar to the domain. Theto Fig. 3). Neither convergence nor zero bias can there-
problem is that CI’s for most individual tiles will before be assured in this case.
higher than those for the domain because of the reduced
complexity of land cover distribution over a smaller area.

COMMENTS The complexity increases as the number of selected tiles
grows. Thus the way the CI was applied here is not opti-The above results show the practical feasibility of select-

ing a set of tiles that are “representative” of the entire mal because only the CI of individual tiles was consid-
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Figure 7. Tiles selected after 20 steps
using TM map (a), P-MODIS (b), and
AVHRR (c).
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Figure 8. Mean difference (sign considered) between the fraction of the area occupied by a class in
the domain and the sample. The reference used is the TM domain map, except for the AVHRR/
AVHRR curve where the reference is the AVHRR domain map.

ered (Step 8). The preferred approach would be to com- can be made. First, the PSA procedure is designed to
produce an unbiased sample (as compared to the domainpute a combined CI for all tiles already selected, and

then compute the change in the sample CI if each indi- of the same data type). Second, the sample will also be
unbiased if a close relationship exists between the do-vidual tile were added–similarly as for ED in Step 5. Un-

fortunately, this presents a formidable computational de- main maps at coarse and fine resolutions. This is likely
to be the case for larger areas, simple landscapes, largemand, especially for areas of appreciable size. It would

also require some simplification, that is, the selected tiles parcels of individual cover types, or a combination of
these. Third, the “worst case” situation will be infrequentwould have to be assumed to constitute a contiguous map,

thus incurring inaccuracies at the seams between tiles. cover types occurring in small patches. They should be
represented well if their occurrence is correlated withFor the study area, the sample selected using the al-

gorithm closely represents the region of interest and the the presence of more frequent cover types, for example,
cutovers cooccurring with contiguous dense forest stands.residual errors are very small. In general, the difference

between the domain and the sample is likely to depend When small, infrequent cover types exist independently
of others, their representation will depend on the spatialon the heterogeneity of the land cover distribution in re-

lation to the pixel size and on the size of the tiles. Con- distribution within the tiles. In this study, the worst case
(smallest class) occupied 0.3% of the area in the TM do-sidering typical data types, the tiles can vary between 60

km (SPOT images) and 185 km (TM full scenes), larger main coverage. The DRE values for this class with 20
(30) tiles were 25.2% (15.1%) for TM, 21.7% (36.7%) forthan those used here. Thus the convergence between do-

main and sample statistics is likely to be faster because P-MODIS, and 0% (15.1%) for AVHRR. This shows that
coarse resolution does not necessarily cause underrepre-individual tiles will have a more balanced representation

of cover types; this is especially true if full TM scenes sentation of small classes. It is also important to note that
using random selection does not ensure representative-are being selected. Nevertheless, from a statistical view-

point the exact cover type composition of the domain ness unless independent information about the domain is
available (which implies some form of coarse resolutionshould not be based on a simple average of the selected

tiles. Simple averaging assumes random sampling so that mapping in the broad sense). Even when such informa-
tion is available there is no assurance that a randomly orthe sample units can be considered independent. In our

case, the selection is not random as the goal is to select systematically selected sample contains the small classes.
On the other hand, if the classes are mapped at boththe minimum representative subset. Three observations
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resolutions PSA ensures that the sample is selected in main and the sample diminished rapidly at first
and later only slowly with an increasing samplethe most efficient way to represent the entire domain for

a given sample size. size. Depending on the data set, the difference
was small to negligible after 1/6 to 1/3 of the do-When analyzing land cover characteristics, it is desir-

able to obtain measures of statistical confidence. In prin- main was selected.
2. Selection using data with 1000 m pixels (AVHRR)ciple, these can be obtained if the probability of each tile

being selected is known and statistical methods based on was nearly as efficient as with 30 m (TM) or 480
m (resampled TM). The average difference inunequal probability sampling are applied (Cochran,

1963). Stuart (1976) demonstrated that in unequal prob- cover type proportions between the domain
(mapped at 30 m) and the sample of 20 tiles wasability sampling, the selection should be made as nearly

proportional as possible to the values of the variable in 0.0002% (TM), 20.0017% (AVHRR), and
0.0007% (P-MODIS). The differences were alsothe population. Various methods have been used to com-

bine coarse and fine resolution data for land cover analy- small for lower numbers of selected tiles.
3. When ED and CI are used in combination, thesis (e.g., Walsh and Burk, 1993; Moody and Woodcock,

1996; Mayaux and Lambin, 1995; 1997; Cihlar et al., selected sample represents a combination of the
1997b; Moody, 1998). These methods should yield more two attributes, and may not converge to the do-
accurate results if the selected high resolution sample main uniformly.
closely represents the domain, and an objective and re- 4. The final number of tiles to be included in the
producible method of selecting such sample is strongly sample is a compromise decision which involves
preferable to a subjective procedure. This topic is ex- the residual differences between the domain and
plored in the companion article. the sample at each selection step as well as practi-

As described, PSA does not provide an objective cut- cal (resource) considerations.
off for the sample size. This is a decision to be made by

It is concluded that the PSA algorithm provides an effi-the analyst depending on the requirements of a particu-
cient way to identify a sample of high resolution data forlar study and the financial and other resources available.
multiresolution studies.The changes in ED (Fig. 2), CI (Fig. 4), DRE (Fig. 6),

and mean difference (Fig. 8) or DAB with increasing
We wish to acknowledge the helpful comments of two anony-number of tiles provide the foundation for the tradeoff
mous reviewers.decisions.
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