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ABSTRACT

Vortex–Rossby waves (VRWs) and inertial gravity waves (IGWs) have been proposed to explain the

propagation of spiral rainbands and the development of dynamical instability in tropical cyclones (TCs). In

this study, a theory for mixed vortex–Rossby–inertia–gravity waves (VRIGWs), together with VRWs and

IGWs, is developed by including both rotational and divergent flows in a shallow-water equations model.

A cloud-resolving TC simulation is used to help simplify the radial structure equation for linearized per-

turbations and then transform it to a Bessel equation with constant coefficients. A cubic frequency equation

describing the three groups of allowable (radially discrete) waves is eventually obtained. It is shown that low-

frequency VRWs and high-frequency IGWs may coexist, but with separable dispersion characteristics, in the

eye and outer regions of TCs, whereas mixed VRIGWs with inseparable dispersion and wave instability

properties tend to occur in the eyewall. The mixed-wave instability, with shorter waves growing faster than

longer waves, appears to explain the generation of polygonal eyewalls and multiple vortices with intense

rotation and divergence in TCs. Results show that high-frequency IGWs would propagate at half their typical

speeds in the inner regions with more radial ‘‘standing’’ structures. Moreover, all the propagating waves

appear in the forms of spiral bands with different intensities as their radial widths shrink in time, suggesting

that some spiral rainbands in TCs may result from the radial differential displacements of azimuthally

propagating perturbations.

1. Introduction

The tropical cyclone (TC) can be viewed as a self-

sustaining, axisymmetric vortex with a life span of sev-

eral days. Superposed on the vortex are often spiral

rainbands, polygonal or double eyewalls with variable

distribution of cumulus convection, and convectively

generated vortices (Schubert et al. 1999; Kossin et al.

2002; Gall et al. 1998). Because of the short life cycle of

deep convection, these asymmetric elements interacting

with large-scale flows and inner-core dynamics can lead

to significant changes in the structure and intensity of

TCs on a time scale of hours (Tuleya and Kurihara 1981;

Bender 1997; Liu et al. 1997, 1999). Thus, numerous

theoretical, observational, and modeling studies have

been conducted during the past decades to examine how

the asymmetrical features form and then evolve together

with the quasi-balanced TC vortices. Earlier studies

attribute the development of spiral rainbands to the

outward propagation of internal inertia–gravity waves

(IGWs; e.g., Willoughby 1978; Xu 1983). However,

radar observations indicate that internal IGWs often

propagate at speeds that are much faster than those

of spiral rainbands. Thus, more research interest has

shifted since the 1990s to the vortex–Rossby wave
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(VRW) theory of MacDonald (1968), who drew an anal-

ogy between the movement of spiral rainbands and the

propagation of Rossby waves around a rotating planet.

Guinn and Schubert (1993) hypothesized that during

the intensifying stage the potential vorticity (PV) field

might become more circular, with its highest values at

the TC center, and then the radial PV gradient would

provide a basic state on which VRWs can propagate. By

invoking an analogy between radial gradients of the

basic-state absolute vorticity in TCs and meridional

gradients of the planetary vorticity in large-scale weather

systems, Montgomery and Kallenbach (1997, hereafter

MK97) advanced the VRW theory by obtaining the fol-

lowing local dispersion relation of radially and azimuth-

ally propagating VRWs near the radius of r 5 r0 from the

nondivergent barotropic vorticity equation:

v
R

5 nV
0

1
n d h

0
/dr

r
0
(k2 1 n2/r2

0)
, (1)

where V0 and d h0/dr are the mean angular velocity and

the mean radial absolute vorticity gradient at a given

radius r 5 r0, respectively, and k and n are the radial and

azimuthal wavenumber (WN), respectively. Because

its phase velocity is close to that of spiral rainbands,

the VRW theory has widely been used to explain the

structural changes and the formation of spiral rainbands

(e.g., Montgomery and Enagonio 1998; Schubert et al.

1999; Montgomery and Franklin 1998; Wang 2002;

Montgomery et al. 2006) and double eyewalls in TCs

(Hogsett and Zhang 2009).

Apparently, the IGW and VRW theories, describing

the respective divergent and rotational flows, have their

own deficiencies in providing a more complete under-

standing of TC dynamics. Recent observational and

high-resolution modeling studies of TCs show the co-

existence of strong divergence and rotation in the eye-

wall (Jorgensen 1984; Liu et al. 1999; Frank and Ritchie

1999). This implies that the TC wave dynamics would

not be complete without simultaneously incorporating

the effects of rotational and divergent motions, and that

both IGWs and VRWs would likely play important roles

in TC wave dynamics. Shapiro and Montgomery (1993)

pointed out that because of the rapid rotation, there is

no clear separation in time scales between the ‘‘fast’’

IGWs and ‘‘slow’’ VRWs in the hurricane core regions.

However, Chen et al. (2003) were able to separate IGWs

from VRWs in a simulated hurricane using an empirical

normal mode method. On the other hand, Ford (1994)

found that high azimuthal WN instability in Rankine-

like vortices is of the mixed type of VRWs and IGWs.

Schecter and Montgomery (2004, hereafter SM04) have

also studied the instability of VRWs and showed that

VRWs can excite outward-propagating IGWs outside

the critical layer when the Rossby number is greater

than unity.

The mixed-wave concept implied above refers to the

coexistence of two or more different types of waves in a

dynamical system. In fact, the atmospheric flows at any

instant may consist of many types of wave motions at

different scales because of the presence of compress-

ibility, gravity (g), earth rotation ( f ), and curvature (b)

(Holton 2004). But most mixed waves are simply linear

superimposition of their associated eigenfrequencies

because their restoring forces can be clearly separated.

A good example is the mixed IGWs, which could de-

generate to pure gravity and inertia waves when one

of the restoring forces becomes negligible. Another type

of mixed waves is inseparable waves, such as the equa-

torial Rossby–gravity waves containing both divergence

and rotation (Matsuno 1966). This is because the mixed

Rossby–gravity waves will no longer exist if either the

earth curvature (b) or gravitational effect (g) is neglected.

So far, few studies have been conducted to examine if

there is any inseparable mixed wave in TCs.

In this study, we attempt to show the existence of

an inseparable class of mixed vortex–Rossby–inertia–

gravity waves (VRIGWs) that possess both rotation and

divergence in TCs. This will be explored by using a ro-

tating shallow-water equations model in the cylindrical

coordinates. The next section describes the theoretical

framework used to study these waves in relation to the

VRW theory of MK97. Section 3 shows derivation of

three groups of normal-mode solutions for azimuthally

propagating IGWs, VRWs, and mixed VRIGWs after

some simplifications based on a cloud-resolving simu-

lation of Hurricane Andrew (1992). Section 4 presents

stability analyses and the regions favoring the develop-

ment of the three different waves and then shows their

associated propagating characteristics. A summary and

concluding remarks are given in the final section.

2. Theoretical framework

Because of the dominant axisymmetrical structure

of TCs, we start from the simplest linearized, f-plane,

shallow-water equations in polar (r, l) coordinates:

›

›t
1 V

›

›l

� �
u9� h� r

dV

dr

� �
y9 1 g

›h9

›r
5 0, (2a)

›

›t
1 V

›

›l

� �
y9 1 hu9 1 g

›h9

r›l
5 0, (2b)

›

›t
1 V

›

›l

� �
h9 1 HD9 1 ku9

dH

dr
5 0, (2c)
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where u9 and y9 are the radial and tangential perturba-

tion velocity, respectively; h9 and H are the perturbation

height and equivalent mean depth, respectively; V(r) 5

V(r)/r is the mean angular velocity, where V(r) is the

mean tangential wind; h 5 f 1 2V 1 rd V/dr is the mean

absolute vorticity; D9 5 ›ru9/r ›r 1 ›y9/r ›l denotes

the perturbation divergence; and the parameter k, set to

either 1 or 0, is used herein to trace the effect of the

radial advection of the mean height by perturbation

flows. We assume that the basic state is in gradient wind

balance; that is,

f V 1
V

2

r
5 g

dH

dr
.

A concise linearized form of Eq. (2), including both

the rotational and divergent components of wave mo-

tions, is the shallow-water PV conservation equation,

d

dt

h 1 z9

H 1 h9

� �
5 0, (3)

where d/dt 5 ›/›t 1 V›/›l 1 u›/›r and z9 5 ›ry9/r ›r 2

›u9/r ›l is the vertical component of the perturbation

relative vorticity. The total PV in Eq. (3) can be re-

written as

h 1 z9

H 1 h9
5

h 1 z9

H(1 1 h9/H)
’

h 1 z9

H
1� h9

H

� �
.

After neglecting the second-order perturbation term,

we obtain the following linearized shallow-water PV

equation for perturbations:

›

›t
1 V

›

›l

� �
z9

H
� q

h9

H

� �
1 u9

d q

dr
5 0, (4)

where q [ h/H is the basic-state PV and the pertur-

bation PV may be defined as q9 [ (z9 � qh9)/H. It

can be readily shown that z9 and qh9 (or D9), denoting

the respective rotational and divergent components of

wave motions, are of the same order of magnitude (i.e.,

z9 ; D9) in intense TCs. This may be achieved by per-

forming a scale analysis of Eq. (2c) and assuming h ; V,

so that hh9 ; HD9 or qh9 ; D9. It is evident that if the

wave motion is nondivergent (i.e., H / ‘), Eq. (4) will

degenerate to

›

›t
1 V

›

›l

� �
z9 1 u9

d h

dr
5 0, (5)

which is the linearized barotropic vorticity equation

used by MK97 to develop the well-known VRW theory.

Because the radial gradient of the mean absolute vor-

ticity (i.e., b
0

[ d h/dr) in Eq. (5) is analogous to the b

effect in the classic Rossby-wave theory, VRWs may

propagate in TCs.

One can see from Eqs. (3) and (4) that under the

constraint of PV conservation, any alteration in q may

result in changes in both z9 and h9, corresponding to the

formation and propagation of VRWs and IGWs, re-

spectively. Apparently, the VRW solution, derived from

the barotropic vorticity Eq. (5), is a special solution of

Eq. (4). It follows that under the PV conservation con-

straint, VRWs and IGWs may coexist to form the mixed

VRIGWs. Whether or not they are inseparable waves

remains to be examined after obtaining the associated

frequency equations in the next section.

It should be mentioned that Eqs. (2a)–(2c) were also

used by MK97 to derive a local dispersion relation in

terms of the mean radial PV gradient with the diver-

gence effects included. However, because of their use

of the filtered asymmetric balance theory of Shapiro

and Montgomery (1993), only one wave frequency so-

lution, similar to (1), was obtained. As will be seen next,

Eqs. (2a)–(2c) should give rise to three wave solutions,

two of which are associated with the vortex IGWs and

the mixed VRIGWs. In fact, SM04 found solutions for

VRWs and IGWs from a complete system of the hy-

drostatic equations with stratification included, but their

solutions show the propagations of VRWs and IGWs

only in the inner core and outer regions, respectively.

3. Wave frequency equations

Assuming that the spatial and temporal dependence

of u9 may be separated by specifying solutions in the

form of azimuthally propagating waves, then

u9 5 ~u(r) exp[i(nl� v̂t)] 1 c.c., (6)

where ~u(r) is the wave amplitude of radial wind, and v̂

is the local wave frequency at r 5 r0 (likewise for y9

and h9). Because the radial length scale of the waves

is much shorter than the characteristic radius of a TC

vortex, some basic-state variables may be assumed, fol-

lowing MK97, to be slowly varying and they can be ex-

panded in series; for example,

V 5 V
0

1 Dr dV
0
/dr 1 � � �

d h

dr
5

d h
0

dr
1 Dr d2h

0
/dr2 1 � � �

1

r
5

1

r
0

1� Dr

r
0

1 � � �
� �

,

8>>>>>><
>>>>>>:

where Dr 5 r 2 r0, and r0, V
0
, d h

0
/dr as well as the other

variables with the subscript ‘‘0’’, will be treated as
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constants around r 5 r0. After eliminating y9 and h9 (see

the appendix), we obtain a second-order ordinary dif-

ferential equation in the unknown variable ~u:

d2 ~u

dr2
1

1

r
1

kg

c2
0

dH

dr

� �
d~u

dr
1

v2

c2
0

� 1

r2
1

kg

c2
0

d2H

dr2

 

1 r
h

0

c2
0

dV
0

dr
� h2

0

c2
0

� n2

r2
1

n

rv

d h
0

dr
� 2n

vr2
h

0

�
kgnh

0

c2
0vr

dH

dr

!
~u 5 0, (7)

where v 5 v̂ � V0n 6¼ 0 and c0 5
ffiffiffiffiffiffiffi
gH
p

is the phase

velocity of surface gravity waves and is considered to be

constant. Equation (7) is a homogeneous equation, so

we may expect that nontrivial solutions satisfying ap-

propriate boundary conditions will exist for certain

values of v corresponding to the frequencies of normal-

mode waves. However, Eq. (7) is too complicated for

deriving the wave frequency equations because the co-

efficients for d~u/dr and ~u are not constants but functions

of r. Thus, it is desirable to explore whether Eq. (7) can

be simplified or transformed into an ordinary differen-

tial equation with constant coefficients.

As a first step, let us examine if Eq. (7) could be

realistically simplified by estimating the relative mag-

nitudes of basic-state variables with a cloud-resolving

simulation of Hurricane Andrew (1992) at the finest grid

size of 2 km (see Yau et al. 2004; Liu et al. 1997). Be-

cause the most intense rotation occurs near the top of

the boundary layer in the eyewall, the model-simulated

variables will be azimuthally and vertically averaged in

the 900–800-hPa layer, followed by 2-h temporal aver-

ages during the mature stage of Andrew in order to

obtain more representative basic-state quantities (see

Fig. 1). The 900–800-hPa layer, which is equivalent to a

depth (H) of about 1 km, is used for the present study of

mixed VRIGWs because of the assumed same order of

magnitude for rotation and divergence, according to the

scale analysis of the continuity equation (i.e., H ; W/D,

where W ; 1021 m s21 and D9 ; 1024 s21). Figure 1a

shows that the radial distribution of H(r) increases from

800 m at the center to 1400 m in the outer region. Its

radial variation (i.e., dH/dr) is more than one order of

magnitude smaller than H/r (see Fig. 1c) except near the

radius of maximum wind (RMW) (at r 5 40 km, see

Fig. 1a). Thus, we may assume g dH/dr � c0
2 /r and ne-

glect the advection of the mean height by perturbation

radial flows by setting k 5 0 in Eq. (7). In addition, for

the sake of subsequent scaling, we assume that v is of the

same order of magnitude as h
0
, so the last term in the

final set of parentheses can be simplified. With the above

approximations, Eq. (7) can then be rewritten as

d2 ~u

dr2
1

1

r

d~u

dr
1

v2

c2
0

� 1

r2
1

rh
0

c2
0

dV
0

dr
� h2

0

c2
0

� n2

r2

 

1
n d h

0
/dr

rv
� 2n

r2

!
~u 5 0. (79)

Next, we define a set of characteristic scaling param-

eters using the model simulation as given in Fig. 1 in

order to transform Eq. (79) to a standard type of ordi-

nary differential equation. These parameters include the

RMW (Rm ; 4 3 104 m), the equivalent mean depth

for shallow water gravity waves (H ; 103 m), the angu-

lar velocity (Vm ; 1023 s21), and the absolute vorticity

(h, Vm ; 1023 s21). With these scaling parameters, we

define the following nondimensional parameters:

r 5 R
m

R, V
0

5 V
m

V, h
0

5 V
m

h, v 5
ffiffiffiffiffiffiffiffiffi
b

0
c

0

q
v,

(8)

FIG. 1. Radial profiles of the temporally averaged basic-state

variables from the 62–64-h simulations of Hurricane Andrew (1992)

with the finest grid size of 2 km (see Yau et al. 2004; Liu et al. 1997), then

azimuthally and vertically averaged in the 900–800-hPa layer: (a)

Angular velocity (V, solid, 1023 s21) and mean height (H, dashed,

103 m); (b) vertical absolute vorticity (h, solid, 1023 s21), and its

radial gradient (d h/dr, dashed, 1027 m21 s21); and (c) H/r (solid)

and dH/dr (dashed) with logarithmical ordinate. Dotted lines in (a)

and (b) denote the angular velocity and the vertical absolute vor-

ticity used by MK97, respectively. The solid and hollow triangles

show the location of the RMW and the RMV, respectively.
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where R, V, h, and v(;h) denote the nondimensional

radius, angular velocity, vertical absolute vorticity, and

wave frequency, respectively.

In addition, we introduce two more nondimensional

quantities: the Froude number, Fr 5 Vm
2 Rm

2 /gHRm
2 , as

the ratio of the squared rotational speed to the squared

phase speed of surface gravity waves (Ford 1994); and

the vortex Rossby number, R0 5 Vm/(Rmjb0j), as the

ratio of the basic-state rotation to its radial-mean vor-

ticity. A small value of Fr corresponds to weak rotation

or strong divergence associated with gravity waves,

whereas a small value of R0 implies the dominant effects

of b0 on the generation and propagation of VRWs.

These two nondimensional quantities are more or less

determined by the characteristic scaling parameters of H

and b0 or V; both are functions of radius. Specifically,

d h/dr decreases from 2 3 1027 m21 s21 from the TC

center to a negligible value near r 5 35 km and then it

changes to negative in the outer region. As a result, R0

has a small value of 0.2 within the radius of 50 km, but

it increases rapidly beyond r 5 60 km and reaches a

value of 14 at r 5 120 km (Fig. 2b). However, there is a

singularity with very large R0 values inside the RMW

(i.e., at r 5 35 km, see Fig. 1b), hereafter referred to

as the radius of maximum vorticity (RMV), due to the

presence of b0 5 0. This singularity has little effect on

our discussions that will follow, apart from the absence

of VRWs in accordance with Eqs. (1) and (5). In con-

trast, Fr decreases slowly with radius (e.g., from 0.22 at

the TC center to 0.12 at r 5 120 km), with an average

value of about 0.15 outside the RMW (Fig. 2a). The

radial distributions of R0 and Fr suggest that the inner

and outer regions are more favorable for the propaga-

tion of VRWs and IGWs, respectively, except in the

vicinity of the RMW or RMV.

Note that the basic-state profile used to set up the

scaling parameters differs from that used by MK97. That

is, the mean angular velocity V peaks near the RMW

with a finite rotation at the TC center, and then it de-

creases outward. This is in marked contrast to a hypo-

thetical near-Gaussian swirl profile with the maximum

rotation at the TC center in MK97 (see Fig. 1a). This also

leads to significantly different profiles of the V-derived

variables such as the absolute vorticity h and its radial

gradient d h/dr (see Fig. 1b).

Substitution of the above scaling parameters into

Eq. (79) gives the nondimensional form of the radial

structure equation in ~u:

R2 d2 ~u

dR2
1 R

d~u

dR
1 [t

1
R2 � (n 1 1)2]~u 5 0

~uj
R!0

5 0, ~uj
R!R

b
5 0

8><
>: , (9)

where t1 5 v2 1 nR0Tr /v 1 FrhV, Tr 5 R21 dh/dR;

and Rb is the nondimensionized radius at the outmost

boundary where little wave energy could be reflected

to influence wave activities in the eyewall. Because of

some peculiar features of WN-1 VRWs, our subsequent

discussions of Eq. (9) will be limited only to waves with

n $ 2. Equation (9) is essentially Bessel’s equation, so

solving it for ~u can now be regarded as an eigenvalue

problem of Bessel’s equation, provided that parameter

t1 can be treated as real positive constant. For the pur-

pose of examining the wave propagation and structures

(i.e., assuming vi 5 0), we plot the radial distribution of

t1 for nondimensionalized frequency v in the range of

[25, 5], with n 5 2 and all the other variables (e.g., h, V,

dh/dR) as given in Fig. 1. It is evident from Fig. 3 that for

a given v the radial variation of t1 is generally much less

than 10%, even at the RMV where R0 is singular but

jR0Trj 5 Vm/RmR is finite. Moreover, t1 varies less for

higher frequencies. In fact, a scale analysis indicates that

v2 is the dominant term in t1, and the contribution from

the third radius-dependent term is small due to the

smallness of Fr. Apparently, setting k 5 1 in Eq. (7)

would affect little the radial variation of t1 and our sub-

sequent discussions (but it would not possibly transform

the coefficient of d~u/dr into a standard form of Bessel’s

equation). Hence, we may approximate t1 as constant

in both the inner and outer regions and then obtain

the following characteristic equation satisfying the given

boundary conditions given in Eq. (9):

m2 [ t
1

5 v2 1
nR

0
T

r

v
1 F

r
hV. (10)

This yields a solution (in dimensional form) for the

(radially discrete) perturbation radial velocity u9:

FIG. 2. As in Fig. 1, but for radial distribution of (a) the Froude

number, Fr 5 Vm
2 Rm

2 /gH, and (b) the vortex–Rossby number, R0 5

Vm/(Rmb0), with dashed lines denoting their radial averages. Note

the singularity of R0 at the RMV (i.e., near r 5 35 km) in (b).
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u9 5 u
0
J

n11

mr
0

R
m

� �
exp[i(nl� v̂t)] (n 5 1, 2, 3, . . .),

(11)

where u0 is the amplitude of perturbation radial velocity

u9, u0 Jn11(mR) denotes the radial amplitude distribu-

tion of u9, m 5
ffiffiffiffiffi
t

1

p
5 m

j
/R

b
( j 5 1, 2, 3, . . .), or mj is the

node of the nth-order Bessel function of the first kind;

that is,

J
n
(mR) 5 �

‘

k50
(�1)k 1

k!G(n 1 k 1 1)

mR

2

� �n12k

. (12)

That is, mj corresponds to each positive root of Jn11(mj) 5 0

that is a function of the azimuthal WN-n for a given

boundary radius (Rb). Thus, we have mj [ mj(n), and

m [ m(n) for a given wave frequency v. Like (gHe)
21,

which is an eigenvalue for the vertical structure equation

when the shallow-water equations are applied to a

stratified fluid with equivalent depth (He) (see Daley

1981), the radial eigenvalue m 5 m(n)/Rm is the per-

centage distance of each node from the TC center with

respect to the RMW (Rm) for a given WN-n. In essence,

m is equivalent to a radial WN. The index k gives al-

ternating signs between the nodes with decreasing am-

plitudes for larger n.

Figure 4 shows the radial distributions of wave

amplitudes for WN-2 and WN-3 calculated from

u0 Jn11(mR). We see that (a) the wave amplitude de-

creases with increasing n and r, indicating that more

wave energy is concentrated in longer waves and in the

inner-core region, and (b) each azimuthally propagating

wave has a radius of maximum amplitude (Ra) that is

larger for higher n, suggesting that fewer (more) con-

tributions from shorter waves occur in the inner (outer)

region. Furthermore, the wave amplitude is null at the

TC center, peaks at Ra, and then decreases, while oscil-

lating, with radius in the outer region. Of interest is that

longer waves decay at rates faster than shorter waves in

the inner region; they all decay at much slower rates in the

outer region. Overall, Eq. (12) provides a summation of

all allowable ‘‘radially standing’’ perturbations associated

with azimuthally propagating waves.

With the radial eigenvalue of m known from the

Bessel equation, we can now solve the characteristic

Eq. (10), which is essentially a cubic frequency equation

for allowable waves with azimuthal WN n; that is,

F(v) 5 v3 � (m2 � F
r
hV)v 1 nR

0
T

r
5 0. (13)

Clearly, there are three possible wave frequency solu-

tions, depending on the sign of Q from the following

discriminant equation (Zwillinger 2003):

Q 5
(m2 � F

r
hV)3

27
� 1

4
n2R2

0T2
r . (14)

Equation (13) can be solved graphically with all possible

values of the variables on the rhs of Eq. (14), which

would lead to three different signs of Q. When Q . 0, we

can see from Fig. 5 that the curve of F(v) intersects the

v axis at three points, implying the existence of three

distinct real roots. Two of them are for high-frequency

(v1, v3) waves propagating azimuthally in opposite di-

rections, and the third one is for a low-frequency (v2)

FIG. 3. The frequency–radius (v–r) distribution of Bessel’s pa-

rameter t1 for wavenumber n 5 2 (see text), based on the basic-

state profiles given in Figs. 1 and 2.

FIG. 4. Radial distribution of the amplitude of the perturbation

radial wind—that is, ~u(r) 5 u
0
J

n11
(mR), where u0 5 1 m s21—for

wavenumber n 5 2, 3 obtained from Bessel’s function of the first

kind [see Eq. (11)]; Ra denotes the radius of peak radial wind.
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wave propagating against the mean flow. When Q 5 0,

there are two intersections of the F(v) curve with the v

axis, one of which corresponds to two identical negative

roots. This indicates that the cyclonic-propagating high-

frequency (v3) wave will be shifted to a lower frequency,

whereas the anticyclonic-propagating high- (v1) and

low- (v2) frequency waves are reduced to an intermediate

frequency. When Q , 0, there are both a single real so-

lution (v3), corresponding to a cyclonic-propagating low-

frequency wave, and two complex conjugate solutions

(v1, v2) associated with dynamically unstable waves. Let

us now examine what the three groups of solutions are.

a. The Q . 0 solutions

The three real solutions can be easily separated by

assuming high-frequency waves, so nR0Tr in Eq. (13) can

be omitted to give the following local dispersion relation:

v
1,3

’ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � F

r
hV

q
. (15)

Converting it back to dimensional form gives

v̂
G

5 V
0
n 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

0m2 � h
0
V

0

q
, (159)

where m 5 m(n)/Rm. Equation (159) represents clearly

high-frequency IGWs that are influenced by the rota-

tional flows of TCs through h0V0. Thus, we may refer

them to as vortex IGWs propagating oppositely in the

rotational flows of TCs, whose phase velocities are

c
G

5 V
0
r

0
6

r
0

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

0m2 � h
0
V

0

q
. (16)

Equation (16) states that azimuthally propagating vor-

tex IGWs tend to be slower in the regions of more rapid

rotation and higher absolute vorticity than typical IGWs.

In addition, the higher the azimuthal wavenumber, the

more slowly the vortex IGWs will propagate.

Similarly, the dispersion relation for the low-frequency

waves can be obtained by neglecting the term v3 in

Eq. (13):

v
2

’
nR

0
T

r

m2 � F
r
hV

. (17)

Converting it to dimensional form gives the dispersion

relations for the low-frequency waves:

v̂
R

5 V
0
n 1

nb
0

r
0
(m2 � h

0
V

0
/c2

0)
. (179)

Equation (179) is similar to the dispersion relation (1)

associated with azimuthally propagating VRWs in MK97

if m2 5 n2/r2
0 and without the influence of gravity and

mean rotation. This implies again that the VRW dis-

cussed by MK97 is a special type of the low-frequency

waves in the above solution. Then, the phase velocity of

the ‘‘modified’’ VRWs can be expressed as

c
R

5
r

0
v̂

R

n
5 V

0
r

0
1

b
0

m2 � h
0
V

0
/c2

0

. (18)

Because cyclonic rotation is defined as positive in polar

(r, l) coordinates, azimuthally propagating VRWs will

be faster (slower) than the mean flows inside (outside)

the RMW because of the sign of b0.

b. The Q 5 0 solutions

In the Q 5 0 case, we have the Cardan solutions

(Zwillinger 2003) to the frequency Eq. (13); that is,

v̂�5 V
0
n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4nc2

0b
0
/r

0
3

q

v̂
1

5 V
0
n 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.5nc2

0b
0
/r

0
3

q
8><
>: , (19)

where v̂� and v̂
1

represents two allowable waves

propagating against and with the mean rotational flows,

respectively, corresponding to two identical negative

roots (v1, v2) and one positive root (v3) (see Fig. 5). One

may note that both v̂� and v̂
1

will approach V
0
n as

either b0 / 0 or c0 / 0. Since b0 and c0 are closely

related to VRWs and gravity waves, respectively, and

since they are inseparable from (19), both v̂� and v̂
1

may be considered as the frequencies of mixed VRIGWs.

The two mixed waves are similar in physical properties

FIG. 5. Allowable (real or complex) wave solutions from the

cubic frequency Eq. (13), that is, F(v) 5 0, that are dependent on

the sign of Q in Eq. (14), according to the basic-state profiles given

in Figs. 1 and 2, assuming v1 , v2 , 0 , v3.
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to the equatorial Rossby–gravity waves discovered by

Matsuno (1966) in which the gravitational and earth

curvature effects could not be separated. Clearly, these

mixed waves differ from those with the Q . 0 solutions

in which VRWs and IGWs can be isolated.

c. The Q , 0 solutions

Under the Q , 0 condition, Eq. (13) has the following

three solutions:

v
3

5 v
A

1 v
B

,

v
1,2

5�(v
A

1 v
B

)/2 6 i
ffiffiffiffiffiffiffi
3/4
p

(v
A
� v

B
),

(

where v3 is a real frequency, v1,2 are complex conjugate

frequencies, and

v
A

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nR

0
T

r
/2 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n2R2

0T2
r /4)� (m2 � F

r
hV)3/27

q
3
r

,

v
B

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nR

0
T

r
/2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n2R2

0T2
r /4)� (m2 � F

r
hV)3/27

q
3
r

.

Their corresponding dimensional dispersion relations

can be expressed as

v̂
3

5 V
0
n� (v̂

A
1 v̂

B
), (20a)

v̂
1,2

5 V
0
n�

v̂
A

1 v̂
B

2

� �
6 i

ffiffiffi
3

4

r
(v̂

A
� v̂

B
), (20b)

where

v̂
A

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�0.5nc2

0b
0
/r

0
) 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n2b2

0c4
0/4r2

0)� (m2c2
0 � h

0
V

0
)3/27

q
3
r

,

v̂
B

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�0.5nc2

0b
0
/r

0
)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n2b2

0c4
0/4r2

0)� (m2c2
0 � h

0
V

0
)3/27

q
3
r

.

One can see that both b0 / 0 and c0 / 0 will give

v̂
A
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

0
V

0
/3

q
, and v̂

B
! �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

0
V

0
/3

q
, so v̂

3
’ V

0
n�

(v̂A 1 v̂B) 5 V
0
n, and v̂

1,2
5 V

0
n� 0.5(v̂A 1 v̂B) 6

i
ffiffiffiffiffiffiffiffiffiffiffi
h

0
V

0

q
5 V

0
n 6 i

ffiffiffiffiffiffiffiffiffiffiffi
h

0
V

0

q
. Clearly, Eq. (20) represents

three solutions of inseparable mixed VRIGWs. Of

particular interest is that v̂
1,2 includes both the propa-

gating and the growing (decaying) modes of the mixed

VRIGWs, with a mean-flow speed and a growth (de-

caying) rate on the order of
ffiffiffiffiffiffiffiffiffiffiffi
h

0
V

0

q
. This implies the

presence of the mixed-VRIGW instability in TCs when

the criterion of Q , 0 is met. As for the sole real solution

v̂
3
, Fig. 5 shows that it is a lower-frequency mixed

VRIGW that differs in sign and magnitude from that

under the condition of Q 5 0 but contains some common

characteristics associated with VRWs and IGWs, as de-

scribed by Eqs. (159) and (17).

Note that although v1,2 are complex conjugate fre-

quencies under the conditions of Q , 0, they are still the

characteristic modes of Eq. (9) that satisfy t1 5 m2 . 0.

However, when the basic state becomes dynamically

unstable, as in the study of SM04, the Bessel function

cannot provide a complete description of both the

wave instability and propagation. Thus, we may use

~u(1) ;H
(1)
n11(mR) and ~u(2) ;H

(2)
n11(mR) as the two linearly

independent solutions of Eq. (9), where H
(1)
n11(mR) 5

Jn11(mR) 1 iYn11(mR) and H
(2)
n11(mR) 5 Jn11(mR)�

iYn11(mR) are the (n 1 1)th-order Hankel function

of the first and second kind, respectively, correspond-

ing to the growing and decaying solutions of Eq. (9);

and Yn11(mR) 5 [J
n11

(mR) cos(n11)p�J�(n11)
(mR)]/

sin(n11)p is the (n 1 1)th-order Bessel function of the

second kind. Because of the property of Yn11(mR) / 2‘

as R / 0, Yn11(mR) does not satisfy typical boundary

conditions in the TC core region. SM04 circumvented this

problem by assuming ~u0 ; Rn for the core region and

then iteratively solved a second-order ordinary differen-

tial equation, similar to Eq. (9) but with variable coeffi-

cients, for the dominant complex frequencies. In their

studies (e.g., SM04; Schecter and Montgomery 2003,

2007), azimuthally propagating waves are treated as

VRWs in accordance with the nondivergent dispersion

relation of MK97, whereas vertically propagating waves

are viewed as internal IGWs. As mentioned above, the

horizontally propagating waves are inseparable mixed

waves in restoring forces when intense rotation and di-

vergence are both present in the TC core region. In the

next section, we will discuss the formation and propaga-

tion mechanisms of the mixed waves. Their associated

instability problems, as compared to those of SM04, will

be examined in a future study.

4. Wave dynamics

We have shown in the preceding section that after

including both rotational and divergent components in
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the shallow-water equations model, there are a total of

eight allowable wave solutions, depending on the sign of

Q. The wave solutions are much more complicated than

those associated with simple VRWs or IGWs. Thus, it is

desirable to examine what dynamical characteristics of

these waves are, including the parameters that deter-

mine the sign of Q, the regions where these waves will

likely develop in TCs, and their pressure–wind relations

and propagating structures.

a. Wave dispersion characteristics

For the convenience of our subsequent discussion, we

may assume that the real-part solutions of Eq. (13), as

shown in Fig. 5, satisfy the following relation:

v
1

, v
2

, 0 , v
3
,

where v1 and v3 are high-frequency waves propagating

against and along the mean flow, respectively, and v2 is a

low-frequency wave propagating against the mean flow.

By specifying the basic-state variables of R0, Fr, Tr, V, and

h with the given eigenvalue of m, we can obtain the

characteristic frequencies (v1, v2, v3) as a function of WN

n from Eq. (13). These basic-state variables also determine

the sign of Q, leading to different wave characteristics.

Figure 6 shows such frequency diagrams for anti-

cyclonically v1- and cyclonically v3- propagating waves

(Figs. 6a and 6b, respectively), as well as the real (Fig.

6c) and imaginary part (Fig. 6d) of the low-frequency

anticyclonically propagating v2 waves in a selected re-

gion in the eyewall. First, just like the equivalent depth,

the radial eigenvalue m from Bessel equation is closely

related in magnitude to wave frequency, especially for

high-frequency waves. Lower-frequency waves tend to

have fewer radial nodes or ‘‘standing’’ structures. Sec-

ond, higher-frequency waves (e.g., v . 2) exhibit much

less variation in frequency in the WN 2–5 range (i.e.,

with more horizontally oriented isofrequency contours),

suggesting that they are less dispersive and more re-

lated to IGWs. Third, as the wave frequency decreases,

the Q value decreases (also see Fig. 5) and the wave

FIG. 6. Frequency (v) diagrams as functions of the radial eigenvalue (m) and wavenumber (n) for (a) v1 against-

flow gravity waves (Q . 0) and propagating mixed VRIGWs (Q # 0); (b) v3 along-flow gravity waves; (c) v2 against-

flow VRWs (Q . 0) and propagating mixed VRIGWs (Q # 0); and (d) v2 unstable mixed VRIGWs (Q , 0). The v

isopleths are given at intervals of 0.2 and 0.6 for high- and low-frequency waves, respectively. They are calculated

from Eq. (13) with the averaged quantities between the radial range of 30 and 60 km (e.g., R0 5 0.5, Fr 5 0.15,

Tr 5 22, V 5 2, and h 5 3). Dashed lines denote the distribution of Q 5 0 with m and n, based on Eq. (14).
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dispersion becomes more significant, as indicated by

more right- and downward-sloping isofrequency contours

with increasing curvature, implying the increasing roles

of VRWs in the formation of mixed VRIGWs. Fourth,

note the different transitions in dispersion properties

(i.e., propagation versus dynamic stability) for the v1, v2,

and v3 waves as Q switches from a positive to a negative

sign (see Figs. 6a–c). For example, along-flow v3 waves

vary smoothly with n, such as when crossing the Q 5 0

line (Fig. 6c). In contrast, anticyclonically propagating

v1 waves change more abruptly the orientation of iso-

frequency contours after shifting across the Q 5 0 line at

lower frequencies (Fig. 6b), suggesting more dominant

mixed-wave properties in the regions of Q # 0.

The low-frequency against-flow v2 waves are worthy

of separate consideration because, as mentioned earlier,

they are VRWs, mixed VRIGWs, and dynamically un-

stable when Q is greater than, equal to, and less than

zero, respectively. Of interest is that the Q 5 0 line

corresponds to the highest frequency the mixed VRIGWs

could have, given n and m (Fig. 6d); it is v 5 0.6 ; 1.6

corresponding to a frequency range of 1024–1023 s21

in the inner region. The mixed-wave instability could

only occur with the eigenvalue of m , 2, basically at the

frequencies of VRWs (Figs. 6c,d). This suggests that

when VRWs become highly rotational in the presence

of intense latent heat release, they could experience the

mixed-wave instability. Of further interest is that the

growth rate of the mixed VRIGWs increases with WN

(Fig. 6d), implying that shorter waves tend to grow

faster than longer waves. Moreover, shorter unstable

mixed waves are less dispersive than the corresponding

stable VRWs (Fig. 6c). Note that the frequency range

shown in Fig. 6 is similar to that of Hodyss and Nolan

(2008), who showed the coexistence of unstable modes

of VRWs and IGWs. In their study, however, the VRWs

and IGWs have separable restoring forces, whereas the

two waves shown here are mixed with inseparable wave

properties.

We have seen from Eq. (14) that the criteria for dif-

ferent wave solutions and mixed-wave instability de-

pend critically on the sign of Q, which is determined by

the radial eigenvalue (m), and some basic-state variables

(i.e., Fr, R0, h, V, and Tr); these variables are all func-

tions of radius and azimuthal WN (n). Thus, it is natural

to examine to what extent the wave solutions so derived

make sense when they are applied to realistic TCs. For

this purpose, Fig. 7 shows the distribution of Q as a

function of radius for the two long waves (i.e., n 5 2, 3),

with all the basic-state variables specified from the model

atmosphere as given in Figs. 1 and 2. An eigenvalue of

m 5 1.5 is used in plotting Fig. 7 because around this

value the sign of Q changes with different dynamical

stability regimes for these waves (see Fig. 6). It is of

interest that the condition of Q . 0 occurs in both the

core (i.e., r , 10 km) and outer (r . 60 km) regions

where little diabatic heating is present, whereas Q , 0

takes place within the annulus of 10 km , r , 60 km,

roughly in the eyewall convective region (Fig. 7). This

implies that the eye and outer regions allow for the co-

existence of VRWs and IGWs with separable physical

characteristics, whereas the eyewall region favors the

development of mixed-wave instability, with possible

wave instability taking place first in the vicinity of the

RMV.

One can see from Eq. (14) that Q , 0 occurs in the

eyewall mainly because of the presence of large vorticity

(or PV) gradients and divergence (or small equivalent

depth), suggesting that mixed-wave instability differs

from algebraic instability for VRWs discussed by Nolan

and Montgomery (2000) and Nolan et al. (2001). Thus,

we may state that intense convection in the eyewall ac-

counts for the generation of a favorable basic state for

the mixed-wave (v1) instability and it is the energy source

for the generation of propagating mixed VRIGWs (i.e.,

v3) with both strong rotation and divergence. Obvi-

ously, mixed-wave instability appears less likely in weak

TCs or during the genesis stage of TCs. Figure 7 also

shows that shorter waves tend to experience mixed-

wave instability more readily and over wider regions

than longer waves. This appears to help explain why

polygonal eyewalls as well as multiple vortices could

develop in intense TCs (e.g., Schubert et al. 1999; Kossin

et al. 2002).

Figure 8 summarizes the characteristic frequencies

(v1, v2, v3) of WN-2 and WN-3 waves as functions of

FIG. 7. Radial distribution of the discriminant Q for wavenumber

n 5 2, 3 and m 5 1.5 [see Eq. (14)], according to the basic-state

profiles given in Figs. 1 and 2.
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radius using the model atmosphere. We can see similar

results to those shown in Fig. 7. That is, in the eye and

outer regions where Q . 0, frequencies v1 and v3 cor-

respond to a pair of oppositely propagating IGWs,

whereas v2 represents a low-frequency VRW propa-

gating against the mean flow (Fig. 8a). Moreover, IGWs

(i.e., associated with v3) propagate in the eyewall region

at speeds that are about half of those in the outer region.

The result is consistent with the strong unbalanced flows

in the eyewall diagnosed by Wang and Zhang (2003)

through the PV inversion. In contrast, v1 and v2 share

the same frequency for the mixed VRIGWs propagating

in the eyewall (Fig. 8a), but the imaginary part of v2

exhibits dynamical growth with the peak rate in the vi-

cinity of the RMV (Fig. 8b). This confirms that the

eyewall region near the RMV is more favorable for the

rapid growth of mixed VRIGWs or the rapid develop-

ment of perturbations in both horizontal and vertical

directions. Figure 8b also shows that shorter waves grow

at rates that are higher than longer waves.

b. Wave propagation characteristics

The two-dimensional propagation characteristics of the

abovementioned waves can be examined by substituting

the wave frequency equations derived in section 3 into

the linearized governing Eqs. (2); see the appendix. That

is, substitution of the solution form of (6) for y9 and h9

into Eq. (A5) and assuming k 5 0 will give the amplitudes

of the perturbation heights and tangential winds:

~h 5
iu

0
L

2g[(nv dV
0
/dr)� n2c2

0/r3
0]

, (21a)

~y 5
gn

vr
0

~h� i
h

0

v
~u, (21b)

where

L 5 v3 � c2
0v
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"
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� �
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J
n13
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m

� �
,

in which the differential properties of Bessel function

(i.e., J9n11 5 2Jn12 and J0n11 5 Jn13) have been used. By

taking the real-part solution, we obtain the following

equations for perturbation variables:

u9 5 u
0
J

n11

mr
0

R
m

� �
cos(nl� v̂t), (22a)

y9 5�
u

0

2[(v2dV
0
/dr)� nvc2

0/r3
0]

3 L�
h

0

v
J

n11

mr
0

R
m

� �� �
sin(nl� v̂t), (22b)

h9 5�
u

0

2g[(nv dV
0
/dr)� n2c2

0/r3
0]

L sin(nl� v̂t). (22c)

One can see from Eq. (22) that (a) u9 is a function of rn11

until it reaches a peak value near Ra 5 50 km (see Fig. 4)

at l 5 0, p and is identical for all the three types of waves

at t 5 0 and that (b) h9 and y9 are proportional to v2 and

v, respectively, for high-frequency waves but inversely

proportional to v for low-frequency waves, implying

that the perturbation height and tangential winds are

small for IGWs but large for VRWs. Moreover, since the

VRW frequency is proportional to d h0/dr, as given in

Eq. (179), we have y9 } (d h0/dr)�1 so that the amplitude

of y9 will peak near the RMV where d h0/dr 5 0. By

comparison, with an intermediate frequency between an

IGW and a VRW (i.e., v 5�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4nc2

0r�1
0 d h0/dr3

q
), a mixed

VRIGW has y9 } (d h
0
/dr)�1/3, suggesting that its per-

turbation tangential wind is much weaker than that for a

VRW.

Figure 9 shows an example of the azimuthal propa-

gation of WN-2 perturbation heights and horizontal

winds associated with the three types of shallow-water

waves as approximated by the frequency Eqs. (15),

(17), and (20) at t 5 0 and 1 h; the associated diver-

gence and relative vorticity fields at t 5 0 h are also

provided. Note that because of the use of the approx-

imated dispersion relations, some features may differ

slightly from their corresponding pure waves. Never-

theless, different intensities in perturbation heights

and winds and different height–wind relations among

FIG. 8. Radial distribution of (a) the real part (v1 , v2 , v3) and

(b) the imaginary part (v2) of wave frequencies for wavenumber

n 5 2, 3 and m 5 1.5, according to the basic-state profiles given in

Figs. 1 and 2.
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the three WN-2 waves are clearly evident even at the

initial time (cf. Figs. 9a, 9d, and 9g). First, horizontal

flows are stronger for the VRW and then the mixed

VRIGW and IGWs in that order, with a peak ampli-

tude of 9.39, 1.68, and 0.64 m s21, respectively; simi-

lar results are found for their corresponding height

perturbations with the respective peak intensities lo-

cated at a radius slightly outward from the RMV (i.e.,

Ra 5 36 km), the RMW (i.e., Ra 5 45 km), and at the

outer edge of the eyewall (i.e., Ra 5 60 km). The weak

tangential flows of the VRW and VRIGW around the

RMV are attributable to the use of a small value for b0

to minimize the influence of singularity. In addition, all

the wave amplitudes are small within r 5 10 km; and

both D9 and z9 / 0, as r / 0, as determined by Bessel’s

function.

Second, the VRW flows are more azimuthal and ro-

tational, with two couplets of cyclonic and anticyclonic

FIG. 9. Horizontal maps of the wavenumber-2 perturbation heights (shadings) and flow vectors at (left) t 5 0 h, (center) t 5 1 h, and

(right) the relative vorticity (solid/positive, dashed/negative, 1025 s21) and divergence (shadings, 1025 s21) associated with (top row) an

IGW, (middle row) a VRW, and (bottom row) a mixed VRIGW obtained from Eq. (22) with the approximated frequency Eqs. (15), (17)

and (20), respectively. All the other parameters are specified from the model output with u0 5 1 m s21, and m 5 1.5 over a domain of

140 km 3 140 km. Note that b0 5 1027 m21 s21 has been used to estimate frequencies at the RMV for the VRW and mixed VRIGW, and

vector lengths and shadings for the three different waves denote different values, e.g., with a grid interval representing 0.64, 9.39 and

1.68 m s21 for the peak amplitudes of the IGW, VRW and mixed VRIGW, respectively.
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circulations centered at Ra 5 36 km, which are similar to

those shown in MK97 and Wang (2002). The IGWs’

flows are much more radial than azimuthal, and they are

also more divergent and across-isobaric, with conver-

gence occurring ahead of (behind) a high (low) (see

Fig. 9c). The divergence for the IGWs (VRWs) is 3–4

times greater (smaller) than the relative vorticity (cf.

Figs. 9c,f). In contrast, the mixed VRIGWs’ flows are

both rotational and divergent at similar magnitudes

(Fig. 9i), as hypothesized earlier; they are distributed

in a radial interval between the VRW and IGW (cf.

Figs. 9g, 9a, and 9d). This result is consistent with that

given in Fig. 8a showing the generation of mixed IGWs

and VRWs primarily in the eyewall region. It is impor-

tant to note that there are few azimuthally propagating

WN-2 wave activities in the core region. This region

appears to be dominated by WN-1 waves, which will be a

subject for a future study.

Third, it may be easy to see why the height pertur-

bation h9 for the VRW peaks near the RMV and then

decreases outward (Fig. 9d), based on the structure

function given in Fig. 4. However, one may wonder why

h9 for the IGW peaks outside the RMW (Fig. 9a). This

can be seen from the radial variation of the frequency

(and phase speed) of the IGW, which is small near the

RMW but increases gradually outward to a pure IGW

frequency as determined by the basic state; that is,

Eq. (159) becomes v̂G 5 V0n 6 c0m far outward from

the RMW. It is evident that the IGW is highly unbalanced,

as also indicated by larger divergence, as compared to the

VRW. On the other hand, the mixed VRIGW exhibits

some mixed properties of the perturbation height–wind

relations between the IGW and VRW.

The propagation characteristics of the three different

waves are of particular interest because they all show the

generation of spiral bands in both the perturbation

winds and heights after an hour (see the central panel in

Fig. 9); they are analogous in many aspects to spiral

rainbands seen in TCs. Note that the spiral bands form

as the radial widths of the height–wind perturbations

shrink with time, which leads to increases in the radial

WN (e.g., from WN-1 to about WN-2 at t 5 1 h, espe-

cially for the IGW). This feature could be attributed to

the fact that each portion of the radially distributed

perturbations tends to propagate azimuthally at a speed

(or a Doppler-shifted frequency; i.e., v) differing from

that at its neighboring radius because of the differential

rotational flows of the mean vortex. This would tend to

shift the wave phases radially with time, causing their

radial ‘‘propagation’’ in a spiral manner. The higher the

wave frequency (and the phase speed), the more the

radial WN (i.e., m) would increase, which is consistent

with Fig. 6. This result appears to provide an alternative

explanation, besides the radial propagation of VRWs

as previously hypothesized, for the generation of spiral

rainbands in TCs. That is, spiral rainbands may result

from the radial differential displacements of azimuthally

propagating VRWs and mixed VRIGWs.

Figures 9a and 9b show that IGWs propagate azi-

muthally in opposite directions at speeds faster than those

of the VRW, especially outside the RMW. In contrast,

the VRW propagates azimuthally in opposite directions

cyclonically inside and anticyclonically outside the RMV

because of the sign change of b0 (Figs. 9d,e). The mixed

VRIGW propagates at speeds between the IGW and

VRW and also propagates azimuthally in a direction

opposite to that of the VRW with the sign change of b0.

5. Summary and concluding remarks

In this study, a theory for three classes of allowable

waves (i.e., IGWs, VRWs, and mixed VRIGWs) in TCs,

as constrained by PV conservation, is developed using a

rotating shallow-water equations model in which both

the rotational and divergent components are retained. A

cloud-resolving simulation of Hurricane Andrew (1992)

is used as a basic-state TC vortex to help simplify the

radial structure equation for perturbation flows, define

scaling parameters, and determine the radial distribution

of various important quantities. In particular, this data-

set facilitates the transformation of the radial structure

equation with variable coefficients into Bessel’s equation

with constant coefficients. After obtaining a radial ei-

genvalue from Bessel equation, a cubic frequency equa-

tion for azimuthally propagating (radially discrete) waves

is derived with three groups of allowable wave frequen-

cies, depending on the sign of the discriminant Q.

It is shown that when Q . 0, low-frequency VRWs

and high-frequency IGWs will coexist in TCs, with

separable dispersion characteristics. When Q 5 0, mixed

VRIGWs with inseparable dynamical properties may

appear. When Q , 0, there will be a low-frequency

propagating mixed-VRIGWs solution and two oppositely

propagating mixed-VRIGWs solutions with mixed-wave

instability. It is found that the criteria of Q . 0 and Q # 0

are often met respectively in the eye or outer regions

and in the eyewall. Results show that high-frequency

IGWs in the eyewall tend to propagate at half speeds

whereas the eyewall region favors the development of

mixed VRIGWs with possible mixed-wave instability.

Shorter waves will grow at rates that are higher than

longer waves. This finding appears to help explain the

development of polygonal eyewalls as well as multiple

vortices in intense TCs.

The perturbation structures and propagation charac-

teristics of WN-2 waves are examined. Results shows
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many similarities of the azimuthal propagation of VRWs

and IGWs to those shown in the previous studies, in-

cluding flow intensities, the height–wind relation, and

the relative magnitudes of divergence and vorticity. By

comparison, the mixed VRIGW’s flows contain some

mixed properties of the VRWs and IGWs and, as ex-

pected, they are both rotational and divergent at similar

magnitudes. Of importance is that all the waves show the

generation of spiral bands of the perturbation winds and

heights as their radial widths shrink with time. We at-

tribute this to the radial differential advection of azi-

muthally propagating waves due to the differential flow

properties of the mean vortex, leading to the radial

phase shift azimuthally. This result appears to provide

an alterative explanation for the development of spiral

rainbands in TCs.

Acknowledgments. We are grateful to Dr. Yubao Liu

for providing the model-simulated data for Hurricane

Andrew (1992) and to Profs. Dave Nolan, Mike

Montgomery, Ming Zhang, and Sixun Huang as well as

Dr. Chanh Q. Kieu for their critical comments on an

earlier version of the manuscript. This work was sup-

ported by Natural Science Foundation of China Grant

40830958, the National Basic Research Program of

China Grant 2009CB421504, U.S. NSF Grant ATM-

0758609, and NASA Grant NNG05GR32G.

APPENDIX

A Derivation of the Radial Structure Equation

To make our derivation of Eq. (7) easier to follow, we

may rewrite Eq. (2) in the following matrix form:

a
11

a
12

a
13

a
21

a
22

a
23

a
31

a
32

a
33

2
666664

3
777775

u9

y9

h9

2
4

3
55 0, (A1)

and

a11
a

12
a

13

a
21

a
22

a
23

a
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a
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a
33

2
66664

3
777755
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›

›l
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� h� r
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2
66666664

3
77777775

. (A2)

Clearly, care needs to be taken when the products of

various operators in (A2) are calculated because some

of them are not commutative, given that h and V are

function of radius r.

We first eliminate y9 from (A1) by taking a22 3 (1a) 2

a12 3 (1b) and a22 3 (1c) 2 a32 3 (1b) and obtain

(a
22

a
11
� a

12
a

21
)u9 1 (a

22
a

13
� a

12
a

23
)h9 5 0, (A3a)

(a
22

a
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� a
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a

21
)u9 1 (a

22
a
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� a

32
a

23
)h9 5 0. (A3b)

Then, taking (a
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a
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� a

32
a

23
) 3 (A3a) � (a
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�

a
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a
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) 3 (A3b) yields
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After some tedious manipulations and reorganization, we obtain the following high-order partial differential

equation for u9 and h9:

�2g
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(A5)
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Assuming the harmonic form of wave solution,

u9 5 ~u(r) exp[i(nl� v̂t)] 1 c.c. and

h9 5 ~h(r) exp[i(nl� v̂t)] 1 c.c., (A6)

where ~u 5 ~u
r
1 i~u

i
and ~h 5 ~h

r
1 i ~h

i
. Letting v 5 v̂�

Vn 6¼ 0, where v 5 v
r
1 iv

i
, and substituting (A6) into

(A5) gives

2
dV

dr
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h

r
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dr

� �
. (A7)

Equations (2a) and (2b) can be combined to eliminate

the perturbation height in (A7); that is,

(j h� v2)~u 1 i vg
d ~h

dr
� ngj

~h

r

 !
5 0,

where j 5 ›rV/r ›r. The scale analysis, given in section 3,

shows that d ~h/dr� ~h/r (see Fig. 1c), so the above equa-

tion can be rewritten as

g ~h ; i
rh

n
� rv2

nj

� �
~u 5 i

rh

n
1� v2

hj

� �
~u.

Since j ; h ; v ; 10�4s�1, we have (1� v2/~hj) ; 1021.

So the two terms on the lhs of (A7) become 2i(dV/dr)

rvh[1� (v2/hj)]� 2i(dV/dr)rv h and 2in(c2
0/r2)h[1�

(v2/hj)]~u� 2in(c2
0/r2)h~u, and they can be neglected as

compared to the corresponding terms on the rhs of

Eq. (7). Then, we obtain
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1 v3 � c2
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r2
n2v 1

c2
0

r
n
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� 2n
c2

0

r2
h� kng

h

r

dH

dr

!
~u 5 0. (A8)

Rearranging (A8) will lead to the radial structure

equation for ~u given in Eq. (7).
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