
Estimating fire-related parameters in boreal forest using

SPOT VEGETATION

R.H. Fraser a,*, Z. Li b

aNatural Resources Canada, Canada Centre for Remote Sensing, 588 Booth Street, Ottawa, ON, Canada K1A 0Y7
bDepartment of Meteorology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742-2425, USA

Received 12 June 2001; received in revised form 18 February 2002; accepted 15 March 2002

Abstract

The majority of burning in the boreal forest zone consists of stand replacement fires larger than 10 km2 occurring in remote, sparsely

populated regions. Satellite remote sensing using coarse resolution (c 1 km) sensors is thus well suited in documenting the spatial and

temporal distribution of fires in this zone. The purpose of this study was to investigate the utility of the SPOT VEGETATION (VGT) sensor

for estimating three key parameters related to boreal forest fire: burned area, postfire regeneration age, and aboveground biomass. Based on a

sample of fires across Canada, the best overall discrimination of burned forest was provided by a normalized short-wave-based vegetation

index (SWVI) that combines near-infrared (NIR) and short-wave infrared (SWIR) channels from VGT. Multitemporal differencing of this

index from anniversary date VGT composites was combined synergistically with active fire locations from NOAA/AVHRR to map Canadian

forest that burned during 1998 and 1999. National burned area estimates for both years were within 15% of those compiled by the Canadian

Interagency Forest Fire Centre. The normalized index also was correlated (R=.68) with the age of regenerating forests in Saskatchewan and

Manitoba that burned between 1949 and 1998. An artificial neural network (ANN) model developed using temporal metrics computed from

VGT could predict the age of these forests with an RMS error of 7 years (R=.83). By contrast, forest biomass based on Canada’s Forest

Inventory (CanFI) was estimated with relatively poor accuracy (RMS= 32 tons/ha) from VGT reflectance and terrestrial ecozone using a

network model. We conclude that the VGT instrument is effective for mapping large boreal burns at the end of a fire season and

approximating the age of regenerating burns less than about 30 years old. This information can be useful to supplement conventional ground-

based data sets in remote areas where coverage may be incomplete. D 2002 Published by Elsevier Science Inc.

1. Introduction

The boreal biome covers 17% of Earth’s land area and

comprises about 25% of its forestland. The major ecosys-

tems within the boreal zone (forests, peatlands, and tundra)

contain more than 30% of terrestrial carbon stores, thus

representing a major component of the global carbon budget

(Kasischke, 2000). Wildfires are a dominant factor control-

ling ecological succession and carbon storage in boreal

forests, burning on average nearly 1% of the total forest

area annually. Fire has an immediate direct impact on the

carbon balance of boreal forests resulting from the conver-

sion of living biomass and soil carbon into atmospheric

carbon (CO2, CO, CH4). Amiro et al. (2001) estimated that

between 1959 and 1999, forest fires in Canada released a

mean annual 27 Tg of carbon/year, equivalent to about 18%

of current CO2 emissions from the Canadian energy sector.

Emissions from Canadian fires have recently been shown

capable of affecting atmospheric chemistry in the south-

eastern United States, more than 3500 km downwind from

the source (Watowa & Trainer, 2000). Fire also indirectly

affects carbon cycling by modifying large-scale patterns of

stand age distribution and thus total carbon storage of the

boreal forest (Kasischke, 2000). In addition, a warming of

the ground layer after fire may elevate the rate of CO2

release from microbial decomposition for more than a

decade (Richter, O’Neill, & Kasischke, 2000).

Due to the large extent and remoteness of the boreal zone,

it is difficult and costly to monitor the distribution of fire

activity across its entire area using conventional aerial or

ground-based surveys. By contrast, coarse resolution (c 1

km) satellite sensors are well suited to boreal fire mapping
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due to their ability to cover large areas on a daily basis, and

the fact that large fires are responsible for the vast majority of

burning. For example, in Canada between 1990 and 1995,

fires larger than 10 km2 accounted for 97% of the burned

forest area (Canadian Council of Forest Ministers, 1999). To

date, the AVHRR sensor aboard the NOAA series of mete-

orological satellites has been the most commonly used

spaceborne instrument for characterizing the distribution

and impact of boreal fires at regional to continental scales.

The sensor has been used for identifying active fires (Flan-

nigan & Vonder Haar, 1986; Li, Cihlar, Moreau, Huang, &

Lee, 1997; Li et al., 2000), detecting smoke plumes (Li,

Khananian, & Fraser, 2001), mapping the extent of burned

areas (Cahoon, Stocks, Levine, Cofer, & Pierson, 1994;

Fraser, Li, & Cihlar, 2000; Kasischke & French, 1995; Li,

Nadon, Cihlar, & Stocks, 2000), and estimating trace gas

emissions (Cahoon et al., 1994).

Much of the boreal forest zone appears as a patchwork of

even-aged forests—the vestige of large stand replacement

fires occurring over several decades (Stocks, 1991). These

patterns have been mapped at a regional scale through

classification of AVHRR (Cihlar, Beaubien, Xiao, Chen,

& Li, 1997; Steyaert, Hall, & Loveland, 1997) and Landsat

TM (Beaubien, Cihlar, Simard, & Latifovic, 1999; Hall,

Knapp, & Huemmrich, 1997) imagery into categories rep-

resenting broad stages of fire regeneration (e.g., recent

burns, regenerating burns, higher density forest). Within

the BOREAS study region located in Central Canada,

Steyaert et al. (1997) estimated from unsupervised classi-

fication of monthly AVHRR/NDVI profiles that approxi-

mately 30% of the area had been affected by fire disturbance

within the preceding 30–35 years. They also noted that

Landsat TM composites (bands 5, 4, AND 3) were more

effective than the AVHRR data for discriminating burns

older than 15–20 years. Kasischke and French (1997)

modeled the AVHRR/NDVI seasonal trajectory and peak

for Alaskan white and black spruce forest as a function of

fire regeneration age. The peak seasonal NDVI for black

spruce forests (more common in Canada) occurred about 20

years after burning. Such empirical models of stand age

could aid in constructing a baseline for predicting at

regional and continental scales how changes in fire fre-

quency will alter the age distribution and carbon storage of

forests (Kasischke, Christensen, & Stocks, 1995).

Biomass density is another important boreal forest

parameter influenced by fire, and is necessary to estimate

fuel loading and the amount of direct carbon emissions

resulting from fire (French et al., 2000). Remote sensing of

biomass in northern conifer forests has been most effective

with synthetic aperture radar (Ranson et al., 1997) and

scanning lidar (Lefsky et al., 1999), while reflectance data

from Landsat TM also have been applied successfully over

even aged, productive forest stands (Fazakas, Nilsson, &

Olsson, 1999). A physically based approach for estimating

canopy biomass density in the BOREAS study region was

developed by Hall et al. (1997). This technique related tree

volumetric density to sunlit canopy fraction, which was

derived using a canopy reflectance model and TM-measured

reflectance.

The recent SPOT VEGETATION (VGT) sensor pro-

vides imagery with a swath size and return interval com-

parable to AVHRR and includes a 1.65-Am short-wave

infrared (SWIR) channel also found on the new AVHRR

instrument onboard post-NOAA14 satellites. Preliminary

studies have shown that VGT’s SWIR channel is highly

effective for discriminating burned boreal forest (Eastwood,

Plummer, Wyatt, & Stocks, 1998; Fraser, Li, & Landry,

2000), which is consistent with previous work using other

sensors over a wide range of ecosystems (Eva & Lambin,

1998; also summarized in Pereira et al., 1999). In addition

to being sensitive to burned area, SWIR reflectance meas-

ured by Landsat TM has been found related to the age and

biomass of secondary forests in Brazil (Steininger, 2000)

and lodgepole pine forests in Wyoming, USA (Jakubauskas

& Price, 2000). This suggests that a relationship may

similarly exist between SWIR reflectance and both postfire

regeneration age and biomass at a coarser scale in boreal

forest.

The purpose of this research was to investigate the utility

of the sensor for measuring three key parameters related to

boreal forest fire: burned area, postfire regeneration age, and

forest biomass. The specific objectives were to:

1. quantify changes in VGT-measured reflectance and

vegetation indices (VIs) after boreal forest is burned;

2. map forest burned in Canada during 1998 and 1999

using the results from (1) and a change detection

algorithm developed for annual burned area map-

ping;

3. investigate the potential to predict postfire regener-

ation age using multiple regression and artificial

neural network (ANN) approaches applied to VGT

channels, VIs, and multitemporal metrics; and

4. examine the relationship between VGT reflectance

and aboveground forest biomass.

2. Methods

2.1. Satellite sensor data

SPOT VGT 10-day composites (S10 syntheses) covering

all of Canada were acquired for the period April 1–October

31 of 1998 and 1999. The 42 syntheses provide surface

reflectance in four channels [0.45 Am blue, 0.66 Am red,

0.83 Am near-infrared (NIR), and 1.65 Am SWIR], which

were nominally corrected for atmospheric effects using the

Simplified Method of Atmospheric Correction (Rahman &

Dedieu, 1994). We projected the imagery from Plate Carree

to Lambert Conformal Conic at 1-km resolution using

nearest neighbor resampling. The composite imagery was

further corrected for bidirectional reflectance effects by
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normalizing to a 45j solar zenith angle and nadir view using

a new nonlinear, temporal BRDF model (Latifovic, Cihlar,

& Chen, in press). Finally, individual pixels contaminated

by atmosphere (e.g., subpixel cloud or smoke) or other

effects were identified and replaced using CECANT (Cloud

Elimination from Composites using Albedo and NDVI

Trend; Cihlar, 1996). CECANT is a self-calibrating method

that identifies contaminated pixels based on their seasonal

NDVI trajectories and red reflectance. Two VIs (VI) were

computed from the corrected channels: NDVI [(NIR� red)/

(NIR + red)] and an analogous short-wave-based vegetation

index (SWVI), in which the SWIR is substituted for the red

[i.e., (NIR� SWIR)/(NIR + SWIR)] (Fraser et al., 2000;

Kaufman & Remer, 1994).

2.2. Measuring changes in VGT reflectance and VI after

burning

To determine the most effective VGT channels and VI for

annual burned area mapping across Canada, post fire season

composites were produced for 1998 and 1999. Cloud-free

30-day composites were created for September of each year

by selecting pixels with smallest NIR reflectance from three

September 10-day maximum NDVI syntheses. Since cloud

has high NIR reflectance and burns have low reflectance,

this minimum NIR criterion minimizes any residual cloud

contamination in the 10-day products, while preferentially

selecting pixels in their burned state if they burned during

the September compositing period (Barbosa, Pereira, &

Gregoire, 1998). By contrast, the conventional maximum

NDVI criterion used for the 10-day composites would be

biased to selecting September fire pixels in their unburned

condition, causing them to go undetected. In this applica-

tion, the 30-day minimum NIR criterion is designed to

reduce the impact of the potential bias in the 10-day

composites. A postfire composite based on October imagery

could have been used to avoid overlap with late-summer

fires, but at the expense of degrading contrast of burned

areas due to annual senescence of deciduous species (i.e.,

trees, shrubs, and herbaceous vegetation) within the sur-

rounding unburned conifer forest (Kasischke & French,

1997).

A sample of forested pixels burned in 1999 was identi-

fied to examine reflectance changes occurring in the same

year of burning (i.e., between September 1998 and Sep-

tember 1999). One hundred forty-five polygons (2643

pixels) containing burned forest across Canada were digi-

tized on-screen with reference to a backdrop consisting of

the September 1999 VGT composite (RGB=SWIR, NIR,

and red), in which recent burns appear dark red. A mask of

1999 hotspot locations produced by compositing daily

AVHRR fire products (Li, Nadon, & Cihlar, 2000) was

overlaid on the VGT imagery to aid in locating the 1999

burns. A second sample containing 340 pixels was digitized

from nine fires that occurred in May 1999, during the early

part of the fire season. This sample was used to investigate if

spring fires have a significantly different burn signature at

the end of the fire season. To examine VGT spectral changes

occurring the year after forest is burned (i.e., from Septem-

ber 1998–1999), a third sample consisting of 162 polygons

(2504 pixels) were similarly identified for forest that burned

in 1998. In all three samples, water pixels were masked

from the polygons based on an AVHRR classification

(Cihlar, Beaubien, Latifovic, & Simard, 1998). Simple

reflectance and VI statistics were then computed for the

three sets of sample pixels using the two anniversary date

composites from September 1998 and 1999. Due to severe

atmospheric effects from path radiance, VGT’s blue channel

was not examined in this study.

2.3. Annual mapping of burnt forest across Canada (1998

and 1999)

Fraser, Li, and Cihlar (2000) developed a technique for

annual burned area mapping of boreal forest. The method,

dubbed HANDS (Hotspot and NDVI Differencing Syn-

ergy), combines multitemporal change detection with active

fire monitoring. In conventional spectral change detection

approaches (e.g., image differencing), a significant chal-

lenge is to establish a threshold suitable for identifying those

pixels that have undergone change. Land cover change

detection techniques also are susceptible to producing false

positives due to factors other than real cover change, such as

cloud contamination, image misregistration, and phenolog-

ical variation. HANDS is designed to minimize these prob-

lems by using an annual mask of satellite-detected fire

locations as training pixels to derive spatially variable

thresholds for separating burned pixels. Since the resulting

clusters of burned pixels are required to be spatially coin-

cident with the active fire mask, change pixels not associ-

ated with burning are largely eliminated. The processing

steps required by the procedure are illustrated and described

in Fig. 1 using AVHRR data. More detailed information is

presented in Fraser, Li, and Cihlar.

The HANDS procedure requires three types of input

data: (1) pre- and postfire composite images used for

multitemporal differencing; (2) a mask of annual active fire

locations; and (3) a vegetation mask or land cover classi-

fication. A previous application of the technique for map-

ping boreal forest burns relied on NOAA/AVHRR for all

three inputs (Fraser, Li, & Cihlar, 2000). In the present

work, we applied the technique in a similar manner across

Canada for 1998 and 1999, but for the multitemporal

differencing, we substituted an optimal change metric from

VGT in place of the NDVI from AVHRR. Based on the

analysis of individual channels and VIs (previous section),

the VGT channel or index demonstrating the largest average

change after burning was derived from the composite

imagery and used for differencing. For mapping 1998 burns,

a prefire composite was created by combining 10-day VGT

composites for the period April 20–May 20 of 1998 (the

VEGETATION instrument was launched in March 1998,
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precluding the use of an anniversary date composite from

September 1997). A maximum NDVI criterion was used to

combine the three spring 10-day composites so that any

pixels burned during the compositing period would be

selected in their unburned state. The postfire composite

for 1998 burn mapping consisted of the combined three

10-day VGT syntheses from September of that year

described in the previous section. Burnt area mapping for

1999 was accomplished by differencing the September

composites from 1998 and 1999.

2.4. Estimating postfire regeneration age

The utility of VGT imagery for predicting postfire

regeneration age was investigated using a successional

chronosequence identified from historical forest fire records

compiled for Saskatchewan and Manitoba in digital format.

Vector GIS records cover the period 1945–1996 for Sas-

katchewan (Naelapea & Nickeson, 1998) and 1980–1991

for Manitoba (Stocks, Zepp, & Knapp, 1998). The polygon

vectors for each year were merged into one polygon data

set, then reprojected and rasterized to a 1-km resolution grid

in Lambert Conformal Conic projection. These historical

data were supplemented with 1994–1998 fire locations

determined from annual masks of NOAA/AVHRR fire

hotspots (Li et al., 2000). The study region, indicated by

the shaded area in Fig. 2, is contained mainly within the

Boreal Taiga and Boreal Shield ecozones. The most com-

mon land cover types are spruce (Picea spp.) and jack pine

(Pinus banksiana) conifer forests in varying stages of fire

regeneration, wetlands, and lakes. Open lichen woodlands

are dominant in the northerly portion of the study area,

while mixed coniferous–deciduous forests are common in

the south.

To make allowance for positional uncertainties in the

historical fire databases (Naelapea & Nickeson, 1998;

Fig. 1. Key processing steps for the HANDS burn mapping algorithm. The colour palette in (b) ranges from red (large NDVI decrease) to light red (small NDVI

decrease) to white (little NDVI change) to dark green (NDVI increase) with lakes shown in black. Individual burn clusters are shown using separate colours in

(d). Provincial burn boundaries produced from aerial photointerpretation are shown in black. An annual composite of active fire locations from AVHRR (a) is

first used to derive regional-level (200� 200 km) difference thresholds from a pair of anniversary date, VI composites (b). The thresholds are computed based

on the mean and standard deviation of the decrease in the VI for fire locations within each region. This initial threshold separates all burned pixels as well as

many nonburned pixels (c; note the larger number of pixels selected in the lower left portion, which are located in a separate 200-km block with a more liberal

NDVI difference threshold). The patches of potentially burned pixels are then separated using a modal filter and grouped into contiguous burn clusters, each

with a unique identity (d). Active fires contained within the clusters are used to derive local, burn-specific differencing thresholds that again are based on the

mean and standard deviation of the observed hotspot NDVI drop (e). In the last step, any burn clusters containing less than 10% active fires are presumed false

and eliminated (f).
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Stocks et al., 1998) and the large interannual differences in

burned area, small polygons were manually digitized within

the interior of the historical fire polygons and satellite

hotspot clusters. If the polygons for a given year provided

fewer than 100 sample pixels, they were deemed potentially

unrepresentative and not included in the analysis. A total of

485 polygons were digitized across both provinces from

1949 to 1998 burn locations, providing 17,349 sample

pixels after masking land cover types not containing conifer

forest, including agriculture, water, and deciduous forest

(Cihlar et al., 1998). These pixels were then randomly

separated into training (50%), cross-validation (10%), and

testing (40%) subsets.

The spectral signatures of the historical burns were

characterized using SPOT VGT 10-day syntheses from the

snow-free period June 1–September 30 of 1999. The

average reflectance or VI value was computed from the

red, NIR, SWIR, NDVI, and SWVI channels. Three multi-

temporal metrics (maximum, minimum, and range) derived

for each channel from the 4-month period were also

examined. These metrics computed from multitemporal

AVHRR data have been shown to aid in characterizing the

phenological cycle of vegetation and discriminating vege-

tation types (DeFries, Hansen, & Townshend, 2000). Sim-

ilarly, monthly AVHRR/NDVI trajectories have been used

to improve separability of boreal forest cover types (Steyaert

et al., 1997). As recommended by Kimes, Holben, Nick-

eson, and McKee (1996), spatially smoothed channels also

were created by applying a median 3� 3 filter to the five

mean channels, thus providing a total of 25 input channels.

The relationships between the remote sensing variables

and burn regeneration age were first assessed independently

using simple regressions calculated from the full digitized

sample. Multivariate predictive models of burn age were

then constructed using both multiple regression and ANN

approaches. Forward stepwise and backward elimination

multiple regression models were developed using the

combined training and cross-validation data sets (60% of

data). A probability of .05 was used for entering or

removing variables. Second-degree polynomial terms were

also tested for each variable in the single and multiple

regressions to account to for simple curvilinear relation-

ships with burn age. The regression models were then

assessed by computing the RMS error and correlation

coefficient between the predicted and actual burn age from

the 6933 test pixels.

ANNs are being increasingly applied in remote sensing

as a nonparametric approach for predicting vegetation

characteristics and classifying land cover (Foody, Lucas,

Curran, & Honzak, 1996; Gopal, Woodcock, & Strahler,

Fig. 2. Study area within Manitoba and Saskatchewan spanning approximately 1150� 750 km used for predicting postfire regeneration age with SPOT VGT.

The background image is a contrast-stretched composite of averaged June–September 1999 reflectance from VGT’s SWIR, NIR, and red channels

(RGB=SWIR, NIR, and red).
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1999; Kimes, Nelson, Manry, & Fung, 1998). ANNs are

distributed, adaptive, nonlinear learning machines built from

simple processing elements, or neurons (Principe, Euliano,

& Lefebvre, 2000). In this study, the conventional multi-

layer perception ANN was used with one hidden layer of

neurons to predict postfire regeneration age (see Paola &

Schowengerdt, 1995, for a more detailed description). Net-

works employing the hyperbolic tangent activation function

and containing a varying number of hidden layer neurons

(5–35 in steps of 5) were compared. Network training was

stopped when the average RMS error computed for the

independent cross-validation pixels began to increase or the

network had performed 10,000 training iterations. This

prevented the network from overlearning the training data

so that it would perform well with unseen data. Depending

on the number of hidden layer neurons, between 208 and

3239 iterations were required. Once trained, the network

weights were frozen and the ANN was used in forward

mode to predict regeneration age in the test pixels.

2.5. Estimating forest biomass

The relationship between aboveground forest biomass

and VGT reflectance was investigated using biomass data

derived from Canada’s 1991 Forest Inventory (CanFI;

Lowe, Power, & Gray, 1996). Aboveground biomass in

tons per hectare within 47,000 forest inventory polygons

has been estimated from allometric equations applied to

stand variables (height, diameter, and density) from CanFI

site class, age class, and species (Penner, Power, Muhairwe,

Tellier, & Wang, 1997). From this data set, 10-km reso-

lution rasterized grids were created representing biomass of

productive forests organized by species and age class for

the variable area that was inventoried within each cell. We

computed biomass density (t/ha) of all tree species within

each 10-km cell by dividing the summed species and age

class grids (t) by the inventoried area within each cell (ha).

Pearson correlations were calculated between biomass

density and the averaged June 1–September 30 of 1999

reflectance or VI value computed for the red, NIR, SWIR,

NDVI, and SWVI channels from VGT. These channels

were averaged within the 10-km biomass cells by selecting

only those pixels that are classified as forest in a 1998 VGT

land cover classification. This excluded nonforest cover

types as well as recently burned forest that would not be

represented in the 1991 CanFI. Predictive models of bio-

mass were developed using the ANN approach described

previously, with a random 50% training, 10% cross-vali-

dation, and 40% testing sample. The location of the 10-km

cells within 11 Canadian terrestrial ecozones was consid-

ered as a potential stratifying variable for predicting bio-

mass by adding binary indicator (dummy) variables to the

ANN model. The ecozones represent large, generalized

ecological units in Canada characterized by interactive

abiotic and biotic factors (Ecological Stratification Working

Group, 1996).

3. Results and discussion

3.1. Measuring changes in VGT reflectance and VI after

burning

Fig. 3 shows the average reflectance (red, NIR, and

SWIR) and VI values (NDVI and SWVI) computed for

the three sets of sample burned pixels from the September

1998 and 1999 composites. A quantitative index of the

separability between burned and nonburned forest afforded

by each channel and VI was computed for the 1999 fires as

(Eq. (1)):

S ¼ jxb � xnbj=ðsb þ snbÞ ð1Þ

where S is the separability index, xb is the mean reflectance

or VI from burned forest, xnb is the mean reflectance or VI

from nonburned forest, sb is the standard deviation of

reflectance or VI from burned forest, and snb is the standard

deviation of reflectance or VI from nonburned forest. The

index, denoted by an ‘‘S’’ in Fig. 3, provides a measure of

the channel signal-to-noise ratio. A value greater than 1

indicates that the standard deviations of burned and non-

burned forest do not overlap, allowing good separation

(Kaufman & Remer, 1994).

The uppermost pair of bars for each channel shows the

average signature from all 1999 fires in their preburn (Sep-

tember 1998) and postburn (September 1999) condition. In

the red channel, reflectance of burned forest measured at the

end of the fire season decreased, presumably due to strong

absorption from char combustion products (Pereira et al.,

1999). As is widely observed in boreal and other ecosystems,

NIR reflectance demonstrated the strongest change after

Fig. 3. Mean reflectance and VI values computed from 1998 and 1999

September VGT composites for three sets of sample burned pixels (the

SWVI has been shifted up by 0.5 to make values positive). The uppermost

pair of bars for each channel indicates the average signature of all 1999 fires

in their preburn (September 1998) and postburn (September 1999)

condition. The middle pairs of bars represent the pre- and postburn

signature from nine spring fires from 1999, while the bottom pairs show

changes in 1998 burned forest from the same year of burning (September

1998) to 1 year after burning (September 1999).
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burning (S = 0.83), decreasing significantly due to the

destruction of highly scattering, leafy vegetation (Pereira et

al., 1999). SWIR reflectance of vegetation is strongly con-

trolled by water absorption, and would be expected to

increase with the destruction of healthy vegetation with high

water content (de Boer, 1993). In addition, the removal of tree

canopy after crown fire should lessen shadowing effects

present in mature forest, also producing an elevated SWIR

response. However, the observed SWIR increase of forest

burned in 1998 was relatively small in relation to its variance

(S = 0.05; see discussion in following paragraph). The NDVI

exhibited a modest decrease (S = 0.34) after burning by

comparison to NIR reflectance, due to the concomitant

decrease in red reflectance. In fact, in some northerly forests

subject to late-season fires, NDVI changed very little owing

to a large drop in red reflectance. By combining the NIR and

SWIR channels, the SWVI provided the best overall discrim-

ination of burned forest at the end of the fire season (S = 1.05)

owing to the large drop in NIR and small increase in SWIR

reflectance. In general, VIs that combine NIR and mid-IR

channels are highly effective for distinguishing a variety of

burned vegetation types (Barbosa, Gregoire, & Pereira, 1999;

Pereira, 1999; Pereira et al., 1999).

A case study by Fraser et al. (2000) examined a time

series of single-date VGT images (P products) covering a

154,094-ha fire that occurred in Alberta, Canada during

May 1998. Reflectance in the red, NIR, and SWIR channels

initially decreased relative to surrounding unburned forest.

However, by late August, both red and SWIR reflectance

had increased significantly, contrary to the above average

results for 1999 burned forest. Nine early season fires

occurring in May 1999 were therefore examined separately

in an attempt to resolve this discrepancy. In the case of these

spring fires (second pair of bars in Fig. 3), red reflectance

increased by the end of the fire season, NIR reflectance

decreased, and SWIR increased significantly. The most

logical explanation for the differences observed in Septem-

ber reflectance between spring and summer fires is the

contrasting reflectance of the initial combustion residues

and subsequent herbaceous regeneration. By the end of the

fire season, the influence of charred vegetation in spring

fires (which strongly absorbs radiation in the red and SWIR)

was largely replaced by that of the early successional,

herbaceous vegetation. Moreover, early season fires may

cause less damage to a frozen or moist ground layer, leading

to a more rapid regeneration (Kasischke & French, 1997).

By contrast, in many August fires, the signal from the

combustion products continued to dominate several weeks

later towards the end of the fire season.

The third pair of bars in Fig. 3 shows changes in the

signature of 1998 burned forest that occurred between the

same year of burning (September 1998 imagery) and 1 year

after burning (September 1999 imagery). The trend of

increasing reflectance in the red and SWIR resulting from

regeneration is the same as that observed in the early 1999

fires. Contrast with surrounding unburned vegetation gen-

Fig. 4. Forest burned in Canada between 1998 and 1999 as mapped using SPOT VGT differencing combined with NOAA/AVHRR hotspots. The box indicates

the region in central Canada shown in close-up in Fig. 5.

R.H. Fraser, Z. Li / Remote Sensing of Environment 82 (2002) 95–110 101



erally became much stronger in these two channels 1 year

after burning. After one full year of regeneration, NIR

reflectance and NDVI recovered significantly toward pre-

burn levels.

3.2. Annual mapping of burnt forest across Canada (1998

and 1999)

Several previous applications using coarse resolution

imagery for burned area mapping in the boreal zone have

examined postfire decreases in AVHRR’s NDVI (Fraser, Li,

& Cihlar, 2000; Kasischke & French, 1995; Li et al., 1997;

Li, Nadon, Cihlar, & Stocks, 2000). In the preceding

section, it was demonstrated that an SWVI provides superior

discrimination of burned boreal forest at the end of the fire

season than does the NDVI or individual VGT channels.

This index was therefore used for the multitemporal differ-

encing component of the HANDS algorithm to map areas

burned in Canada during 1998 and 1999.

Canada-wide results of applying the algorithm to the

VGT composites and AVHRR hotspots for 1998 and 1999

are shown in Fig. 4. In both years, the majority of burning

Fig. 5. (A) Burn perimeters in central Canada mapped using VGT for 1998 and 1999 superimposed on a VGT false colour composite (RGB=SWIR, NIR, and

red). (B) Annual masks (1994 and 1996–1999) of active fires detecting using NOAA14/AVHRR and a boreal fire detection algorithm. A comparison of the

SWVI (C) and NDVI (D) for the region is also presented with lakes coloured blue.
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was attributable to wildfires > 100 km2 occurring in sparsely

populated areas of Canada north of 55j. Fig. 5A shows a

close-up of the extracted burn perimeters in central Canada

superimposed over a September 1999 false-colour compo-

site (RGB=SWIR, NIR, and red). The burned area product

is shown to have low errors of omission and commission in

relation to 1998–1999 AVHRR hotspot locations (Fig. 5B)

and recent, dark red burn scars visible in the postfire VGT

composites (Fig. 5A). The location of several older burns,

as indicated by the 1994, 1996, and 1997 hotspot locations

remain clearly visible in the composite image as lighter

shades of red. A comparison of the SWVI (Fig. 5C) and

NDVI (Fig. 5D) for the same region illustrates the

enhanced contrast of recent and older burned areas pro-

vided by SWVI. National forest burned area from the

VGT/AVHRR algorithm was 4,074,700 ha in 1998 and

1,901,300 ha in 1999, which is within 15% of estimates

compiled by the Canadian Interagency Forest Fire Centre

from provincial fire agencies (4,710,775 ha in 1998 and

1,705,645 ha in 1999).

A spatially explicit evaluation of the burn mask was made

using forest fire boundaries mapped by Alberta Environment

using GPS surveys and aerial photo interpretation hhttp://
www.gov.ab.ca/env/forests/fpd/i. Fig. 6 shows a typical area

Fig. 5 (continued ).
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where, in most cases, burn boundaries derived using VGT

compared favorably to the boundaries mapped by Alberta

Environment. One constraint of the HANDS method is that

burns can be mapped only if AVHRR hotspots were

detected within them. This caused the omission of some

burns, such as those denoted by an ‘‘M’’ in Fig. 6. Note that,

smaller fires are often not detectable using AVHRR due

to cloud cover and limited satellite diurnal sampling. How-

ever, for the 13 burns in Alberta that exceeded 10,000 ha,

regression analysis indicated a strong linear relationship

between the satellite (S) and conventionally (C) mapped

areas [C (ha) = 1.14(S)� 296 ha, R2=.98, P < .005, S.E. =

2397 ha]. Together, these fires comprised only a fraction of

the province’s 3051 wildfires from 1998 to 1999, yet fully

accounted for 75% of the total burned area. Across Alberta,

the satellite algorithm estimated a 1998–1999 burned area

of 638,700 ha, which was 86,700 ha or 12% smaller than

the area of complete and partial burning mapped by the

conventional surveys.

A national-scale validation of the burned area product is

being conducted as part of the Natural Resources Canada

Fire M3 project hhttp://fms.nofc.cfs.nrcan.gc.ca/FireM3/i
using burns mapped at 30-m resolution from 56 Landsat

TM and ETM+ scenes. A comparison of the VGT and TM

burn perimeters from two typical fires is presented in Fig. 7.

For these burns and in most other cases, there is good general

agreement between the outer burn boundaries mapped at the

30- and 1000-m resolutions. However, VGT area estimates

are almost consistently larger because the sensor resolution is

not sufficient to discern most interior islands containing

unburned tree crowns, which are thus mapped as burned.

As part of this validation, a statistical calibration relating

Landsat TM and SPOT VGT burn area will be derived by

double sampling 187 fires. The influence of burn size,

fragmentation, terrestrial Ecozone, and fuel type on the

TM–VGT relationship will also be quantified.

3.3. Estimating postfire regeneration age and forest biomass

Table 1 summarizes the association between age of

regenerating burned forest and the temporal metrics com-

puted from the SPOT VGT channels and two VIs. The

correlation coefficient (R) or multiple R is shown depending

on whether a second-degree polynomial term indicated a

curvilinear relationship (i.e., P < .05). Fig. 8 shows plots of

regeneration age against the mean value for the best metric

computed from the NIR and SWIR channels and two VIs.

The channel most strongly related to age was the SWIR,

followed by the NIR and red. SWIR reflectance gradually

decreased with regeneration age due to canopy shadowing

(Nilson & Peterson, 1994) and water absorption from

increasing leaf area (de Boer, 1993). However, this decrease

Fig. 6. 1998–1999 burns mapped in central Alberta using SPOT VGT (shaded areas) with Alberta Environment fire boundaries superimposed (black lines).

‘‘M’’ indicates burns that were not mapped using the satellite-based algorithm because no active fires were detected within them. The two larger missed burns

cover 5258 and 5618 ha.
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did not begin until about 7 years on average, when vege-

tation became sufficiently dense to mask the more strongly

absorbing combustion products (e.g., charred tree boles).

Note that the temporal resolution of the annual time series is

not sufficient to indicate an initial SWIR decrease relative to

background forest (represented by the horizontal lines in

Fig. 8), which was previously observed immediately after

burning before reestablishment of herbaceous vegetation

(Fraser et al., 2000). Of all channels and VIs, the SWVI

was most closely related to burn regeneration age, exhibit-

ing a linear relationship that explained almost 50% of its

variation. Unlike the NDVI, the SWVI revealed a complex

mosaic of regeneration patterns (e.g., Fig. 5C) where the

boundaries of burns more than 15 years old were often

clearly visible.

Results from the multiple regression and ANN models,

which examined all 25 VGT metrics, are summarized in

Table 2. Forward stepwise and backward elimination multi-

ple regression produced identical models with 15 independ-

ent variables at the 5% significance level, explaining 58% of

the variability in burn regeneration age in the test set with an

RMS error of 8.06 years. The addition of second-order

polynomial terms to account for simple nonlinearity

increased the R2 to .64 and decreased the RMS error to

7.58 in the training set, yet provided poorer prediction in

the test set. The six ANNmodels containing between 5 and 35

neurons were consistently better predictors of burn regener-

ation age, with the R2 between predicted and actual burn age

ranging from .65 to .69 and RMS ranging between 6.97 and

7.33 years. A network containing 10 neurons provided the

highest coefficient of determination (R2=.69) and smallest

RMS (6.97) for the test pixels. A scatter-plot showing

predicted regeneration age from this ANN against actual

years since burning (Fig. 9) indicates that the prediction error

is smallest for more recently burned forest. For example,

RMS error for forests less than 30 years is 5.85, while forests

more than about 30 years old tend to have their age under-

predicted. This bias corresponds to a general increased

scattering and flattening of the spectral trajectory plots in

Fig. 8, where the reflectance of regeneration gradually

becomes less distinct over time (Steyaert et al., 1997).

The best ANN model produced an RMS error that is 1

year less than those from the multiple regression models.

This is consistent with the findings of Jensen, Qui, and Ji

(1999) and Kimes et al. (1996) where ANN were superior to

Fig. 7. Burned area perimeters derived using 1-km resolution SPOT VGT imagery (thicker lines: refer to 1-km pixel size for scale) and 30-m Landsat TM

imagery (shaded). (a) 1999 fire from Yukon Territory. (b) 1998 fire in Northwest Territories.

Table 1

Correlation coefficient (R) or multiple R (in the case of a significant second-

degree polynomial term) between regeneration age and temporal metrics

(mean, spatially smoothed mean, maximum, minimum, and range from

growing season) computed from SPOT VGT channels and two VIs

(n= 17,349)

Temporal metric SPOT VGT channel or VI

Red NIR SWIR NDVI SWVI

Mean .012 .344 .450 .362 .663

Smoothed Mean .097 .357 .487 .382 .682

Maximum .135 .307 .461 .345 .573

Minimum .259 .348 .349 .287 .664

Range .203 .077 .133 .146 .095

The metric providing the strongest correlation for each channel or index is

highlighted in bold.
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regression approaches for predicting conifer forest age using

higher resolution Landsat TM data. In these studies, ANN

produced RMS errors of 5.6 years for forests up to 45 years

old (Kimes et al., 1996) and 1.4 years for forests (aggregated

to stand level) up to 40 years old (Jensen et al., 1999). The

likely major reason for the consistently better performance

of the ANN is that it is highly effective in mapping

nonlinear relationships between reflectance and regeneration

age. In addition, ANNs are nonparametric and make no

assumptions about normality of data or noncollinearity

among variables.

The smallest RMS error obtained for predicting regener-

ation age was 7 years, which suggests that reflectance

measured by VGT is not alone sufficient to predict forest

regeneration age with a high level of accuracy. Clearly,

several factors will combine to produce large spectral var-

iance among regenerating stands of a given age. The rate of

recovery and biomass accumulation after fire depends on

burn severity, availability of a seed source, site conditions,

and climatic factors (Johnson, 1992). Reflectance integrated

over VGT’s effective resolution (about 4 km2 considering its

modulation transfer function) also would be influenced by the

degree of burn fragmentation, nonforest subpixel cover such

as wetlands and small lakes, and variation in the trajectory

and species composition of regeneration (e.g., jack pine,

black spruce, and deciduous pioneer species) (Kasischke &

French, 1997; Steyaert et al., 1997). At present, these varia-

Table 2

Results from multiple regression and neural network models

Training pixels Testing pixels

R2 RMS error

(years)

R2 RMS error

(years)

Multiple regression .61 7.83 .58 8.06

Multiple regression with

polynomial terms

.64 7.58 .57 8.21

ANN (10 neurons) .70 6.90 .69 6.97

Forward stepwise and backward elimination regression models produced

identical results. Results are shown for the neural network model with the

smallest RMS error for testing pixels.

Fig. 8. The relationship between the year of burning (1949–1998) and the mean value for the best multitemporal metric computed from NIR and SWIR

channels and two VIs. Error bars represent one standard deviation. The horizontal lines represent the average reflectance or VI for a sample (n= 423) of forested

pixels in Saskatchewan that were not subject to burning between 1945 and 1999.
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bles remain difficult to quantify at regional scales using

coarse resolution satellite imagery.

Aboveground biomass of Canadian forests derived using

CanFI demonstrated essentially no relation to red, NIR, and

SWIR reflectance (R2=.01, .05, and .09, respectively,

n = 47,435) or to the NDVI (R2=.03). It was, however,

weakly associated with the SWVI computed from the NIR

and SWIR channels (R2=.25). Note that P values for all

correlations were highly significant ( < 1� 85), but must be

interpreted with caution due to large sample size and high

spatial autocorrelation in the 100-km2 biomass cells (Moran

I=.92 and Geary c=.03; Sokal & Oden, 1978). The six ANN

models containing between 5 and 35 neurons provided

similar accuracy in predicting biomass in the 60% test set,

with the R2 between predicted and actual biomass ranging

from .79 to .80 and RMS ranging between 32.4 and 32.7 t/

ha. Fig. 10 shows a scatter-plot of the results from the

network with 35 neurons, which yielded the smallest RMS

error (32.4 t/ha) and highest R2 (.80). Note that the R2 value

was inflated due to a cluster of 704 cells (4% of sample

shown in Fig. 10 inset) having biomass greater than 250 t/

ha, which represented temperate rain forest lying within the

Pacific Maritime ecozone. If these cells were not considered

in the results, R2 decreased to .41 and the RMS error

decreased slightly to 29.1 t/ha. The terrestrial ecozone

indicator variable was an important stratifying variable in

the ANN model, as its removal caused a drop in R2 to .64

and an increase in RMS error to 43.5 t/ha. Aggregate bias in

biomass prediction for all 18,975 test samples across Can-

ada was negligible, with the ANN predicting a mean

biomass of 86.3 t/ha compared to 86.4 t/ha from the

CanFI-based estimates.

The biomass prediction results based on VGT were

poorer than those obtained in a study that used C- and L-

band shuttle imaging radar (SIR-C) to predict biomass of

boreal forests within the BOREAS study region in Saskatch-

ewan (Ranson et al., 1997). Using SIR-C 30-m resolution

channels and stepwise regression, aboveground biomass

was estimated with a residual standard error of 16 t/ha. It

should be noted, however, that there are currently no

spaceborne radar sensors providing the necessary frequen-

cies and polarizations to apply these results operationally

over large areas. In another boreal study, Fazakas et al.

(1999) estimated tree biomass in Sweden using 658 inven-

tory plots combined with Landsat TM data and an inverse-

squared distance weighting in feature space. RMS error for

an independent validation region was 64.0 t/ha at the plot

level, but progressively decreased to 8.0 t/ha as all 453 plots

were aggregated over the 6-km2 validation region. Hall et al.

(1997), using a physically based approach and TM data,

could estimate black spruce biomass density with an RMS

error of 27.3 t/ha (39.6 t/ha for misclassified sites).

Fig. 9. The relationship between postfire regeneration age predicted using SPOT VGT and an ANN model and actual regeneration age derived from historical

forest fire records. A random F 0.5-year jitter has been applied to y-axis values to make the distribution of points more apparent. The line on the graph

corresponds to 1:1 agreement between predicted and actual year of burning.
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In principle, forest reflectance should be more strongly

related to biomass by comparison to regeneration age (e.g.,

Jakubauskas & Price, 2000; Steininger, 2000), since biomass

is more directly linked to stand parameters known to

influence reflectance, including leaf area index (LAI), tree

density, and tree height (Chen & Cihlar, 1996; Spanner,

Pierce, Peterson, & Running, 1990; Jakubauskas & Price,

1997). Yet, in this study, the relative RMS error (RMS error/

mean regeneration age or biomass) for biomass prediction

was higher than that for regeneration age (50% vs. 42%) if

VGT reflectance alone was used as the predictor. One

probable reason for this difference is that the age analysis

examined only regenerating forests < 50 years old, in which

spectral relationships with LAI and other stand parameters

are less likely to be fully saturated (Jakubauskas, 1996;

Niemann, 1995; Nilson & Peterson, 1994). Comparison of

the age and biomass results is further confounded by the

different spatial scales of the data sets and by certain

characteristics of the CanFI data set (Lowe et al., 1996;

Gray & Power, 1997). The 1991 CanFI data were compiled

from 47 existing provincial and territorial inventories of

variable vintage, having an average age of 11 years at the

time the inventory was created or 18 years in relation to the

1998 VGT imagery. Therefore, significant and spatially

variable changes will have occurred in biomass density since

the source inventories were assembled prior to 1991. In

addition, the area inventoried within each biomass cell is not

constant and averages 40%. In some remote northerly areas,

major gaps in the source coverages were filled using ‘‘gap

inventories,’’ which are very large polygons with low

sampling intensity. Since the location of the inventoried area

within each cell is not delineated, we were required to make

the assumption that mean reflectance from all 1-km2 forested

pixels within each 100-km2 cell was representative of the

normally smaller inventoried area. Despite these limitations

in the reference biomass data, our initial results suggest that

VGT imagery contains some information-related tree bio-

mass in boreal forests.

4. Summary and conclusions

The major findings of this study were as follows.

1. An SWVI combining VGT’s NIR and SWIR channels

provided superior discrimination of burned from nonburned

boreal forest relative to conventional NDVI. However,

optimal separability from this index did not occur immedi-

ately after burning due a time-lagged increase in SWIR

reflectance.

2. Anniversary date differencing of the SWVI index

could be combined synergistically with active fire locations

from AVHRR to effectively map large boreal burns at

continental scales on an annual basis.

3. The age of regenerating boreal forest after fire could be

approximated up to several decades at a regional scale using

VGT reflectance and an ANN model. If geographically

extendable, this result is significant for studying patterns

of fire regeneration and carbon storage in certain remote

Fig. 10. Relationship between tree biomass predicted using SPOT VGT and an ANN model and biomass based on the CanFI for those 10-km2 cells having

biomass < 250 t/ha. The inset shows the distribution of all biomass cells, including the 4% of sample with biomass >250 t/ha.
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areas of Canada and in Russian boreal forests, where the fire

history record is incomplete (Murphy et al., 2000; Shvi-

denko & Nilsson, 2000).

4. The SWVI from VGT was weakly correlated with

aboveground forest biomass across Canada; however, con-

temporary forest inventory data will be required to better

determine the strength of this relationship. This will be

possible with a new plot-based National Forest Inventory

for Canada being developed by the Canadian Forest Service

(see http://www.pfc.cfs.nrcan.gc.ca/monitoring/inventory/).
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