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An analytical model for the rapid intensification of tropical
cyclones
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ABSTRACT: The nonlinearity and complexity of the primitive equations have been key obstacles to our understanding
of tropical cyclones (TCs), particularly in relation to the dynamical processes leading to their rapid intensification. In this
study, an axisymmetric model, in which all nonlinear terms in the horizontal momentum equations are retained, is used to
examine analytically the effects of organized deep convection on TC rapid intensification. By prescribing a vertical profile
of the vertical motion with exponential growth in the core region, a class of exact time-dependent solutions for the primary
circulations of TCs are obtained. The analytical solutions are shown to capture well many observed dynamical structures
in both the core and outer regions and the rapid growth of TCs in terms of maximum winds and central pressure drops.

The analytical solutions reveal that (1) the rotational flows in the inner-core region grow double-exponentially, and the
central pressure drops occur at rates much faster than the rotational growth; (2) the amplification rates of the primary
circulations differ profoundly from those of the secondary circulations; (3) the rotational flows tend to grow from the
bottom upwards with the fastest growth occurring at the lowest levels; and (4) the TC growth rates depend critically on the
vertical structure of tangential flows, with a faster rate for a lower-level peak rotation. The nonlinear dynamics are shown
to play an important role in the rapid growth of TCs. It is demonstrated that the analytical solutions can also be used to
construct dynamically consistent vortices for the initialization of TC models. Limitations and possible improvements of
the analytical model are also discussed. Copyright c© 2009 Royal Meteorological Society
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1. Introduction

Despite considerable research in the past decades, our
understanding of tropical cyclone (TC) development still
remains elusive, especially on the dynamical processes
leading to the rapid intensification of TCs. Most of our
current knowledge about the TC development is based
on limited observations and high-resolution modelling
studies. Previous studies show that rapid deepening
of TCs often occurs in relation to intense latent heat
release in a weak-sheared environment with an underlying
warm ocean surface (e.g. Gray, 1979). However, little
is understood about why some TCs could deepen so
rapidly, e.g. with the surface central pressure deepening
rates ranging from 1.5 hPa h−1 for hurricane Andrew of
1992 (Liu et al., 1997) to 9 hPa h−1 for Wilma of 2005
(Figure 1); the period of such rapid deepening may last
from a few hours to 2–3 days. In particular, it is unclear
why the rotational flows in the inner-core region grow
much faster than those in the outer region (Willoughby,
1990a). This lack of understanding can be attributed to the
insurmountable complexity of the primitive equations that
prevents us from obtaining an analytical description of
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both dynamics and thermodynamics taking place during
the rapid deepening stage of TCs.

Perhaps the earliest analytical approach to the prob-
lem of TC development was formulated in the frame-
work of conditional instability of the second kind (CISK)
attributing the cooperative TC growth between the fric-
tional convergence and latent heat release (Charney and
Eliassen, 1964; Ooyama, 1969). In this theory, the sec-
ondary circulation (SC), consisting of the convergent
inflow in the planetary boundary layer (PBL), vertical
motion in the inner-core region and divergent outflow
aloft, is treated as a linear perturbation superimposed on
a balanced vortex or primary circulation (PC). With an
assumption that the CISK feedback occurs only within a
central cloud region of a fixed radius, an explicit solu-
tion for the SC is found, which shows an exponential
growth of the SC with the growth rate depending on
the scale of the cloud region. Under the quasi-balanced
dynamics, studies of TC development are, nonetheless,
often based on the Sawyer–Eliassen equation, which was
first introduced by Eliassen (1952) and later extended
by Sundqvist (1970), Willoughby (1979), Shapiro and
Willoughby (1982), Schubert and Hack (1982), and Hack
and Schubert (1986). By prescribing a top-hat heating
profile, Schubert and Hack (1982) obtained an analytical
solution of the Sawyer–Eliassen equation for an invisid
barotropic axisymmetric vortex, which reveals a larger
temperature tendency inside the radius of maximum wind
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RAPID INTENSIFICATION OF TROPICAL CYCLONES 1337

Figure 1. Time series (at 6-hour intervals) of (a) the growth rates of the r = 400 km area-averaged peak vertical motion (dotted), maximum
tangential wind (dashed), and surface central-pressure drop (solid); and (b) the simulated minimum surface pressure (hPa, bold dashed) and
maximum surface wind (m s−1, thin dashed) versus the best track analysis (solid) from the 54-hour simulation of hurricane Wilma (2005),
initialized at1800 UTC on 17 October 2005. The growth rates in (a) are defined with respect to their magnitudes at t = 6 hours into the

simulation.

(RMW) than that outside. They inferred that this would
cause a faster growth rate of tangential winds inside the
RMW due to the presence of stronger inertial stability,
and lead to the collapse of the RMW and the subsequent
formation of an eye. This speculation was later demon-
strated by Hack and Schubert’s (1986) quasi-balanced
numerical model for a nonlinear baroclinic vortex using
a time-invariant Gaussian heating function, but the ana-
lytical understanding of TC growth remains unresolved.

A more acceptable theory of TC growth should
take into account the air–sea interaction, the so-called
wind-induced surface heat exchange processes (WISHE)
after Emanuel (1989), which was initially addressed by
Yanai (1964), and later extended by Emanuel (1986)
with steady-state solutions for mature TCs, and Rotunno
and Emanuel (1987) with an axisymmetric numerical
model. An important result of the WISHE theory is the
dependence of the maximum potential intensity (MPI) on
the drag exchange coefficients of heat and momentum,
and on the temperature difference between the PBL top
and the upper-level outflows, assuming neutral slantwise
ascent in the hurricane eyewall. While the WISHE
theory is widely accepted as the dominant mechanism

for TC genesis, explicitly time-dependent solutions have
not been developed except for analytical formulations
during the mature stage; Craig and Gray (1996) provide
a comparative analysis of CISK and WISHE associated
with TC intensification.

To date, theoretical studies of TC development appear
to rely critically on the steady evolution of weak SCs
under the quasi-balanced dynamics to characterize TC
growth. However, none of the existing theories could be
used to describe the rapid intensification of TCs in terms
of central pressure drops and rotational growth, and relate
them to the development of SCs. To see this, Figure 1(a)
shows the growth rates of the area-averaged peak vertical
motion WMAX, the maximum tangential wind VMAX, and
the surface central pressure drop δpmin from a cloud-
resolving simulation of hurricane Wilma (2005) with
the Weather Research and Forecast (WRF) model at the
finest resolution of 2 km. (A more detailed description of
the case simulation will appear in a forthcoming paper by
H. Chen and D.-L. Zhang.) The WRF model reproduces
reasonably well the track and rapid intensification of the
storm, including the maximum surface wind of about
80 m s−1; the simulated minimum central pressure is only
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1338 C. Q. KIEU AND D.-L. ZHANG

about 4 hPa weaker than the observed with a 4–5 hour
lag (Figure 1(b)). While WMAX begins to increase slowly
after 1200 UTC on 18 October with a total increase of
60% during the rapid deepening period of 1800 UTC
18 October to 1200 UTC 19 October (Figure 1(b)),
both the rotational flow and the surface central pressure
drop show much faster growths, with their magnitudes
amplified by about 2.5 and 4.5 times during the 18-
hour deepening period, respectively. Such remarkably
different growth rates of the PC and SC signify some
fundamental dynamics taking place during the rapid
deepening stage that has not been addressed previously.

The purpose of the present study is to investigate the
rapid intensification of TCs from the perspectives of
rotational growth and central pressure falls. This will
be achieved by deriving a class of exact solutions to a
simplified version of the primitive equations.

The next section describes the theoretical framework
and the assumptions used to simplify the primitive
equations. Section 3 shows derivation of the analytical
solutions, given a top-hat forcing function for the vertical
motion. Section 4 presents verification of the analytical
solutions against some well-documented TC structures
and evolution. Section 5 shows how our analytical
solutions can be used to assist in the initialization of TC
models. Concluding remarks are given in the final section.

2. Theoretical framework

We start from the non-hydrostatic, anelastic primitive
equations in the log-pressure (p) cylindrical coordinates
(r , ϕ, z), following Willoughby (1979),
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where z = −H ln (p/ps), H is the scale height, ps is
a reference pressure; u, v, and w are, respectively, the
velocity component in the radial, tangential and vertical
directions; φ is the geopotential height perturbation from
its reference value φ(z); b ≡ gT ′/T (z) is the buoyancy;
f is the Coriolis parameter; N is the buoyancy frequency;
S = −(1/ρ)∂ρ/∂z ≡ N2/g is a stratification parameter;
J denotes the diabatic heating rate; Fu,v,w denote the
frictional effects in the PBL. For the convenience of
our derivation, parameters f and N will be treated as
constants.

Due to their high nonlinearity, it is virtually impos-
sible to obtain directly analytical solutions for Equa-
tions (1)–(5), even when the diabatic heating rate and
frictional forcing are parametrized. However, as a first
step, we may simplify the above equations system by
assuming that a time-dependent solution for the verti-
cal motion in a TC can be given a priori. Zhang et al.
(2002) have shown that the vertical profiles of the ver-
tical motions are similar to those of the diabatic heating
rates from the thermodynamic budget analysis of a cloud-
resolving simulation of hurricane Andrew (1992) (Fig-
ures 1(a) and 2(b) therein). This suggests that if the time
evolution of the vertical motion field is known, compli-
cated moist thermodynamical processes could be plausi-
bly bypassed and the TC intensification could be explored
in the context of pure rotational dynamics. In this regard,
numerical (dry) modelling studies of Pandya and Durran
(1996), and Pandya et al. (2000) have revealed many fun-
damental squall-line structures as forced by a specified
vertical profile of convective heating along the leading
convective line.

Under the quasi-balanced constraint, Charney and
Elliasen (1964), Yanai (1964), and Ooyama (1969) estab-
lished a theoretical framework for which the SC growth
could be described in terms of an instability mode. That
is, the diabatically induced ascending motion can be
expressed as:

w(r,z,t) =
{

W0 sin(λz)eβt r ≤ a (region I)
0 r > a (region II),

(6)

where a is a radius characterizing the horizontal scale of
TCs, W0 and λ = π/H0 are constants, and β is the growth
rate of the vertical motion. The parameter β depends on
various factors, such as frictional convergence and surface
heat fluxes, and it is typically on the order of 10−6 − 10−5

s−1 (Ooyama, 1969). Strictly speaking, β should be a
function of z, and similarly for N , but it can always be
approximated as a constant, at least to the leading order
of the WKB expansion. This approximation amounts to
a constant deepening rate of TCs in the vertical, which is
not a severe constraint as TCs often show a near-constant
growth rate at all levels. To see this point, Figure 2 shows
the simulated time series of the deepening of hurricane
Wilma (2005) at three different vertical (i.e. lower, middle
and upper) levels. The central pressure time series (and
deepening rates) are similar at all the levels, only with
slight differences after the 24-hour integration.

Note that the exponential form of w as given by (6) is
not a serious limitation as, to the first-order expansion,
such exponential growth can always be truncated as a
linear function. For example, the time series of w in
Figure 1(b) shows a linear growth with β ≈ 2 × 10−6

s−1 during the intensifying period. To ease the subsequent
derivations, the exponential form as given in (6) is chosen
for the present study. Our purpose here is to examine
how the PCs will evolve with time if the SCs grow
exponentially as often assumed in previous studies. Of
course, such exponential growth will no longer be valid as
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RAPID INTENSIFICATION OF TROPICAL CYCLONES 1339

Figure 2. Time series of the pressure deviation at three different
levels: z = 1 km (solid), 5 km (dashed) and 10 km (dotted) from
the simulation of hurricane Wilma (2005) using the WRF model. All

pressure deviations are normalized to their values at t = 0.

TCs reach their maximum intensity, so solution (6) should
be limited to the rapid intensifying period only.

As a second step to find the analytical solutions,
we make the following two assumptions: (i) TCs are
axisymmetric; and (ii) only the first-order frictional
effects are considered, i.e. Fu,v = κ(u, v). Assumption
(i) is invoked because TCs often show their consistent
axisymmetric structure during the rapid intensification
period and later mature stage. Apparently, considerable
asymmetries related to numerous factors such as vertical
wind shear, intrinsic vortex-wave interactions associated
with the highly rotational flows, or inhomogeneities in
the atmosphere are always observed, and they can be
in principle incorporated into our model in some form
of ‘parametrization’. However, this will result in a very
challenging set of equations such that there is little
hope for obtaining the exact solutions. Because of this,
we hereafter restrict our model only to axisymmetric
vortices. Assumption (ii) is adopted in order to simplify
our derivation of the analytical solutions. With the above
assumptions, the system of equations that we will work
with is reduced to:
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The above equations will be defined within a cylindrical
domain


(r, ϕ, z) = [0, Rm] × [0, 2π] × [0, H0]

with the following boundary conditions:

ur=Rm = ur=0 = 0; wz=0 = wz=H0 = 0;
vr=Rm = vr=0 = 0; �r=Rm = 0. (7)

It is worth pointing out that with time-dependent
solution (6), the initial conditions for the other variables

cannot be arbitrarily chosen because of the dynamical
constraints of Equations (1′), (2′) and (4′), which will
be demonstrated in section 5 to be of importance in
constructing dynamically consistent 3D vortices for TC
models. Unlike the numerical approach for which one
can integrate a model with arbitrary initial conditions, that
solution (6) contains a time-dependent factor puts a strong
restriction on the allowed solutions for other variables.
In other words, given the vertical motion profile (6), the
3D structures and evolution of the PC can be estimated
from Equations (1 ′), (2 ′), and (4 ′). This is opposite in
philosophy to the previous quasi-balanced TC studies in
which the PC has to be a priori assumed to estimate its
associated SC (e.g. Eliassen, 1952; Willoughby, 1990b;
Zhang and Kieu, 2006). Table I lists the definition and
dimension of all the parameters used in the present study.

3. Analytical solutions

Since the ascending motion is assumed to occur only
in the inner-core region (i.e. r ≤ a), the remaining
solutions for variables u, v, and φ should be derived
from Equations (1′), (2′) and (4′) for the inner-core region
(I) and the outer region (II), separately.

3.1. Analytical solutions for region I

From the continuity equation (4′) and w1(r, z, t) =
H(z)eβt , where H(z) = W0 sin(λz), the radial wind in
region I is given by

u1(r, z, t) =
(

SH − dH

dz

)
eβt r

2
+ C1

r

≡ Qreβt + C1

r
, (8)

Table I. Specification of parameters used for the present study.

Parameter Definition Value

a Radius of the cloud
disk or the RMW

100 km

β Growth rate parameter 10−6 − 10−5 s−1

f Coriolis parameter at
10◦N

2 × 10−5 s−1

H0 Depth of the tropo-
sphere

20 km

HPBL Depth of the PBL 1 km
λ Inversed depth of the

troposphere (= π/H0)
1.7 × 10−4 m−1

κ0 Frictional drag coeffi-
cient at z = 0

5 × 10−5 s−1

Rm Outer radius of a TC
beyond which the
ambient environment
is at rest

2000 km

S Stratification par-
ameter (≡ N2/g)

10−5 m−1
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1340 C. Q. KIEU AND D.-L. ZHANG

where Q(z) = W0[S sin(λz) − λ cos(λz)]/2, and
C1(z, t) vanishes after applying the boundary condition
(6) at r = 0.

Plugging Equations (6) and (8) into Equation (2′), it is
straightforward to obtain the following equation for the
tangential wind in region I:

∂v1

∂t
+

(
Qr

∂v1

∂r
+ Qv1 + H

∂v1

∂z

)
eβt

= −f Qeβt r − κv1. (9)

The only separable solution in radius that Equa-
tion (9) can admit is of the form: v1(r, z, t) = F1(z, t)r .
Use of this form in Equation (9) gives
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)
eβt − κF1. (10)

Consider a formal asymptotic expansion of the solution
F1(z, t) in terms of the drag coefficient κ as follows:

F1(z, t) =F (0)(z, t) + κ(z)F (1)(z, t)

+ κ2(z)F (2)(z, t) + O{κ3(z)}. (11)

Assuming that this series expansion converges at higher
orders, we can obtain a solution for F1(z, t) with each
order of κ(z) after substituting (11) into (10). For
the simplicity of our derivation, we only present the
calculation up to the first-order correction.

Consider first the zero-order solution of Equation (10),
which is governed by:
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A simple factoring technique suggests that the solution
of (13) is of the form

Fh(z, t) = G(z) exp(µeβt ), (14)

where µ is an arbitrary positive, dimensionless number.
Plugging (14) into (13), followed by an integration,
an explicit form for Fh(z, t) could be derived as (see
Appendix A)

Fh(z, t) = G0 sin(λz)e−Sz exp(µeβt ){
tan

(
λz
2

)} µβ
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Thus, the zero-order solution for the tangential wind is
given by
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where G0 is an integration constant (with the unit of s−1)
that determines the initial strength of a vortex. Note that
the double-exponential factor, exp(µeβt ), is associated
with the effects of the radial and vertical advection of
angular momentum (Equations (13) and (14)) whereas the
factor e−Sz denotes the vertical weighting effects of the
atmospheric stratification on v1

(0). Solution (16) contains
an infinite number of possible solutions depending on the
values of µ. However, the requirement of the regularity
of (16) at z = 0 imposes a strong restriction on the
range of µ. Specifically, by taking limit of (16), we have
(Appendix A):

µβ

λW0
≤ 1. (17)

Given β, λ and W0, the largest possible value of µ is:
µmax = λW0/β. In addition, by restricting the solutions
only to the growing modes, the range of µ will be
truncated to µ > 0. To ease our subsequent discussion,
let µβ(λW0) = 1 − δ, so that δ will be in the range of
[0, 1], and so solution (16) can be rewritten as

v
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[
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}
− f

2

]
. (18)

To help understand the physical implication of the
parameter δ, Figure 3 shows the dependence of the
vertical profile of v1

(0)(r, z, t) on δ at r = a. First, the
zero-order solution exhibits a deep layer of cyclonic flow
in the troposphere, with the peak tangential wind shifting
from the surface to midlevel as δ increases from 0 to
1. Second, solution (18) shows the strong dependence of
growth rate on the vertical structure of tangential wind.
Indeed, if the e-folding time (τe) is defined from the
exponent in (18) as

τe = 1

β
ln

{
β

W0λ(1 − δ)

}
,

we can see that the higher level the peak tangential
flow (i.e. the larger δ) is located, the slower rate the TC
vortex will grow (i.e. the larger τe). In other words, a
TC vortex with the peak tangential wind near the surface
will amplify faster than one located higher up. This is a
result of the absolute angular momentum conservation
(Zhang et al., 2001). That is, it would take a much
shorter time for the SC to spin up a TC vortex through
its radial and vertical advection of the absolute angular
momentum if the peak rotational flow is located in the
lowest inflow layer than in that above. Because the
zero-order solution applies to frictionless vortices, δ = 0
gives rise to tangential winds peaked at the surface, and
meanwhile results in the fastest growth of the surface
wind (Figure 3). Note that the e-folding time also
depends on the depth of the troposphere (through λ), the
mean vertical motion W0, and static stability (through
β). Because the maximum tangential wind in rapidly
intensifying TCs is often observed near the top of the
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Figure 3. Vertical profiles of the tangential winds at the zero order,
v(0)

1(z,a,0), given by Equation (18), with different values of δ. They
are plotted with non-dimensional units.

PBL, it is desirable to take into account the next order
of the frictional correction, as discussed below.

Use of (11) and (18) in Equation (10), the first-order
frictional correction F (1)(z, t) is governed by

∂F (1)

∂t
= −eβt

(
H

∂F (1)

∂z
+ 2QF (1)

)
− F (0). (19)

Following the same procedures as that for the zero order,
and noting that F (0)(z, t) = −f/2 + Fh(z, t), the solution
for F (1)(z, t) can be approximated as

F (1)(z, t) = 2G1W0λ

β
cos2

(
λz

2

)
e−Sz

× exp(W0λeβt/β) − tan(λz/2)

W0λeβt/β − ln[tan(λz/2)]
, (20)

where G1 is an integration constant to be determined
later. Note that only the most weighted (i.e. lower-
order) contribution to F (1)(z, t) is included in (20) (see
Appendix II).

With the first-order frictional correction, the tangential
wind in region I is now given by:

v1(r, z, t) = [F (0)(z, t) + κ(z)F (1)(z, t)]r ≡ K(z, t)r,

(21)

where K(z, t) is defined by

K(z, t) = − f

2
+ 2G0 cos2

(
λz

2

)
e−Sz

×
[

exp

(
W0λ

β
eβt

)

+ε
exp(W0λeβt/β) − tan(λz/2)

W0λeβt/β − ln[tan(λz/2)]

]
, (22)

and ε = κW0λG1/βG0. Figure 4 shows the vertical
profiles of the zero-order solution (18) with δ = 0,
the first-order frictional correction (20) and the total
solution (21) at four different instants of time. Obviously,
the surface friction reduces the surface wind to near
null, causing the peak wind to be located above the
PBL (Figure 4(b)). In general, the larger the κ , the
higher level the peak of the frictional correction will
be located. Of interest is that because the zero-order
solution increases rapidly with time, and the level of
its peak magnitude shifts slightly downwards; similarly
for the total tangential winds (Figure 4(c)). In terms of
the growth rate, however, the TC vortex tends to grow
from the bottom upwards due to the fastest growth at
the surface due to the zero-order solution. This result
appears to provide an important theoretical insight into
the dynamical behaviours of growing vortices during the
tropical cyclogenesis stage. Namely, the TC vortex tends
to spin up from the bottom upwards as a result of the
inward advection of the absolute angular momentum in
the lowest inflow layer (Zhang and Bao, 1996; Hendricks
et al., 2004; Montgomery et al., 2006; Kieu and Zhang,
2008).

Figure 4. Vertical profiles of the mean tangential wind in region I at times t = 0, 1, 2, 3, 4 for (a) the zero-order v(0)
1(z,a,t) given by

Equation (18); (b) the first-order frictional correction v(1)
1(z,a,t) given by Equation (20); and (c) the sum of the zero- and first-order solutions

given by Equation (21). Note that δ = 0 is required for the zero-order solution, and that all the parameters have been non-dimensionalized.
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To find φ1(r, z, t) in region I, substituting solutions for
v1, w1, and u1 into Equation (1′), after some manipula-
tions, gives

∂φ1

∂r
= −r(Qβeβt + Q2e2βt + He2βt dQ

dz

− K2 − fK − Qκ). (23)

A simple integration of (23) with respect to r leads to

φ1(r, z, t) = �a − (a2 − r2)

2

(
K2 + fK − Qβeβt

−Qκ − Q2e2βt − He2βt dQ

dz

)
, (24)

where �a(z) is the geopotential height perturbation at r =
a, and it will be determined later with the geopotential
height distribution in region II.

3.2. Analytical solutions for region II

Exact solutions for region II can be derived using the
same procedures as those for region I. First, integrating
the continuity equation (4′), with w2(r, z, t) = 0, gives

u2(r, z, t) = C1(z, t) − C2(z, t)

r
, (25)

where C1(z, t) and C2(z, t) are integral functions. Using
Equation (4) at r = a and the boundary condition
(6) yields

C1 = 0 and C2 = a2

2

(
dH

dz
− SH

)
eβt .

So, the solution for the radial wind in region II is

u2(r, z, t) = −1

2

(
dH

dz
− SH

)
eβt a

2

r

≡ eβt a
2Q

r
. (26)

Substitution of u2 into Equation (2′), followed by some
simple rearrangements, yields

∂v2

∂t
= −a2eβt

(
Q

r

∂v2

∂r
+ Q

r2
v2 + f

Q

r

)
− κv2. (27)

The only separable solution of (27) is of the form of
v2(r, z, t) = F2(z, t)/r , so we have

∂F2

∂t
= −eβta2f Q − κF2. (28)

Integrating it gives an explicit solution for the tangential
wind in region II:

v2(r, z, t) = 1

r

(−eβtQf a2

β + κ
+ Ze−κt

)
, (29)

where Z(z) is an integral function of z, and it can be
determined by matching v1(r, z, t) and v2(r, z, t) at r = a

and t = 0 as follows

Z(z) =
(

K + Qf

β + κ

)
a2. (30)

By plugging u2, v2, w2 into Equation (1′), we obtain

∂φ2

∂r
= −

(
eβtQa2 β + κ

r

−e2βt Q
2a4

r3
− C2

r3
− f C

r

)
, (31)

where C(z, t) =
(

−eβtQf a2

β+κ
+ Ze−κt

)
.

Finally, integrating (31) gives the geopotential height
perturbation in region II:

φ2(r, z, t) = �0 + {eβta2Q(β + κ) − f C} ln
Rm

r

− e2βt a
4Q2

2r2
− C2

2r2
, (32)

where radius Rm and �0(z, t) are defined such that
φ2|r=Rm = 0. All the solutions for the wind and mass
fields in both region I and II are thus derived completely.

One should keep in mind that the analytical solutions
obtained above are suitable only for the intensifying
stage during which the energy supply is assumed to
be favourable for the full intensification of TCs with
little environmental influences. As the storms reach their
maximum intensity, the exponential growth of the vertical
motion as assumed in (6) is no longer valid, so the time-
dependent solutions cannot be further extended in time.
Meanwhile, there must be an upper limit for the mean
upward motion, which may be closely related to the MPI
(Emanuel, 1986; Holland, 1997). Thus, we have to restrict
the validity of the above growing solutions to a range
of [0, Tm], where Tm is the shortest time at which the
maximum intensity is reached.

4. Verification

In this section, we validate the above analytical solu-
tions against some well-documented observations and
model simulations in the literature (e.g. McBride, 1981;
McBride and Zehr, 1981; Willoughby et al., 1982;
Willoughby, 1990a; Liu et al., 1999). Some important
features may be summarized as follows:

i The TC flow is cyclonic prevalently throughout the
troposphere and it becomes anticyclonic only in a
thin layer near the tropopause;

ii the tangential wind increases near-linearly with
radius until reaching the RMW and then decreases
slowly to the ambient value at a very large distance;

iii the tangential wind is peaked near the top of the
PBL and then decreases with height, especially near
the RMW; and
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iv the rotational flow in the inner-core region grows
much faster than that in the outer region.

Some other typical features may include:

v radial inflow and outflow at the low and upper
levels, respectively;

vi the peak vertical motion in the mid-troposphere
with a null value at the surface and the tropopause;
and

vii lower pressures (or geopotential heights) in the
core region throughout the troposphere except in
the upper layer where the horizontal winds become
anticyclonic.

In the next section, let us see to what extent the
analytical solutions obtained in section 3 could reproduce
the above-mentioned features.

4.1. Growth rates

A comparison of solutions (21) and (29) show clearly
that the tangential wind in the inner-core region v1(r, z, t)

grows at a rate much faster (due to the double exponential
factor) than that in the outer region v2(r, z, t), as listed
at (iv). Figure 5 shows an example of hurricane Diana
(1984); Willoughby (1990a,b) provides more TC cases.
Evidently, the tangential wind within the RMW nearly
doubles in magnitude in 24 hours whereas its outer-region
magnitude exhibits a slow increase. Our solutions capture
well this drastic difference in the growth rate between the
inner-core and outer regions.

A further examination of the growth rates shows that
the spin-up of the PC is more complicated than that of
the SC. Namely, the PC exhibits a rapid amplification
rate in the core region and a slower rate outside, whereas
the SC grows just exponentially in both the inner and
outer regions. This implies the distinctive dynamics
between the rotational flows and SCs during TC growth.
Physically, this intriguing PC behaviour in the inner-core
region could be attributed to the radial-inward and upward
advection of the absolute angular momentum. That is,

Figure 5. Growth of the 850 hPa tangential wind in hurricane Diana
(1984) valid during the periods 2335 UTC on 9 September to 1514 UTC
on 10 September (solid), and 0228 to 0903 UTC on 11 September 1984

(dashed). (Reproduced from Willoughby, 1990.)

the axisymmetry of TCs requires both the radial and
tangential winds to vanish at the vortex centre and in
the far outer region. This implies that the tangential wind
has to attain its maximum value somewhere near the core
of the vortex (i.e. r = a in our model). It follows that the
radial inward advection in the PBL will help accelerate
(decelerate) the PC in the inner-core (outer) region. In
addition, the ascending motion in the inner-core region
advects larger angular momentum upwards, facilitating
further the amplification of the TC vortex in the layers
above. Thus, the dynamical impacts of the SC on the PC
are of vital importance in determining the growth of TCs.

Now let us attempt to validate our time-dependent
solutions with the cloud-resolving simulation of hurricane
Wilma (2005). We take W0 = 0.12 m s−1, obtained by
averaging the simulated vertical motion over an area
with r = 400 km from the eye centre at 6 hours into
the integration, and use the maximum tangential wind of
30 m s−1 at z = 1.6 km. To represent the damping effects
of the PBL, we use the drag coefficients of the form

κ(z) = κ0 exp[−(z/HPBL)2],

where κ0 = 2.5 × 10−5 s−1. This κ(z) profile corresponds
to a near-constant drag coefficient in the PBL with a
depth of HPBL and then it decreases rapidly upwards.
With the above inputs and some other parameters given in
Table I, iterations of solution (21) through trial and error
give G0 = 6.6 × 10−9 s−1 and ε = 0.25. To facilitate the
comparison with model simulations, we provide here an
analytical expression for the surface central pressure drop
δpmin, which can be derived readily by setting r = 0
in Equation (24) to give φmin. Since δpmin = ρφmin, we
have:

δpmin(t) =ρ�a − ρa2

8
(4K2

|z=0 + 4f K|z=0 + 2W0λβeβt

+ 2W0λκ − (W0λ)2e2βt ), (33)

where �a is evaluated from solution (32) by setting
r = a, i.e. �a = φ2(r = a, z = 0, t), and

K|z=0 = 2G0 exp

(
W0λ

β
eβt

)
− f

2
.

Figure 6 compares the time evolution of VMAX and
δpmin associated with hurricane Wilma (2005) between
the theory and WRF prediction, using the previously
estimated value of β = 2 × 10−6 s−1. One can see
that the theory-predicted growth of δpmin fits well the
WRF-predicted growth, i.e. showing a slow growth of
the TC intensity at first and more rapid deepening
at later times. In particular, the maximum theoretical
rate of surface pressure drop is about 10 hPa hr−1,
which is comparable to the observed 9 hPa hr−1 rate.
An examination of the simulation results shows the
presence of very weak vertical wind shear during this
deepening period, which explains why the exact solution
could capture well the observed pressure drop. However,
the exact solution begins to overpredict the maximum
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Figure 6. Comparison of the time series of the exact solutions (33)
and (21) (solid) with the 36-hour WRF model simulation (dashed) of
hurricane Wilma (2005) for (a) the surface central pressure drop (hPa),
and (b) the axisymmetric component of the maximum tangential wind
(m s−1), for the period 1200 UTC on 18 October to 0600 UTC on 19

October 2005 (also see Figure 1(a)).

wind more after a couple of hours. This appears to be
a consequence of the use of the first-order frictional
parametrization in the PBL, whose effects are often
treated as being proportional to the squared surface wind
(Zhang et al., 1999). Despite this discrepancy, the result
reveals that such rapid intensification is depicted well
by the double exponential growth associated with the
nonlinear terms in the primitive equations. It follows that
the rapid deepening of most TCs could be attributed to the
nonlinear dynamical processes associated with the SC. In
nature, the TC growth is often offset by vertical wind
shear, horizontal deformation, dry intrusion, and friction.
So, our theoretical e-folding time should be considered as
an upper bound for the growth of TCs during their rapid
intensification stage.

One may note that the RMW in the exact solutions
does not vary with time due to the use of a top-
hat forcing function within a fixed radius (i.e. r ≤ a

in Equation (6)), whereas both the observations and
simulations document a gradual contraction of the RMW
during TC intensification (e.g. Willoughby et al., 1982;
Liu et al., 1999). However, the analytical result, in which
the tangential flow in the inner-core region intensifies
at a rate much faster than that in the outer region, is
a good indication of the collapse of the RMW, as also
discussed by Schubert and Hack (1982). Of course, with
the RMW fixed as in our model, some discontinuities
of the tangential flows will develop with time at r =
a, as can be seen from solutions (21) and (29). Our
initial attempts using a Gaussian function for solution
(6) can eliminate such discontinuities and still capture
the behaviours of tangential flows that are similar to

those with the top-hat profile, at least in the asymptotic
limit at the small- and large-radius approximation. The
use of such a smooth function will also allow for the
contraction of the RMW. This will be presented in one
of our forthcoming papers.

4.2. The 3D flow structures

Solutions (21) and (29) show that the tangential wind
increases linearly with radius for r ≤ a and decreases
inversely with radius for r > a. This radial distribution
fits well the familiar pictures of TCs even at the early
stage (e.g. Willoughby, 1990), as listed at (ii). More
notably, the two solutions show cyclonic flows in a deep
layer in the troposphere and anticyclonic flows in a thin
layer beneath the tropopause, as listed at (i). Figure 7
compares the vertical profile of the area-averaged
tangential flow over the inner-core area as given by (21)
with W0 = 0.12 m s−1, G0 = 5.4 × 10−9 and ε = 0.25
to the observed by McBride (1981), where G0 and ε

are iteratively estimated in the same way as previously
mentioned, but based on the observed maximum wind
and its corresponding altitude. Except for the slope of the
theoretical tangential wind profile that is steeper than the
observed, the analytical solution shows a general consis-
tency with a dominant cyclonic flow in the troposphere
and a peak near the top of the PBL due to the inclusion of
frictional effects. The physical reasoning for such a deep
layer of cyclonic flow is again attributable to the roles of
the SC in transporting the absolute angular momentum.
Solutions (6), (8) and (26) also provide a consistent
description of the SC with an inflow in the lower half and
an outflow in the upper half of the troposphere, and the
maximum vertical motion at the middle level (Figure 8),
as listed at (v) and (vi). The atmospheric stratification

Figure 7. Comparison of the vertical profile of the mean tangential wind
estimated from Equation (21) (solid) with that observed in West Pacific
typhoons (dashed). The observed profile is reproduced from McBride

(1981).
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Figure 8. Radius–height cross-section of the tangential wind (contours
at 3 m s−1 intervals) and pressure perturbations (shading at 2 hPa
intervals), superimposed with in-plane flow vectors, as constructed from

the analytical solutions obtained in section 3.

makes the inflow layer somewhat shallower than the
outflow layer in the pseudo-height vertical coordinate.

4.3. The 3D mass field

The observed bow shape of the geopotential height,
listed at (vii), can be reproduced by solutions (24) and
(32). To see this, we consider each half of the tropo-
sphere separately. Because Q ≈ − dH /dz is negative and
dQ/dz ≈ − d2H /dz2 is positive in the lower atmosphere,
the first four (last two) terms inside the parenthesis of
(24) will contribute positively (negatively) to the decrease
of geopotential height at each level. Since K(z, t) is a
sensitive function of time (i.e. due to the double expo-
nential factor), the first two terms containing K will
become more dominant with time, and lower pressures
are guaranteed to develop in the inner-core region after
a while. In the upper half of the troposphere, because
Q > 0 and dQ/dz < 0, the positive contributions of the
first two terms, though decreasing with height, will be
compensated by the negative contributions of the last four
terms in the parenthesis of (24). Due to the dominant
time-dependence of K(z, t), we may still expect to have
lower pressures developed in the upper troposphere with
time and this explains the development of a deep layer
of low pressure in the troposphere. Near the tropopause,
however, K becomes very small due to the strong depen-
dence on height (cf. Figure 7 and Equation (24)) so that
a weak high-pressure system may be seen corresponding
to anticyclonic flows aloft.

4.4. Gradient-wind approximation

Since the gradient-wind approximation has been widely
accepted in previous TC studies, particularly in relation
to the balance theory (e.g. Willoughby, 1990b, Zhang
et al., 2001), it is of interest to see how well this balance
relation is represented in our analytical solutions. This
can be done simply by deriving the geopotential height

perturbation from the gradient wind balance, i.e.

−v2

r
= −∂φb

∂r
+ f v, (34)

and then comparing it with solutions (24) and (32).
Substituting tangential wind v1(r, z, t) and v2(r, z, t) into
Equation (34) will yield φb for region I and II, separately.
For example, a comparison of the balanced geopotential
height φb with solution (24) for region I gives∣∣∣∣φ1 − φb

φ1

∣∣∣∣ ∼=
∣∣∣∣φ1 − φb

φ1

∣∣∣∣
t=0

×
[

cos(λz)

cos2(λz/2)

e2βt

exp(W0βeβt/λ)

]2

. (35)

Equation (35) shows that, no matter how large the dif-
ference between the exact solution and the gradient-wind
approximation at the initial time is, the relative differ-
ence will approach zero as the denominator increases
rapidly with time. Therefore, the gradient wind balance
is expected to be a better approximation at the later
stages. The gradient balance relation should be more eas-
ily satisfied in the outer region. Note that, similar to the
quasi-balanced theory for which the radial wind is derived
from the Sawyer–Eliassen equation and the gradient wind
approximation (34) is used as a constraint between the
mass and the wind field, the radial wind in our model is
diagnosed from the continuity equation, given an explicit
solution for the vertical motion (6). The radial momen-
tum equation (1′) will therefore serve as a constraint on
the mass and wind fields. With the wind fields given by
solutions (6), (8), and (21) in the inner-core region, the
mass field has to be determined accordingly to satisfy
Equation (1′).

5. Applications

Much of our current understanding of TCs is based
mainly on the modelling studies of both idealized
hurricane-like vortices and real TC cases (e.g. Ooyama,
1969; Willoughby, 1979; Rotunno and Emanuel,
1987; Liu at el., 1997; Wang and Holland, 1996; Zhu
et al., 2001; Montgomery et al., 2006). In these modelling
studies, it is necessary to either initialize the TC models
with axisymmetrical vortices or enhance the initial TC
vortices via the use of vortex-bogussing techniques
(Kurihara et al., 1993; Wang, 1998; Xiao et al., 2000;
Pu and Braun, 2001; Wang et al., 2008). Even though
the current global models have become fine enough to
capture a sizeable percentage of TC development, vortex
bogussing still appears to be of critical importance in
the forecasts of both TC track and intensity, even in
relatively data-rich areas (Heming, 2008).

Except for the assimilation of real observations, the
vortex bogussing requires an ad hoc specification of verti-
cal structures (Kurihara et al., 1993; Wang, 1998; Heming
and Radford, 1998; Xiao et al., 2000; Wang et al., 2008).
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In addition, in many cases only the PCs could be ini-
tialized, and the pertinent SCs have to rely on the TC
models to spin up. Our exact solutions indicate that the
vertical structures of tangential winds at the model initial
time could produce significant impact on the subsequent
intensity changes of TCs, as mentioned before. This is
consistent with some sensitivity experiments reported by
Wang (1998), who showed strong dependence of TC
movement and intensity changes on the vertical profiles
of the initial tangential flows.

In this section, we shall show how our analytical
solutions could be used to construct TC-like vortices for
initialization of hurricane models. All one has to do is to
set t = 0 in solutions (6), (8), (21), (24), (26), (29), and
(32), which will yield the 3D fields of w, u, v, and φ in
both region I and II. As indicated by Equations (1′), (2′),
and (4′), our solutions provide complete and dynamically
consistent 3D distributions for both the PC and SC.
Specifically, the tangential wind at t = 0 is given by

v1(r, z, 0) = K(z, 0)r for r ≤ a, (21′)

v2(r, z, 0) = 1

r

(−Qf a2

β
+ Z

)
for r > a. (29′)

The geopotential height perturbation is given by

φ1(r, z, 0) = �a − (a2 − r2)

2

(
K2 + f K − Qβ − Q2

−H
dQ

dz

)
for r ≤ a, (24′)

φ2(r, z, 0) = �0 + a2Q(β + κ − f C) ln
Rm

r
− a4Q2

2r2

− C2

2r2
for r > a, (32′)

where C(z) = Qf a2/(β + κ) + Z, �0(z) =
(a4Q2 + C2)/R2

m, and �a(z) = φ2(a, z, 0). The radial
wind is given by

u1(r, z, 0) = Qr for r ≤ a, (8′)

u2(r, z, 0) = a2Q/r for r > a. (26′)

The vertical motion is given by

w1(r, z, 0) = W0 sin(λz), for r ≤ a, (6a′)
w2(r, z, 0) = 0 for r > a. (6b′)

The above 3D vortex structures appear at first to con-
tain too many free parameters (e.g. β, λ, κ0, W0, Rm, S).
However, most of the parameters are nearly constants and
suitable for all of the TCs (Table I). The only initial inputs
we need for the above solutions are the area-averaged
maximum vertical motion (W0), RMW (a), the Coriolis
parameter (f ), and the frictional correction (ε). In prac-
tice, W0 could be approximately evaluated from a diabatic
heating rate profile through Equation (5), assuming a
balance between adiabatic cooling and diabatic heating.
Such a heating profile seems to be feasible with today’s

observing platforms. Specifically, satellite retrieval algo-
rithms, based on precipitation-rate profile retrievals, have
recently been developed to estimate the vertical distribu-
tion of latent heating in TCs using Special Sensor Micro-
wave Imager (SSM/I) and Tropical Rainfall Measuring
Mission (TRMM) microwave imager measurements (e.g.
Rodgers et al., 1998; Tao et al., 2006). With a numerical
approach, Zhu et al. (2002) developed an algorithm to
initialize TC vortices using the temperature (or heating)
profiles retrieved from the Advanced Microwave Sound-
ing Unit (AMSU-A) data. Parameters G0 and ε can be
calculated from (21′) in the same way as that described
in section 4, using an observed maximum tangential wind
at its corresponding altitude.

Figure 8 shows an example of a TC vortex using the
parameters given in Table I, W0 = 0.12 m s−1, G0 =
5.4 × 10−9 s−1, and ε = 0.2; the latter two parameters
are evaluated from Equation (21′) with a hypothetical
maximum tangential wind of 30 m s−1 at z = 1 km,
and a = 100 km. It is apparent that, except for small
sharp changes at r = a due to the first-order matching
of Equation (30), the TC flow structures are reasonably
constructed with the cyclonic winds decreasing upwards
and outwards. The same procedures may be used to
construct the 3D flow fields for a mature hurricane with
intense diabatic heating in the eyewall.

6. Concluding remarks

In this study, the dynamical processes leading to the rapid
intensification of TCs are examined with an analytical
model, in which the nonlinear terms in the horizontal
momentum equations are attained. An important proce-
dure in this analytical model is to bypass the sophisticated
moist thermodynamical processes by assuming a time-
dependent solution for the vertical motion with a given
growth rate in the core region. Our approach, deriving the
TC intensity from the vertical motion (or heating func-
tion), differs radically from the previous quasi-balanced
studies in which the rotational flows have to be a priori
assumed in order to estimate their associated secondary
circulations.

The exact solutions so obtained are shown to cap-
ture well many fundamental dynamics of TCs and their
rapid intensifications. Specifically, the solutions for the
rotational flows exhibit double-exponential growth in the
inner-core region, as compared with their much slower
growth in the outer region, which to our knowledge has
not been previously shown. The central pressure drops
could occur at the squared double-exponential rates. In
particular, our analytical solutions show drastically dif-
ferent growth rates between the PC and SC, i.e. with a
much faster spin-up rate of the rotational flows and deep-
ening rate of the surface pressure than that of the SC
due to the nonlinear advection effects in the horizontal
momentum equations. This indicates that the TC intensi-
fication from the linear growth of the SC, as shown in the
previous studies, tends to be underestimated in magnitude
and oversimplified by neglecting the nonlinear terms.
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Results reveal further that the levels of the peak tangen-
tial flows shift downwards as TCs intensify, and that the
lower the levels, the faster the TCs will grow under the
absolute angular momentum conservation. These results
have important implications for the initialization of TC
models with bogussed vortices, because both the mag-
nitude and level of the peak tangential winds affect the
forecasts of subsequent intensity and intensity changes.

The analytical solutions obtained herein are shown to
be also useful for initializing TC models when the mean
diabatic heating or vertical motion could be approximated
by top-hat profiles. Only a few initial inputs need to
be specified from observations. An important difference
from the previous bogussing technique is that our vortex
initialization does not require a prior specification of the
vertical structure of the rotational flows. Although the
use of the top-hat function causes some discontinuities of
solutions at r = a, it should be noted that our results
associated with either the growth rates or the vertical
structures of the PCs and SCs remain valid even when a
smoother profile of the vertical motion, e.g. the Gaussian
profile, is employed. In fact, the discontinuities only
affect the vortex structure near r = a, and they can be
effectively reduced by using a continuous step function.

In a forthcoming article, we will study further the
growth and structures of TCs with different vertical
motion functions, instead of the top-hat radial profile,
and validate the exact solutions using more real-data and
model-simulated TC cases.
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Appendix A

Derivation of Solution (15)

To obtain Equation (15), substituting Equation (12) into
Equation (11) and manipulating for a few steps, a
differential equation for G(z) is obtained:

dG

G
= W0λ cos(λz) − W0S sin(λz) − µβ

W0 sin(λz)
dz. (A.1)

Integrating (A.1) with respect to z gives:

ln(G) = ln[sin(λz)]− µβ

W0λ
ln

{
tan

(
λz

2

)}
+ ln(G0) − Sz, (A.2)

from which Equation (13) is followed readily as

G(z) = G0 sin(λz)e−Sz

{
tan

(
λz
2

)} µβ
W0λ

. (A.3)

Note at z = 0, G(z) may be singular. To eliminate this
singularity, there must be some restriction on λ,β,µ, and
W0. Using L’Hôpital’s rule, one will obtain the criterion
(17), i.e. µβ < λW0.

Appendix B

Derivation of Solution (20)

Let F (1)(z, t) = �(z, t)Fh(z, t), from Equations
(10)–(11), we have

Fh

∂�

∂t
= −eβt HFh

∂�

∂z
− F (0), (B.1)

or

e−βt ∂�

∂t
+ H

∂�

∂z
= −F (0)e−βt

Fh

. (B.2)

After performing coordinate transformation from (z, t) to
a pair of new dependent variables (p, q) defined by

p =
∫

eβτ dτ = 1

β
eβt and

q =
∫

1

H(τ)
dτ = 1

λWo

ln

{
tan

(
λz

2

)}
, (B.3)

Equation (B.2) can be rewritten as

∂�

∂p
+ ∂�

∂q
= R(p, q)

≡ −F (0)(p, q)e−βt(p)

Fh(p, q)
, (B.4)

where

Fh(p, q) = sin(λz)e−S z exp(µeβ t ){
tan

(
λz
2

)} µβ
W0λ

, (B.5)

where the implicit dependence of z on q and t on p

will be obtained from (B.3). The solution of (B.4) can
be found by first finding its homogeneous solution, and
then using the method of variational coefficients (e.g.
Polyamin et al., 2001), we obtain

�(p, q) =
p∫

p0

R(τ, q − p − τ)dτ + G(p − q)

=
p∫

p0

F (0)(τ, q − p − τ)e−βt

Fh(τ, q − p − τ)
dτ

+ G(p − q), (B.6)
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where G(p–q) denotes a function of (p–q). To eliminate
the singularity of q(z) at z = 0,

G(p − q) = G

{(
eβr

β

)
− ln{tan(λz/2)}

λW0

}

will be chosen as a constant G1. Then, solution for (B.4)
is given by

F (1)(z, t) =
µmax∫
0





G1 +

p∫
p0

F (0)(τ, q − p − τ)e−βt

Fh(τ, q − p − τ)
dτ




× sin(λz)e−S z

{
tan

(
λz
2

)} µβ
W0λ

exp(µeβt )


 dµ.

(B.7)

Note that the term G1 is the most weighted contribution
to F (1)(z, t) as the second term in the first-pair brackets
of (B.7) tends to decay exponentially with time. The
integration over µ can be done if one notes the following
straightforward integration

c∫
0

eax

bx/c
dx = c(ea − b1/c)

{ac − ln(b)} . (B.8)

Keeping only the most weighted term G1 in (B.7) and
use of (B.8) gives us

F (1)(z, t) ≈ 2G1W0λ

β
cos2

(
λz

2

)
e−S z

×
[

exp(W0λeβt/β) − tan(λz/2)

W0λeβt/β − ln[tan(λz/2)]

]
. (B.9)
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