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ABSTRACT

In this study, the dynamical constraints underlining the pressure–wind relationship (PWR) for intense

tropical cyclones (TCs) are examined with the particular focus on the physical connections between the

maximum surface wind (VMAX) and the minimum sea level pressure (PMIN). Use of the Rankine vortex

demonstrates that the frictional forcing in the planetary boundary layer (PBL) could explain a sizeable

portion of the linear contributions of VMAX to pressure drops. This contribution becomes increasingly

important for intense TCs with small eye sizes, in which the radial inflows in the PBL could no longer be

neglected. Furthermore, the inclusion of the tangential wind tendency can make an additional contribution to

the pressure drops when coupled with the surface friction.

An examination of the double-eyewall configuration reveals that the formation of an outer eyewall or well-

organized spiral rainbands complicates the PWR. An analysis of a cloud-resolving simulation of Hurricane

Wilma (2005) shows that the outer eyewall could result in the continuous deepening of PMIN even with

a constant VMAX. The results presented here suggest that (i) the TC size should be coupled with VMAX

rather than being treated as an independent predictor as in the current PWRs, (ii) the TC intensity change

should be at least coupled linearly with the radius of VMAX, and (iii) the radial wind in the PBL is of equal

importance to the linear contribution of VMAX and its impact should be included in the PWR.

1. Introduction

The relationship between the tropical cyclone (TC)

maximum surface wind (VMAX) and minimum sea level

pressure (PMIN) plays an important role in the assess-

ment and documentation of TC activities (e.g., Koba et al.

1990; Harper 2002; Kossin and Velden 2004; Knaff and

Zehr 2007, hereafter KZ07; Holland 2008, hereafter H08).

Given one variable such as PMIN or VMAX, an appro-

priate pressure–wind relationship (PWR) could provide

information about the other variable consistently. Such

a PWR is very useful in the sparse-data areas where direct

TC observations are difficult to perform, and the subjec-

tive estimation of the TC intensity based on the Dvorak

(1975) technique has to be employed. With the vast

distribution of TCs over different ocean basins but the

limited number of observations, the combination of the

Dvorak technique and the PWR is of key importance in

providing a reasonable description of the TC intensity

and distributions. It is also vital for constructing a con-

sistent climatology of TC intensity (Landsea et al. 2004;

Brown et al. 2006; Webster et al. 2005; Weber 2007;

Kruk et al. 2008).

The current framework for the PWRs is based mostly

on the gradient wind approximation (e.g., see Harper

2002), which is given by

1

r

›p

›r
5

y2

r
1 f y, (1)

where p is the pressure, f is the Coriolis parameter, r is

the air density, and y is the tangential wind. Under this

approximation, the functional form for PMIN and VMAX

is often given in the form of (Atkinson and Holliday 1977;

Harper 2002)

V 5 aDpx, (2)
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where V denotes VMAX, Dp is the pressure drop with

respect to the environmental pressure (i.e., Dp 5 Penv 2

PMIN), and a and x are model parameters [the values of

a 5 2 and x 5 0.5 correspond to the exact cyclostrophic

relationship; see Harper (2002) for a review of various

PWRs]. In addition, use of the least squares best fit allows

one to obtain the regression coefficients for the effects

of various factors on the PWRs, such as the TC size, the

tangential wind tendency, latitude, and TC translation

speed (see KZ07 and H08).

Recent availability of aircraft reconnaissance data pro-

vides reasonable estimates of both PMIN and VMAX

independently. Such data offer a rigorous benchmark

for testing and improving various PWRs and for re-

trievals of PMIN and VMAX over different regions. For

example, KZ07 present a thorough examination of the

existing PWRs and propose a revised PWR in which the

above-mentioned factors are shown to have significant

impacts. While such reconnaissance data provide essen-

tial information about TCs during their development, this

type of data is available mostly in the Atlantic Ocean

basin. Moreover, both PMIN and VMAX are rarely ob-

served directly but have to be either extrapolated from

the flight level to the surface or interpolated at the sur-

face; thus, the values are subject to some inherent errors

due to uncertain vertical structures of rotational flows

in the inner-core regions (Willoughby et al. 1989; Zhang

et al. 1999; Franklin et al. 2003; Courtney and Knaff 2009).

Despite the fact that the most recent PWRs developed

by KZ07 and H08 appear to fit the TC data better than

the earlier PWRs, there are several issues that remain to

be addressed. For instance, to what extent can the ex-

isting PWRs be applied to the extreme cases of intense

TCs with small eyes? How are the PWR predictors dy-

namically related? How could the formation of spiral

rainbands and the subsequent double eyewalls affect the

PWR? In this study, we wish to address the above issues

by examining the dynamical constraints underlining the

PWR, with particular attention paid to the physical con-

nections between PMIN and VMAX. This may seem

trivial at first as the gradient-wind balance used in the

PWRs appears to contain all of the essential dynamics.

However, one should be cautioned that such a balance

relationship is not valid in the planetary boundary layer

(PBL) where the radial inflows may be no longer neg-

ligible in intense TCs. In this regard, the theoretical

model of Kieu and Zhang (2009, hereafter KZ09) on

the rapid intensification of TCs will be shown to be

helpful for studying the PWR from a nonlinear dynamics

perspective.

In this study, a cloud-resolving simulation of Hurricane

Wilma (2005) will be chosen to examine the dynamical

constraints behind the PWR. This case possesses several

unique opportunities to study the PWR, such as its record-

breaking intensification rate, the small eye size during its

mature stage, its clear spiral rainbands, and an eyewall

replacement process. Wilma evolved initially as a result

of a monsoonlike lower-tropospheric circulation with a

broad trough developed over much of the Caribbean

Sea around 1800 UTC 15 October 2005 (see Pasch et al.

2009). Starting on early 18 October, Wilma strengthened

into a hurricane as it turned west-northwestward and

experienced a 12-h explosive deepening episode between

1800 UTC 18 and 0600 UTC 19 October after moving

into an area of high oceanic heat content. It deepened

29 hPa in the first 6 h and 54 hPa in the next 6 h. During

the rapid intensification episode, a U.S. Air Force re-

connaissance flight indicated that the hurricane eye con-

tracted to a diameter of about 3–5 km. The estimated

minimum central pressure at the time of peak intensity

is 882 hPa, which is the recorded lowest value for TCs in

the Atlantic basin. The lack of observational data at

these extreme limits puts any statistical PWR at some

considerable risk, and it is therefore of importance to

understand the validity of the PWRs at these extremes.

Two main advantages of using the modeling data are the

dynamical consistency between various variables, like

the PWR, and the ease of obtaining any variable at high

temporal and spatial resolutions that the current ob-

servational data could not afford.

The next section discusses the behaviors of the PWR

in intense TCs and during the eyewall replacement pro-

cess from both a theoretical perspective and for the

model-simulated Wilma case. These features will be ex-

amined in relation to the most comprehensive PWRs to

date that have been developed by KZ07 and H08 (see

appendix A for a summary of the two PWRs). Section 3

provides a theoretical framework and some dynamical

constraints behind the PWR as a time-dependent prob-

lem. Concluding remarks are given in the final section.

2. Effects of double eyewalls and TC size

In this section, we examine first whether or not the

recent PWRs could capture the evolution of PMIN and

VMAX for a double-eyewall configuration with dual

radii of maximum wind (RMWs). Several observational

and modeling studies have shown the development of

double eyewalls and significant intensity changes during

the life cycles of many TCs, with dual VMAXs during

the eyewall replacement process (Willoughby et al. 1982;

Blackwell 2000; McNoldy 2004; Zhu et al. 2004; Kossin

and Sitkowski 2009). This double-eyewall pattern often

lasts only for a few hours, and it is usually accompanied

by a gradual contraction of the outer eyewall and dissi-

pation of the inner eyewall with considerable fluctuations
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in intensity (i.e., in PMIN and VMAX; see Willoughby

et al. 1982; Black and Willoughby 1992).

A quick inspection of the gradient wind balance in-

dicates that the PWR so derived does not capture the

impacts of double eyewalls if the TC size is not taken

into account properly (see Cocks and Gray 2002; Harper

2002). Due to the lack of observations, most PWRs do

not include the information on TC size in their regres-

sional forms explicitly. Using the reconnaissance data,

KZ07 show that the TC size could account for up to 10-hPa

differences in the pressure drop between the large and

small TCs on average (see Fig. 9 therein), given the same

VMAX. To take into account the impacts of TC size,

KZ07 introduce into their regressional PWR a parame-

ter S, which is defined as the ratio of the tangential wind

at r 5 500 km to its climatological value at the same

radius; the latter is estimated in accordance with a modi-

fied Rankine vortex model.

While KZ07’s size parameter S can explain statisti-

cally up to 40% of the variance of the average radius of

gale force winds (i.e., 34-kt winds), it is necessary to see

if the size parameter could capture the behavior of the

PWR during the eyewall replacement cycle. Figure 1

shows the time series of PMIN and VMAX from a cloud-

resolving simulation of Hurricane Wilma (2005) with the

Weather Research and Forecasting (WRF) model at the

FIG. 1. (a) Time series of the simulated PMIN (hPa, boldface dashed) and VMAX (m s21, boldface dashed) vs the

best-track analysis (boldface solid) from the 48-h simulation of Hurricane Wilma (2005), initialized at 0000 UTC

18 Oct 2005. (b) Hovmöller diagram of the radar reflectivity (shaded at intervals of 5 dBZ) at 850 hPa. Dashed lines in

(b) denote the RMW.
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finest resolution of 1 km. (A more detailed description

of the case simulation will appear in a forthcoming pa-

per.) The WRF model reproduces reasonably well the

rapid intensification of the storm, including the VMAX

of about 80 m s21; the simulated PMIN is only about

4 hPa deeper than the observed at the end of the rapid

deepening stage (i.e., 36 h into the integration; see Fig. 1a).

Of importance is that while PMIN keeps deepening af-

ter 36 h of integration, the simulated VMAX is nearly

constant or even decreases with time. The period of such

anticorrelation between VMAX and PMIN coincides

with the eyewall replacement and the spiral rainband

stage before and after the appearance of a full outer

eyewall (Fig. 1b).

An examination of H08’s and KZ07’s work, given in

appendix A, reveals that both PWRs could not capture

this anticorrelation between VMAX and PMIN. Indeed,

both show high fluctuations in Dp with positive tenden-

cies, rather than a steady increase of Dp, as simulated or

observed, during this replacement period (Fig. 2). Al-

though we should not expect a perfect fit between a

statistical curve and the model output, as the statistical

curve contains some margin variance, these PWRs ex-

hibit either little trend (i.e., H08’s curve) or decreases of

Dp with VMAX (i.e., KZ07’s curve). This indicates that

some physical processes are not properly included in the

PWRs. A further examination of the Wilma case reveals

that the KZ07’s simulated size parameter S is nearly

constant during the eyewall replacement, even though

its RMW more than doubles. As a result, the estimation

of the mean tangential flow at r 5 500 km could not

reflect the actual variation of Wilma’s inner core, after

the formation of the outer eyewall. Such stiffness of the

size parameter from the model output is different from

the actual size variation presented in Knaff and Zehr

(2008), which is actually consistent with KZ07’s analysis

that their size parameter can account only for about

40% of the variances of the average radius of the 34-kt

wind. Apparently, the size parameter plays an important

role for strong TCs with small eye sizes.

To see this point, consider first a single-eyewall pat-

tern during the quasi-stationary evolution such that the

temporal variations of both VMAX and PMIN can be

neglected. Under the axisymmetric approximation, the

radial momentum equation is

›u

›t
1 u

›u

›r
1 w

›u

›z
� y2

r
5�1

r

›p

›r
1 f y 1

C
D

H
jVju, (3)

where V 5 (u2 1 y2)1/2, CD is the drag coefficient, and H

is the depth of the well-mixed boundary layer. Because

of the quasi-stationary assumption and because the PWR

is applied at the surface where w ’ 0, Eq. (3) can be re-

written as

1

r

›p

›r
5�u

›u

›r
1

y2

r
1 f y 1

C
D

H
jVju, at z 5 0. (4)

In the following, we will assume a familiar Rankine

two-region model in which the tangential flows increase

linearly with radius in the inner-core region, and then

decrease as an inverse function of radius in the outer

region. Although the Rankine model has some draw-

backs in the outer region where tangential flows appear

to decrease more slowly than a simple inverse function

of radius, such drawbacks will not lead to significant

differences in the radially accumulated pressure deficit,

provided that the size of the TCs is not too large. As long

as the pressure drop associated with the outer eyewall is

not small compared to that of the inner eyewall, the

Rankine model should be sufficient to capture the main

contribution of the outer eyewall.

Region I (inner core): u 5 2vr and y 5 Vr where v

and V are the two different constant coefficients—

integrating Eq. (4) from r 5 0 to r 5 R (RMW) gives

dp
I
5

ðR

0

r V2 � v2 1 f V 1 kv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 1 v2

p
r

� �
r dr

’ r

ðR

0

V2 � v2 1 f V 1 kv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 1 v2

p
r

� �
r dr

5 r
(V2 1 f VR�U2)

2
1

kjUjR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 1 U2

p
3

" #
, (5)

where k 5 CD/H, r is the mean density in the inner

core, and U and V are the maximum radial wind and

VMAX at r 5 R, respectively.

Region II (outer region): u 5 2g/r and y 5 G/r. (A

more realistic profile for the tangential wind in the outer

region should be approximated by y 5 G/ra where a . 0.

Details and implication of a can be found in appendix B.)

Integrating Eq. (4) outward from r 5 R to r 5 R‘ yields

FIG. 2. Time series of the central pressure drop (hPa) during the

36–48-h model simulation (solid), Holland’s profile (dashed), and

Knaff and Zehr’s profile (dotted).
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R
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R
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(6)

It should be noted that for the Rankine model in which

the tangential wind decreases inversely with the radius,

R‘ cannot be arbitrarily large as its radial profile is not

compactly distributed. Only for a modified Rankine

profile in which V ; 1/ra, where a . 1, can the radial

profile of V extend to infinity. Therefore, R‘ has to take

some finite value, that is, R‘ 5 1000 km in the present

study. A summation of Eqs. (5) and (6) leads to

Dp 5 r V2 1 f VR
1

2
1 ln

R
‘

R
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1

4kjUjR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 1 U2

p
3

( )
,

(7)

where Dp is the sea level pressure difference between

r 5 0 and r 5 R‘. The mean density r can be estimated by

r ’
p

e
1 p

c

2RT
e

5
2p

e
� Dp

2RT
e

5 r
e

1� Dp

p
e

� �
,

where pe and pc are the ambient and central surface

pressures, respectively. So Eq. (7) can be rewritten as

Dp ’ r
e

V2 1 fVR
1

2
1 ln

R
‘

R

� �� �
1

4kjUjR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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2
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R
‘

R
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1
4kjUjR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 1 U2

p
3

#)
. (8)

Unlike the simple gradient balance relationship [Eq. (B1)]

in which the RMW (i.e., R), corresponding to the size

parameter S in KZ07, only appears in the Coriolis-related

term depending linearly on VMAX (i.e., the second

terms in the two paired brackets), it is now also coupled

with the drag coefficient k, the radial inflow U, and

VMAX (i.e., the last term in the brackets) in Eq. (8),

which are all pronounced in the PBL near the RMW.

Given the fact that CD ranges from 100 to 1023 (see

Holton 1992) and H ’ 103 m, k may vary from 1023 to

1026 m21. For k 5 1024 m21, U ’ 10 m s21, R ’ 50 km,

and V ’ 70 m s21, the coupled RMW–frictional term

could contribute up to about a 47-hPa pressure drop,

which is large compared to the contribution from the

second terms in the two paired brackets in Eq. (8). Note

that for a typical TC, V � U, and the coupled RMW–

frictional contribution is roughly linear in VMAX, like

the Coriolis-related terms. This helps explain why the

linear contribution of VMAX plays an important role in

the regressional PWRs, even after considering the im-

pacts of surface friction. This suggests that the simple

constant recursive coefficient for the linear VMAX term

tends to oversimplify the PWR for weak TCs, or during

their early development stage. In contrast, for strong

TCs with small sizes in which the radial flows are large,

the frictional term can no longer be approximated as

a linear function of VMAX. In addition, it is evident

from Eq. (8) that the RMW and VMAX should be

treated as being coupled rather than independent pre-

dictors. This coupling of the RMW and VMAX is es-

sential as it differs from the current functional forms

used for best fitting the PWR (see KZ07).

Consider next a double-eyewall pattern as sketched in

Fig. 3. Assuming that the double eyewalls are represented

by dual RMWs (with dual VMAXs) and that they con-

tract slowly, an integration of Eq. (3) for each region gives

dp
1
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where V1 and V3 are the local maximum tangential

winds (i.e., VMAXs) at R1 and R3 (i.e., RMWs) in the

inner and outer eyewalls, respectively, and V2 and R2 are

the minimum tangential wind and its radius, respec-

tively, between the two eyewalls (see Fig. 3). Following

the same steps as derived earlier for the single-eyewall

case, we obtain finally

Dp ’ r
e
P 1 1

P

p
e

� �
, (9)

where
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Note that the PWR(9) [PWR in Eq. (9)] will be identical

to the PWR(8) if one sets R3 5 R2 5 R1, V3 5 V2 5 V1,

and U3 5 U2 5 U1 in Eq. (10). It is evident from the

expression in Eq. (10) that the formation of dual

VMAXs will enhance Dp by an amount mostly given by

the sum of the 6th and 7th terms on the rhs of Eq. (10).

Although the 8th–10th terms contain information about

the outer eyewall, most of their contributions have been

compensated by the 6th and 7th terms (see Fig. 3 for

illustration). To estimate the magnitude of this outer-

eyewall contribution, we take some data from the sim-

ulated Wilma with V2 5 65 m s21, U2 5 10 m s21, R2 5

32 km, and R3 5 43 km, and find that the outer eyewall

could account for about 19 hPa, which is large compared

to the root-mean-squared error from the regressional

PWR (;5.8 hPa in KZ07).

Table 1 quantifies the contributions of each region to

the total pressure drop from the 42-h simulation, valid at

FIG. 3. A schematic description of the double-eyewall configuration with dual RMWs during

the eyewall-replacement process. Numbers 1–10 denote the contributions of individual terms

on the rhs of Eq. (10) to the central pressure drop from four different radial ranges, i.e., [0, R1], . . . ,

[R3, R‘]. The shaded region denotes the contribution from the outer eyewall.
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1800 UTC 19 October 2005, at which time the double-

eyewall configuration is most evident (see Fig. 1b). Re-

gion 1 (i.e., the inner core of Wilma) contributes 39 hPa

to the total pressure deficit (about 26%). The most sig-

nificant contribution of 59 hPa is, however, from the

outermost region (i.e., region 4), accounting for about

38% of the total pressure drop. The unexpected pro-

portions could be attributed to the small convectively

active annulus in region 1 (0–12 km) compared to the

large area coverage of the latent heating in the outer

region (R 5 43 km and beyond), which is consistent with

the observation of Willoughby (1998). Note from the

above analysis that the contribution of the double eye-

wall is roughly 19 hPa, which is about 12% of the total

pressure drop. As seen in Table 1, the sum of the pres-

sure deficits from regions 1–4 is 152 hPa, which corre-

sponds to a minimum sea level pressure of 858 hPa as

compared to the simulated 864 hPa in Fig. 1a, indicating

the applicability of Eq. (10) to some real-data cases.

Although little information about the dual VMAXs or

the radial inflows could be provided from the current

observing platforms (except for the availability of aircraft

reconnaissance fixes), the above result indicates that the

outer eyewall (or spiral rainbands) could have significant

contributions to the central pressure drop in the inner-

core region. Note that this result does not contradict the

findings of Hack and Schubert (1986), which showed that

the smaller radius at which latent heating occurs, the more

significant contribution to the central pressure fall is. Here,

the outer region contributes 59 hPa to PMIN compared to

a total drop of 93 hPa from the inner region (i.e., R ,

43 km). But this result explains why both KZ07’s and

H08’s regression curves exhibit unexpected fluctuating

behavior for Hurricane Wilma, exhibiting a well-organized

outer eyewall during the replacement process (see Fig. 2).

It should be mentioned that in principle the effects of the

outer eyewall can be incorporated into KZ07’s PWR by

redefining the size parameter S, for example, by using the

radius of 200 km instead of 500 km for the calculation of

S for small TCs. But this would require the least squares

best fit to be performed again, which is beyond the scope

of the present study.

3. Effects of intensity change

Although the PWRs in Eqs. (8) and (9) could capture

the balanced dynamics of VMAX and PMIN reason-

ably well, they neglect the temporal dependence of TCs

through intensity changes. KZ09 present an analytical

model for the rapid intensification of TCs in which the

inclusion of a time-dependent factor results in different

patterns of behavior for the rotational flows and pressure

drop. By assuming the linear growth of the top-hat-shaped

vertical motion within the inner core of the TCs,

w(r, z, t) 5
W

0
sin(lz)ebt r # RMW (region I)

0 r . RMW (region II)

	
,

(11)

a class of exact time-dependent solutions for the primary

circulations of TCs are obtained, which capture several

observed dynamical structures in both the core and outer

regions and the rapid growth of the TCs. They include the

following: (a) the rotational flows in the inner-core region

grow at much faster rates than those in the outer region,

(b) the amplification rates of the primary circulations differ

profoundly from those of the secondary circulations,

(c) the rotational flows tend to grow from the bottom up-

ward with the fastest growth occurring at the lowest levels,

and (d) the TC growth rates depend critically on the ver-

tical structure of tangential flows, with a faster rate for

a lower-level VMAX. Note that the exponential form of

w, as given by Eq. (11), can be treated as a linear function

of time for a small value of b (i.e., 1026–1025 s21), and it is

used here to ease the derivations of analytical solutions.

Of importance is that KZ09’s analytical model also

provides a dynamically consistent framework for de-

riving the PWR of TCs. As shown in KZ09, the analyt-

ical solutions for the tangential wind and geopotential

perturbation in the parametric form are given as follows:

V(r, z, t) 5 K(z, t)r, (12)

f
1
(r, z, t) 5 f

2
(R, z, t)� K2 1 fK �Qbebt �Qk

�

�Q2e2bt �He2bt dQ

dz

�
(R2 � r2)

2
, and

(13)

f
2
(r, z, t) 5 ebtR2Q(b 1 k) ln

R
‘

r
� e2btR4Q2

2

1

r2
� 1

R2
‘

 !

� C2

2

1

r2
� 1

R2
‘

 !
� fC ln

R
‘

r
, (14)

where f1 and f2 are the geopotential perturbations in

the inner-core and outer regions, respectively, and the

TABLE 1. Contribution of pressure drops, as calculated from Eq.

(10), from regions 1–4 (see Fig. 3) to the total central pressure drop

using the 42-h simulation, valid at 1800 UTC 19 Oct 2005.

Radius

intervals

(km)

VMAX

(m s21)

Radial

wind U

(m s21)

Pressure

drop, dp

(hPa)

Region 1 0–12 90 218 39

Region 2 12–32 65 211 37

Region 3 32–43 75 214 17

Region 4 43–1000 0 0 59
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implicit functions C(z, t), Z(z), Q(z), H(z), and K(z, t)

are given by

C(z, t) 5
�ebtQfR2

b 1 k
1 Ze�kt

 !
,

Z(z) 5 K(z, 0) 1
Qf

b 1 k

� �
R2,

Q(z) 5�
W

0
[l cos(lz)� S sin(lz)]

2
,

K(z, t) 5 2G
0

cos2 lz

2

� �
e�Sz exp

W
0
l

b
ebt

� �	

1 «
exp(W

0
lebt/b)� tan(lz/2)

W
0
lebt/b� ln[tan(lz/2)]



� f

2
, and

H(z) 5 W
0

sin(lz).

Table 2 lists the definitions and implications of some

parameters. Because at the surface (i.e., z 5 0) U 5

2Q(z 5 0)R, V 5 C(z 5 0, t)/R, and Dp 5 2r(f1 1 f2),

we have at r 5 0:

Dp 5 r eb tUR(b 1 k) ln
R

‘

R
1

e2btU2

2
1

V2

2
1 f VR ln

R
‘

R
1

1

2
(V2 1 f VR 1 URbebt 1 URk�U2e2bt)

� �

5 r V2 1 f VR
1

2
1 ln

R
‘

R

� �
1 ebtURb

1

2
1 ln

R
‘

R

� �
1 URk

1

2
1 ln

R
‘

R
ebt

� �� �
, (15)

and

V 5 2G
0

exp
W

0
l

b
ebt

� �
� f

2

� �
R. (16)

The time-dependent factor ebt in Eq. (15) can be found

by solving Eq. (16):

ebt 5 ln
1

2G
0

V

R
1

f

2

� �� �
b

W
0
l

.

So we have the nonlinear form of the PWR:

Dp 5 r V2 1 f VR
1

2
1 ln

R
‘

R

� ��

1 ln
1

2G
0

V

R
1

f

2

� �� �
URb2

W
0
l

1

2
1 ln

R
‘

R

� �

1 URk
1

2
1 ln

R
‘

R
ln

1

2G
0

V

R
1

f

2

� �� �
b

W
0
l

	 
�
. (17)

If one sets b 5 0, implying no intensity change, and

takes k 5 k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(V2 1 U2)

q
, the PWR(17) will be identi-

cal to the PWR(8), except for the logarithm factor

ln(R‘/R) in the frictional term due to the use of the

first-order friction (see KZ09). To express the PWR(17)

in a more familiar form involving the intensity change

(i.e., ›V/›t), as is often used in the previous statistical

PWRs, we take the time derivative of (12) at z 5 0

and get

›V

›t
5 2G

0
RW

0
lebt exp

W
0
l

b
eb t

� �
. (18)

Note that

Vj
z50

5 2G
0

exp
W

0
l

b
ebt

� �
� f

2

� �
R. (19)

So,

TABLE 2. Specification of parameters used in section 3.

Parameters Remarks Values

a Radius of the cloud disk or the RMW (R) 20 km

b Growth rate parameter 1026–1025 s21

f The Coriolis parameter at 108N 2 3 1025 s21

H0 Depth of the troposphere 20 km

HPBL Depth of the PBL 1 km

l Inversed depth of the troposphere (5p/H0) 1.7 3 1024 m21

k0 Frictional drag coefficient at z 5 0 5 3 1025 s21

Rm The outer radius of a TC beyond which the ambient environment is at rest 2000 km

S Stratification parameter (S [ N2/g) 1025 m21

W0 Area-averaged vertical motion within inner-core region 2 3 1022 m s21

›V/›t Tendency of tangential wind during the intensification 20 m s21 in 24 h
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2G
0

exp
W

0
l

b
ebt

� �
5

V

R
1

f

2
. (20)

Substitution of Eq. (20) into Eq. (18) leads to

ebt 5
›V

›t
RW

0
l

V

R
1

f

2

� �� ��1

. (21)

Thus, we finally obtain the nonlinear PWR equation

with the TC tendency included:

Dp 5 r V2 1 f VR
1

2
1 ln

R
‘

R

� ��

1
›V

›t
W

0
l V 1

fR

2

� �� ��1

URb
1

2
1 ln

R
‘

R

� �� �

1 URk
1

2
1

›V

›t
W

0
l V 1

fR

2

� �� ��1

ln
R

‘

R

� �	 
�
.

(22)

Figure 4 shows the distributions of Dp associated with

individual terms on the rhs of Eq. (22), which represents

the centrifugal effect, Coriolis forcing, TC tendency, and

frictional forcing, respectively. Obviously, the pressure

drop associated with the centrifugal effect is the most

weighted, which could reach 90 hPa for VMAX 5

90 m s21 (Fig. 4a), whereas the linear contributions of

VMAX associated with both ›V/›t and the Coriolis

forcing are insignificant (Figs. 4b and 4c); the latter is

consistent with the momentum budget of Zhang et al.

(2001) showing that the tangential flows in the inner-

core regions can be approximated by the cyclostrophic

relation. In particular, unlike the previous PWRs, in

which the contribution of ›V/›t is considered only as

a linear addition (e.g., see H08), we see different de-

pendences of Dp on ›V/›t from the PWR(22). That is,

while the direct contribution of ›V/›t to Dp [i.e., the

third term on the rhs of Eq. (22)] is negligible (Fig. 4c),

its indirect contribution associated with the frictional

effects [i.e., the fourth term on the rhs of Eq. (22)] is

pronounced (see Fig. 4d) due to the drag coefficient k

FIG. 4. Distribution of the central pressure drop (hPa) with respect to the RMW and VMAX for (a) the centrifugal forcing, (b) the

Coriolis forcing, (c) the TC tendency ›V/›t, and (d) the frictional forcing, using the PWR(22) and the parameters given in Table 2. See the

text for more details.
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that is greater in magnitude than b in the last two terms.

Depending upon the magnitude of the drag coefficient,

this coupled friction–intensity tendency could account

for 10–50 hPa of the pressure drop. For instance, if we

take k 5 1024 m21 and ›V/›t 5 30 m s21 in 24 h, this

indirect contribution could also drastically change the

quadratic functional form of the PWR (see Fig. 5). This

result is physically expected since a more intense storm

tends to produce stronger radial inflows. As a result, the

frictional effects become more significant in determining

the linear contribution of VMAX to Dp for intense

storms.

While KZ07’s PWR does not explicitly incorporate

the TC tendency as a direct predictor, it has been im-

plicitly included in the size parameter S (Knaff et al.

2007). Namely, intensifying TCs were found by KZ07 to

have smaller sizes and to be located at higher latitudes,

which offset somewhat the direct size contribution to the

pressure drop. This is more or less consistent with our

Eq. (22), since the TC tendency contribution is always

coupled with the RMW (i.e., the product of ›V/›t and

R). Apparently, the impacts of the TC tendency are al-

lowed to be compensated for by the smaller TC size, as

found statistically.

As could also be expected from the balanced model

presented in section 2, the PWR(22) indicates that the

TC size should be coupled with VMAX and the TC in-

tensity change (i.e., ›V/›t) rather than being treated lin-

early as in KZ07. Although the indirect contribution of

the TC intensity change can be approximated as a linear

function of VMAX at the limit of V�U, as is often the

case (because k ; CdV/H), the TC intensity change

should still be coupled with the RMW rather than acting

as an independent predictor.

It is of interest to note that Eq. (22) shows the de-

pendence of the PWR on the depth of the troposphere

(i.e., through the l parameter). As the depth of the

troposphere decreases with latitude, one can see some

dependence of the PWR on latitude through ›V/›t. Such

a latitude dependence of the PWR is different from that

of the Coriolis forcing, and it appears to be consistent

with the recent report of Kossin and Velden (2004), who

showed a bias in the PWR with latitude. While this bias

could be related to the Coriolis parameter, its de-

pendence on latitude implies that there must be some

dynamical reason behind it, and our PWR(22) captures

this well.

4. Concluding remarks

In this study, the dynamical constraints between VMAX

and PMIN in the PWR are examined. The Rankine vortex

is used to demonstrate that the linear contribution of

VMAX to the pressure drop through the frictional ef-

fect in the PBL has to be included in the PWR, par-

ticularly when TCs are strong or the eye size is small

such that the radial inflows are no longer negligible.

This indicates that the simple treatment of a constant

regressional coefficient for the linear VMAX term as

presently employed in various statistical PWRs should

be employed with caution when being applied to strong

TCs with small eye sizes. An examination of the dou-

ble-eyewall configuration reveals that the formation of

an outer eyewall or spiral rainbands complicates the

PWR. Our analysis of a cloud-resolving simulation of

Hurricane Wilma (2005) shows that the outer eyewall

could result in the deepening of PMIN even with a con-

stant VMAX with time. This outer-eyewall contribution

becomes increasingly important when the TC size is too

small for the statistical PWRs to capture the inner-core

processes. An application of KZ09’s analytical model to

the rapid intensification of TCs shows further that the

inclusion of the tangential wind tendency can make sig-

nificant contributions to the central pressure drop when

coupled with the frictional forcing. Unlike the simple

linear addition often assumed in the previous regres-

sional PWRs, our analysis shows that the contribution

of the tangential wind tendency varies with the magnitude

of radial inflows, which could even change the functional

form of the PWR when the eye sizes are small or intensity

changes are pronounced.

It should be pointed out that there are some limita-

tions with the PWR(22) due to the assumed axisym-

metry, and the neglect of storm translation and some

environmental factors. Nevertheless, our results sug-

gest that (i) the TC size should be coupled with VMAX,

(ii) the TC tendency ›V/›t should be at least coupled

linearly with the RMW rather than being treated in-

dependently, and (iii) the radial wind in the PBL is of

FIG. 5. As in Fig. 4d but with ›V/›t 5 30 m s21 (24 h)21.
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equal importance to the linear contribution of VMAX.

Based on the above analysis, we suggest modifying the

statistical PWR as follows:

Dp 5 a
0

1 a
1
V 1 a

2
S 1 a

3
F 1 a

4

›V

›t
1 a

5
V2

1 a
6

›V

›t
S 1 a

7
VS, (23)

where all notations follow the conventions of KZ07, and

ai with i 5 1, . . . , 7 are the regressional coefficients that

could be obtained from the least squares best-fit ap-

proach. This will be investigated in the future using some

available observations including the Atlantic basin

Hurricane Database (or HURDAT).
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APPENDIX A

Two Most Representative PWRs

The most recently revised PWR by Knaff and Zehr

(2007) is given as follows:

Dp 5 23.286� 0.483V
srm
�

V
srm

24.254

� �2

� 12.587S� 0.483F, (A1)

where Dp 5 PMIN 2 Penv is the pressure drop and Vsrm

is the storm-relative maximum surface wind speed that

is estimated from the maximum surface wind V and the

translational speed c as

V
srm

5 V � 1.5c0.63. (A2)

The size parameter S in Eq. (A1) is defined as the ratio

of the average tangential flows, V500, and the climatol-

ogy tangential wind, V500c (i.e., S 5 V500 /V500c), where

V
500c

5 V
R

500

� �x

, where

x 5 0.1147 1 0.0055V � 0.001(F� 25), (A3)

and

R 5 66.78� 0.09102V 1 1.0619(F� 25). (A4)

Given the maximum surface wind V, the latitude F, the

translational speed c, and the tangential wind V500 that is

averaged within an annulus of 400–600 km of a TC, the

PWR in (A1) can be used to estimate the pressure drop

accordingly. The root-mean-square error for (A1) is

5.8 hPa.

Holland (2008) proposed a different parametric form

for the PWR that allows one to compute VMAX, given

Dp, and it is recapitulated as follows:

V 5
b

s

re
Dp

� �0.5

, (A5)

where

b
s
5�4.4 3 10�5Dp2 1 0.01Dp 1 0.03

›p
c

›t

� 0.014F 1 0.15cx 1 1.0 (A6a)

and

x 5 0.6 1� Dp

215

� �
. (A6b)

Given the pressure drop Dp, the latitude F, the trans-

lational speed c, and the tangential flow tendency, the

PWR in (A5) can be used to estimate VMAX para-

metrically. The root-mean-square error for (A1) is

3.5 m s21.

APPENDIX B

The Gradient-Balanced PWR

Consider the gradient balance approximation:

1

r

›p

›r
5

V2

r
1 f V (B1)

To find a PWR from this approximation, we need to

know the profile of V(r). Let us use the Rankine vortex

model to derive the PWR as follows:

region I (inner core), V 5 Vr,

dp
I
5

ðR

0

r(V2 1 f V)r dr

5 r

ðR

0

(V2 1 f V)r dr 5 r
(V2 1 f V)R2

2
, and

5 r
(V2 1 f VR)

2

(B2)
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region II (outer core), V 5 K/ra where a $ 1,

dp
II

5

ð‘

R

r
K2

r2a11
1

fK

ra

� �
dr 5 r

ð‘

R

K2

r2a11
1

fK

ra

� �
dr 5�r

1

2a

K2

r2a
1

1

(a� 1)

fK

ra�1

� �‘
R

5 r
V2

2a
1

fVR

(a� 1)

� �
. (B3)

So for a . 1,

dp 5 dp
I
1 dp

II
5 r

V2

2
1 1

1

a

� �
1 f VR

1

2
1

1

a� 1

� �� �
.

(B4a)

For a 5 1, we integrate the pressure deficit in the outer

region from R to some finite value R
‘

dp 5 dp
I
1 dp

II
5 r V2 1 f VR

1

2
1 ln

R
‘

R

� �� �	 

.

(B4b)

The mean density r is estimated from

r ’
p

e
1 p

c

2RT
e

5
2p

e
� Dp

2RT
e

5 r
e

1� Dp

p
e

� �
. (B5)

So for a . 1,

dp 5 r
e

V2

2
1 1

1

a

� �
1 f VR

1

2
1

1

a� 1

� �� �

3 1

	
1

1

p
e

V2

2
1 1

1

a

� �
1 f VR

1

2
1

1

a� 1

� �� �

,

(B6a)

and for a 5 1,

dp 5 r
e

V2 1 f VR
1

2
1 ln

R
‘

R

� �� �	 


3 1

�
1

1

p
e

V2 1 f VR
1

2
1 ln

R
‘

R

� �� �	 
�
, (B6b)

where re ’ 1.1 kg m23, pe ’ 1.01 3 105 Pa, and R‘ ’

1000 km.
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