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ABSTRACT

The impermeability of isentropic surfaces by the potential vorticity substance (PVS) has often been used
to help understand the generation of potential vorticity in the presence of diabatic heating and friction. In this
study, we examined singularities of isentropic surfaces that may develop in the presence of diabatic heating
and the fictitious movements of the isentropic surfaces that are involved in deriving the PVS impermeability
theorem. Our results show that such singularities could occur in the upper troposphere as a result of intense
convective-scale motion, at the cloud top due to radiative cooling, or within the well-mixed boundary layer.
These locally ill-defined conditions allow PVS to penetrate across an isentropic surface. We conclude that
the PVS impermeability theorem is generally valid for the stably stratified atmosphere in the absence of
diabatic heating.
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1. Introduction

Potential vorticity (PV) is an important dynamical
variable due to its conservative property in the absence
of diabatic heating and friction and to its invertibility
principle that would allow one to obtain the three-
dimensional (3D) structures of balanced flows (Hoskins
et al., 1985; Davis and Emanuel, 1991; Huo et al., 1999;
Zhang et al., 2002; Kieu and Zhang, 2010). Haynes
and McIntyre (1987, hereafter referred to as HM87),
extended Hoskins et al. (1985)’s work and presented
the most complete and diligent treatment of the PV
concept, particularly from the point of view of PV sub-
stance (PVS), defined as ρQ, where ρ is air density and
Q is PV. The work presented in HM87 proved to be
a powerful theorem, later called the PVS imperme-
ability theorem, containing two general but important
conclusions for the stably stratified atmosphere in the
presence of arbitrary diabatic heating and friction:

(1) There is no net transport of PVS across any
isentropic surface.

(2) PVS can never be created or destroyed within
a layer bounded by two isentropic surfaces.

As pointed out by Danielsen (1990), there is some
confusion in the general impermeability theorem pre-
sented in HM87 between PV and PVS since it is often
PV, not PVS, that is of the main interest to meteo-
rological analyses. PV is related to balanced dynam-
ics, and its invertibility principle allows the balanced
dynamics associated with the PV to be extracted, es-
pecially in the absence of diabatic heating and fric-
tional forcings (see Davis and Emanuel, 1991; Zhang
and Kieu, 2006; Egger, 2008).

In this paper, we show that the movement of isen-
tropic surfaces, as argued in HM87 and later refined
and presented in the work of Haynes and McIntyre
(1990, hereafter referred to as HM90) is not only po-
tentially ill-defined in the presence of diabatic heat-
ing (or cooling) but also inapplicable in the real at-
mosphere where deep convection occurs. We further
assert that the PVS impermeability theorem is only
valid in the absence of diabatic heating.
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2. Review

HM90 presented the first derivation of the flux form
of PV equation in the Cartesian coordinates as follows:

∂(ρQ)
∂t

+ ∇ · (ρQu − Hζ − F ×∇θ) = 0 , (1)

where H = dθ/dt is the diabatic heating rate, u =
(u, v, w) is the 3D flow field, ζ is the 3D absolute vor-
ticity, θ is the potential temperature, and F denotes
frictional effects. Upon introducing a control volume
V bounded by two time-dependent isentropic surfaces
∂Vθ at the top and bo ttom and lateral boundaries ∂Vs,
and integrating over the volume V , in HM90, Haynes
and McIntyre (1990) obtained the integral form of the
PV equation, i.e., Eq. (4.5) of HM87:

d

dt

∫

V

ρQdV = −
∫

∂Vθ

[(u − U)ρQ − Hζ−

F ×∇θ] · ndS−∫

∂Vs

[(u − U)ρQ − Hζ−

F ×∇θ] · ndS , (2)

where U = (U, V, W ) is the 3D velocity of the bound-
aries. We are henceforth concerned only with the verti-
cal fluxes across the top and bottom surfaces ∂Vθ, i.e.,
the first surface integral on the right hand side (rhs)
of Eq. (2), hereafter referred to as VFX. In HM90,
the impermeability theorem implies that VFX should
always be zero even in the presence of intense diabatic
heating and friction.

A crucial step in the impermeability theorem pre-
sented in HM90 is to argue that the movement of ∂Vθ

is given by

U = u − Hζ + F ×∇θ

ρQ
, (3)

which, after some manipulation, can be put in a dif-
ferent form:

U = uθ⊥ + u‖ − H

ρQ
ζ‖ − F ×∇θ

ρQ
, (4)

where

u‖ = u − u · ∇θ

|∇θ|2 ∇θ,

ζ‖ = ζ − ζ · ∇θ

|∇θ|2 ∇θ , and

uθ⊥ = −∂θ/∂t

|∇θ|2 ∇θ . (5)

Here, ⊥ and ‖ refer to the normal and tangential com-
ponents with respect to the isentropic surface (see
HM90), and the normal component is of interest to
us. If Eq. (3) is held, then VFX is obviously nulli-
fied as expected. So, the PVS fluxes through the lat-
eral boundaries are the only contributors to the rate of
change of PVS within the control volume. For a layer
bounded by two closed isentropic surfaces, the lateral
fluxes disappear and the total PVS is thus conserved.
However, there are two problems with the PVS theo-
rem which may render its application ambiguous: (a)
the movement of isentropic surfaces in the presence of
general diabatic heating and (b) the development of
possible singularity in static stability on the surfaces.
They are discussed in the following sections separately.

3. Convectively generated singularity

Let us examine Eq. (3) for the movement of isen-
tropic surfaces and ask what will happen if Q = 0 at
some points on the surfaces. Needless to say, Eq. (3)
will break down at these points, and the isentropic
surface across these points will have infinitive veloc-
ity! (A similar scenario will appear in the well-mixed
boundary layer where intense vertical turbulent mixing
occurs, and therefore the isentropic surfaces have no
well-defined normal vectors.) So what does this infin-
ity mean? Specifically for our discussion, we consider a
layer bounded by two closed isentropic surfaces θU and
θL, and focus on the movement of, say, the lower isen-
tropic surface θL on which Q vanishes at some points.
In this case, VFX at the θL surface is given by

VFXL = −
∫

∂θL

[(u − U)ρQ−Hζ−F ×∇θ] ·ndS . (6)

The infinite movement of the θL surface due to Q
= 0 implies that the contributions from the bound-
ary movement, i.e., the term (u − U)ρQ on the rhs
of Eq. (6), will vanish at the points where Q = 0,
so the movement of the θL surface at those points
is not defined. To see further how VFXL looks at
these points, let us assume that Q vanishes over a do-
main Ω on an isentropic surface θL that is defined as
Ω = {q ∈ θL : Q(q) = 0}. Because of the validity of
Eq. (3) ∀q /∈ Ω, VFXL can be rewritten as

VFXL =
∫

Ω

(Hζ) · ndS , (7)

where we have used Q(q) = 0∀q ∈ Ω and Eq. (3)
for ∀q ∈ θL/Ω, and the frictional term is orthogonal
to the θL surface. If PVS cannot penetrate isentropic
surfaces as stated in HM90, VFXL has to equal to zero
on Ω. Apparently, if diabatic heating is absent (i.e.,
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H=0), VFXL in Eq. (7) [and Eq. (6)] become nul-
lified, thus confirming the impermeability of the PVS
across isentropic surfaces. If Q is different from zero
at any points, the movement of isentropic surfaces can
be defined by Eq. (4), thus nullifying the rhs of Eq.
(6) as well.

However, VFXL does not necessarily vanish in the
presence of arbitrary diabatic heating, given only Q =
0 on Ω. Consider, for example, a flat isentropic surface
such that n = (0, 0, 1). In this case, the only possibil-
ity for VFXL to vanish on Ω in the presence of diabatic
heating is to require ζz(q) = 0∀q ∈ Ω. Clearly, this re-
quirement is too strong. Indeed, from

Q =
1
ρ
ζz

∂θ

∂z
= 0,

we can have either ζz = 0 or ∂θ/∂z = 0 on Ω. Then
ζz(q) = 0∀q ∈ Ω is just one of many possible ways,
and VFXL is therefore not necessarily nullified on Ω.

To illustrate the above points, Fig. 1 shows verti-
cal cross sections of PV and θ from a cloud-resolving
simulation of Tropical Storm Eugene (2005) using the
Weather Research and Forecast (WRF) model with
the finest grid size of 1.33 km (see Kieu and Zhang,
2008). One can see from Fig. 1a nearly dry adia-
batic lapse rates of the 355 K surface that are col-
located with the places where PV is annihilated as
a consequence of intense latent heating and vertical
motion. Apparently, any location with ∂θ/∂z = 0 in-
dicates that PVS is penetrating the isentropic surface
effectively. As the 355 K surface evolves with time,
one can see from Fig. 1b an even more troublesome
picture with the formation of 355 K bubbles around
the surface associated with deep pulses of moist con-
vection. Even though the emergence of these bubbles
occurs within a very short transient period (in both
numerical simulations and reality), this indicates that
there is nothing, in principle, to prevent the collapse
of normal vectors along isentropic surfaces in the pres-
ence of diabatic heating.

In the real atmosphere, the neutrality condition
∂θ/∂z= 0, which may result from adiabatic cool-
ing above diabatic heating associated with organized
mesoscale convective systems, is fairly common and
has been captured by the conventional upper-air net-
work. One example was given by Fritsch and Maddox
(1981) who showed the near neutrality condition over
a mesoscale high pressure area between 300 hPa and
150 hPa (see their Figs. 23 and 24). In this case,
deep convection produced a layer of neutrality in the
lower stratosphere. Similarly, an observational study
by Johnson et al. (1990) captured significant descend-
ing motion at the top of stratiform clouds in a 2–3-km
layer near the tropopause as a result of strong radia-

Fig. 1. West-east vertical cross sections of potential tem-
perature (contoured), and PV (shaded within the range
of −0.5 PVU< PV <0.5 PVU, 1 PVU=10−6 K m2

kg−1 s−1) at two consecutive snapshots from the 38–39
h cloud-resolving simulations of Tropical Storm Eugene
(2005) with the finest grid size of 1.33 km. Superim-
posed is the in-plane flow vectors. The circle in panel (a)
denotes the location at which both Q=0 and ∂θ/∂z=0
would develop at the later time as shown in panel (b).

tive cooling, estimated at a rate of 0.5◦C h−1. [Using a
one-dimensional coupled cloud-radiation model, Chen
and Cotton (1987) found that the long-wave radiative
cooling could be as large as 8◦C h−1–10◦C h−1 in a
layer of ∼100 m near the top of the marine stratocumu-
lus clouds.] Clearly, this descending motion resulted
from the local destabilization of the atmosphere by ra-
diative cooling, which would likely lead to the vertical
exchange of PVS across isentropic surfaces.

While the breaks in isentropic surfaces caused
by the diabatic heating (or cooling) will be quickly
smoothed out by 3D flows to stabilize the atmosphere,
these two examples show that such breaks are unavoid-
able in the presence of diabatic heating (or cooling).
In HM90 the theorem was carefully limited to a stable
atmosphere to ensure that ∂θ/∂z >0, but such a con-
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straint may be too strong such that it would eliminate
some convective motion in the atmosphere. As dis-
cussed above, the presence of a general heating source
could lead to a situation in which ∂θ/∂z = 0, thus vio-
lating the priori assumption of stably stratified atmo-
sphere in the theorem. We should mention that, while
the singularity associated with ∂θ/∂z = 0 is examined
for idealized flat isentropic surfaces with n= (0, 0, 1),
its implications can be extended also to the PVS the-
orem defined in the isentropic or pressure coordinates
in which only the vertical component of PV is consid-
ered. Apparently, at any point where the condition
∂θ/∂z= 0 is met, PVS will be allowed to penetrate
isentropic surfaces.

The neutrality discussed here is just one simple ex-
ample of a general issue with the PVS theorem, which
relies critically on the concept of isentropic surfaces. In
the presence of an arbitrary heating profile or within
a well-mixed layer, normal vectors n may not be well
defined at some points on an isentropic surface, even
if this surface is perfectly smooth at the initial time.
Thus, the concept of isentropic surfaces becomes am-
biguous, and it has to be replaced by the concept of
an isentropic layer. Apparently, there are now an in-
finite number of isentropic surfaces with the same θ
within the isentropic layer, and the surface integrals
in Eq. (6) will lose all of their physical meaning. Such
a peculiar property of isentropic surfaces is rooted in
the fact that the potential temperature, or more pre-
cisely temperature, is not a purely geometrical quan-
tity that can be defined strictly as “a surface” in a
coordinate system. Because temperature is a statisti-
cal measure of the mean kinetic energy of molecules
at an equilibrium state, it is hard to perceive the con-
cept of “isentropic surface” in the geometrical sense.
It follows that PVS is not exactly a kinematic object
as discussed in HM90 and Vallis (2005), and the PVS
theorem should be understood in a statistical sense
rather than being considered a geometrical theorem.
Because of this, we conclude that the impermeability
of isentropic surfaces by PVS is, at most, valid in the
absence of diabatic heating.

4. Ill-defined movement of isentropic surfaces

While the above-mentioned singularity is sufficient
to invalidate the PVS theorem in the presence of in-
tense diabatic heating, the extent to which Eq. (3)
or (4) can be used to estimate the movement of isen-
tropic surfaces is worth examining. Clearly, Eq. (3)
states that the movement of an isentropic surface is
only determined by the data on that surface initially.
As discussed in section 3, however, the movement of
the isentropic surface depends on how the diabatic
heating is distributed not only on the surface but also

Fig. 2. Schematics of a moving isentropic surface for (a)
a regular mapping; and (b) an ill-defined mapping due to
the presence of diabatic heating at a later time. Arrows
in (a) indicate possible directions of the fictitious velocity
of the isentropic surface.

on all other neighboring surfaces. Therefore, the hy-
pothetical velocity U of an isentropic surface should
only make sense between two different instants of time
rather than instantaneously. But even in this case,
there are many ways to define U . An example is
given in Fig. 2a, which shows that U can take any
direction between two isentropic surfaces. The only
deterministic component is the orthogonal component
that maps the points on the initial surface to the mov-
ing surface at a later time. Of course, U , given by
Eq. (3), is just one of the many possibilities, and
it is only determined uniquely from the requirement
that VFX has to vanish. In the worst-case scenario,
where the isentropic surface at the later time is dis-
torted strongly due to diabatic heating, the movement
of the isentropic surface at these points cannot even be
defined (Fig. 2b). While the latter indefinite ways of
the movement of isentropic surfaces are rare, it could
indeed occur sometimes, as shown in the preceding
section. In this section, let us assume that no such
distortion occurs during the movement of isentropic
surfaces, and then examine to what extent Eq. (3)
can be used to describe the movement of the isentropic
surface.

To this end, consider an idealized stable atmo-
sphere with flat isentropic surfaces as shown in Fig. 3,
and assume that both the heating function H(z) and
vertical motion w(z) do not vary with time. Let us fo-
cus on the vertical movement of one specific isentropic
surface (say θ=300 K) in this idealized atmosphere,
which, according to Eq. (4), is given simply by
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U(zi) ≡
⎛
⎝ 0

0
W (zi)

⎞
⎠ =

⎛
⎝ 0

0
w − H/Γ

⎞
⎠ , (8)

where Γ (z, t) ≡ ∂θ(z, t)/∂z is the static stability, zi

is the initial position of the 300-K surface, and W (zi)
is the vertical motion of the isentropic surface [which
differs from the vertical motion w(zi) of the parcels
on the surface at z = zi due to the existence of the
diabatic heating source H(zi)]. Note that in deriving
Eq. (8), the local change of θ in the numerator of uθ⊥
has been replaced by the flow field w corrected by the
contribution from diabatic heating. In addition, be-
cause of diabatic heating, Γ will be a function of both
z and t. Given the vertical motion of the 300-K sur-
face in Eq. (8), the “predicted” displacement up to
the second order after δt is

δzHM = Wδt ≈
[
w(zi) − H(zi)

Γ(zi)

]
δt +

H

Γ2

dΓ
dt

δt2 + O(δt3) , (9)

where the temporal changes of Γ are taken into ac-
count.

Fig. 3. Vertical movement of the θ=300-K surface af-
ter a time interval δt in the presence of diabatic heating
H(z). Thick and thin solid lines denote the initial and
final locations of the 300-K surface, respectively, without
diabatic heating. Dotted lines denotes a θ-surface at t=0
that will develop into a new θ=300 K-surface (shown by
thick dashed lines) due to diabatic heating. The hollow
arrows denote the flow field w, and the shaded arrow de-
notes the displacement of the 300 K-surface as predicted
by Eq. (4). See the text for various vertical increments
in δz.

We next calculate the true distance δzt between the
initial and final positions of the 300-K surface after the
given heating occurs for a time interval δt can be cal-
culated and then compared to the distance δzHM. To
calculate δzt, we note first that the points on the fi-
nal 300-K surface (dashed lines) have little to do with
those on the initial 300-K surface (i.e., the thick solid
line in Fig. 3), but they must stem from a different
isentropic surface (e.g., θ0) at t = 0 (dotted lines), de-
pending on the distribution of θ(z) and H(z). This
isentropic surface can be determined from the thermo-
dynamic equation as follows:

δθ = 300 − θ0 = H(zi − δz1

2
)δt , (10)

where zi is the initial location of the 300-K surface at
t= 0 and δz1 is the distance between 300-K and θ0

surfaces at t=0 (see Fig. 3). Note that the effects
of vertical advection are included in this system mov-
ing with the isentropic surface. Given the location of
θ0, the distance δz1 between the θ0-surface and 300-K
surface at t=0 can be estimated as follows:

δθ =
∂θ

∂z
δz1 = Γ(zi − δz1

2
)δz1 , (11)

where Γ is evaluated at z = zi − δz1/2. The distance
δz2 that the θ0-surface has traveled as a result of dia-
batic heating during the interval δt is given by

δz2 = w(zi − δz1

2
)δt , (12)

where w(z0) is the ascending motion of the θ0 surface
at t = 0. Expanding w(z0) and Γ (z0 + δz1/2) in the
vicinity of z = zi, and using Eqs. (10) and (11) to
eliminate δz1, the actual displacement of the 300-K
surface δzt is now easily computed as δzt = δz2 − δz1:

δzt =δz2 − δz1 ≈
[
w(zi) − H(zi)

Γ

]
δt+

[
dw

dz
+

H ′

Γ
− HΓ′

Γ2

]
H

2Γ

∣∣
ziδt

2 + O(δt3) , (13)

where the prime denotes a derivative with respect to z.
Apparently, δzt is the same as δzHM for our idealized
situation only up to the order O(δt). At higher orders,
some discrepancies will arisea.

This second-order difference may seem to imply
that the difference is small and can be neglected, or
it may be tempting to take δt → 0 such that U (or
W ) can be determined rigorously. Note, however, that
this difference reveals conceptually an important ec-
centricity in defining the movement of isentropic sur-
faces given by Eq. (4). First, in essence, Eq. (12)

aWe thank Dr. John Nielsen-Gammon of Texas A&M University for pointing out that a higher-order precision in the calculation
of δz1 can eliminate the first-order discrepancies in Eq. (13). However, the potential singularity due to the vanishing of Γ still
exists in Eq. (13), which prohibits an arbitrary Taylor expansion.
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indicates that the vertical movement of any isentropic
surface in the presence of diabatic heating will depend
not only on the information on this surface but also on
the other nearby isentropic surfaces, no matter how
small δt is. Second, the singularity discussed in the
preceding section shows that there are points where
U cannot be defined. So, the vertical displacement
δzt may not possess local behaviors that are smooth
enough to allow for taking the limit of δt → 0. Thus,
the velocity U given by Eq. (4) [or W in Eq. (8)] does
not determine the correct displacement of the isen-
tropic surface, and VFX can take any value. The key
point to remember here is that this hypothetical veloc-
ity U (or W ) is not related to any real motion, but it
is defined for a moving isentropic surface only at two
different instants of time rather than instantaneously.

Notably, the penetration of PVS across isentropic
surfaces does not contradict result presented in HM90
that the volume integration of PVS vanishes for a
closed volume bounded by two isentropic surfaces
around the globe. The nullity of such a volume in-
tegration just implies that the PVS fluxes at the lower
isentropic surface are proportional to that at the up-
per surface (minus the ratio of potential temperatures
at the two surfaces), or the PVS fluxes at different lo-
cations on a surface are canceled out. For a finite vol-
ume, the PVS fluxes are allowed to penetrate across
any isentropic surface in the presence of arbitrary di-
abatic heating.

5. Concluding remarks

In this paper, the PVS impermeability theorem of
HM90 was evaluated by examining the two crucial is-
sues involved in developing the theorem: the move-
ment of isentropic surfaces and the singularity of static
stability in the presence of diabatic heating. This was
done by considering the volume integration of PVS
for a finite volume bounded by two isentropic surfaces
with diabatic heating. Results show that the move-
ment of isentropic surfaces theorem presented in HM90
is potentially ill-defined in the presence of general di-
abatic heating.

We emphasized that the movement of an isentropic
surface depends not only on the information on this
surface but also on the nearby isentropic surfaces.
Breaks of isentropic surfaces associated with convec-
tively or radiatively generated singularities in static
stability tend to prohibit the well-defined movement of
the isentropic surfaces. In particular, we have shown
through a cloud-resolving simulation that the presence
of a diabatic heating source could eventually violate
the assumption of “stably stratified atmosphere” and
could invalidate the impermeability theorem. There-

fore, we conclude that the impermeability theorem of
PVS presented in HM90 can only be held for the stably
stratified atmosphere in the absence of diabatic heat-
ing, and that PVS can penetrate across any isentropic
surface when diabatic (latent or radiative) heating is
included. A similar conclusion may be applied to the
well-mixed planetary boundary layer.

Finally, it should be pointed out that these con-
clusions are more suitable for local applications. This
implies that the impermeability principle of PVS may
be still applicable in the presence of intense diabatic
heating when a deep layer, i.e., a layer that is much
deeper than the depth of its generated neutral layer,
is considered. For example, in the case of Fig. 1b,
the impermeability principle may be valid in the isen-
tropic depth between θ = 358 and 353 K surfaces with
a positive bulk lapse rate of the potential temperature.

Acknowledgements. This work was supported by

the National Science Foundation (USA; Grant No. ATM-

0758609), and the National Aeronautics and Space Admin-

istration (USA; Grant No. NNG05GR32G).

REFERENCES

Chen, C., and W. R. Cotton, 1987: The physics of the
marine stratocumulus-capped mixed layer. J. Atmos.
Sci., 44, 2951–2977.

Danielsen, E. F., 1990: In defense of Ertel’s potential vor-
ticity and its general applicability as a meteorological
tracer. J. Atmos. Sci., 47, 2013–2020.

Davis, C. A., and K. Emanuel, 1991: Potential vorticity
diagnostics of cyclogenesis. Mon. Wea. Rev., 119,
424–439.

Egger, J., 2008: Piecewise potential vorticity inversion:
Elementary tests. J. Atmos. Sci., 65, 2015–2024.

Fritsch, J. M., and R. A. Maddox, 1981: Convectively
driven mesoscale weather systems aloft. Part I: Ob-
servations. J. Appl. Meteor., 20, 9–19.

Haynes, P., and M. McIntyre, 1987: On the evolution
of vorticity and potential vorticity in the presence
of piabatic heating and frictional or other forces. J.
Atmos. Sci., 44, 828–841.

Haynes, P., and M. McIntyre, 1990: On the conservation
and impermeability theorems for potential vorticity.
J. Atmos. Sci., 47, 2021–2031.

Hoskins, B. J., M. E. McIntyre, and A. W. Robertson,
1985: On the use and significance of isentropic po-
tential vorticity maps. Quart. J. Roy. Meteor. Soc.,
111, 877–946.

Huo, Z.-H., D.-L. Zhang, and J. Gyakum, 1999: The in-
teraction of potential vorticity anomalies in extrat-
ropical cyclogenesis. Part I: Static piecewise inver-
sion. Mon. Wea. Rev, 127, 2546–2561.

Johnson, R. H., W. A. Gallus, M. D. Vescio, 1990: Near-
tropopause vertical motion within the trailing strat-
iform region of a midlatitude squall line. J. Atmos.



NO. 1 KIEU AND ZHANG 35

Sci., 47, 2200–2210.
Kieu, C. Q., and D.-L. Zhang, 2008: Genesis of Tropical

Storm Eugene (2005) from merging vortices associ-
ated with ITCZ breakdowns. Part I: Observational
and modeling analyses. J. Atmos. Sci., 65, 3419–
3439.

Kieu, C. Q., and D.-L. Zhang, 2010: A piecewise poten-
tial vorticity inversion algorithm and its application
to hurricane inner-core anomalies. J. Atmos. Sci., 67,
2616–2631.

Vallis, G. K., 2005. Atmospheric and Oceanic Fluid Dy-

namics: Fundamentals and Large-scale Circulation,
Cambridge University Press, 745pp.

Zhang, D.-L., W. Cheng, and J. Gyakum 2002: The im-
pact of various potential vorticity anomalies on mul-
tiple frontal cyclogenesis events. Quart. J. Royal Me-
teor. Soc., 128, 1847–1878.

Zhang, D.-L., and C. Q. Kieu, 2006: Potential vorticity
diagnosis of a simulated hurricane. Part II: Quasi-
balanced contributions to forced secondary circula-
tions. J. Atmos. Sci., 63, 2898–2914.


