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Abstract. A physical algorithm for calculating cloudy pixel skin temperature from its
neighboring clear pixels is proposed generalizing that of Jin [2000]. Two neighboring pixels
over the same land cover have a difference in temperature largely explained by surface
insolation. Hence this algorithm starts from the surface energy balance equation (SEB)
and expresses each energy term of SEB as a function of skin temperature. Then SEB is
solved to derive cloudy pixel skin temperature from neighboring clear skin temperature
plus a correction term determined by surface insolation, air temperature, and wind speed.
This algorithm can be used for nights and winter hemisphere high latitudes where there is
no surface insolation and is applicable to any surface where the principle of SEB is
applicable. The algorithm is evaluated by using FIFE and BOREAS field experiments. Its
global application has been examined through simulations with the NCAR Community
Climate Model (CCM) coupled with the Biosphere-Atmosphere Transfer Scheme (BATS)
simulations. The accuracy of the algorithm is encouraging: the rms error at a monthly
pixel level is 1–2 K. Observed errors are greater when there is precipitation.

1. Introduction

Satellite thermal infrared radiances retrieve so-called skin
temperatures [Susskind, 1992; Dickinson, 1992; Jin et al., 1997].
These temperatures are useful for computation of surface-air
flux, detection of convection, and evaluation of models. Such
temperatures cannot be obtained from measurement of up-
ward longwave radiation as obtained from AVHRR or EOS
MODIS when the surface is masked by clouds. However, many
applications of skin temperature require this information at all
times [Jin and Dickinson, 1999]. Plate 1 shows global radiative
temperature over a day in July 1992, from the NOAA/NASA
pathfinder AVHRR land data set. The difficulty of obtaining
skin temperature everywhere from such data is illustrated by
the regions that are cooler by more than 15 K than their
surrounding areas and must be tops of clouds. Any thermal
infrared imagery is similarly limited in its ability to provide
surface temperature data sets.

Jin [2000] (hereinafter referred to as Jin99) initially ad-
dressed this question through use of a hybrid technique. The
method correlated sensible, latent, and longwave fluxes with
net solar radiation, to derive the skin temperature for a pixel
obscured by clouds from a neighboring clear pixel. It was tested
against field experiments and GCM simulations. This paper
modifies the Jin99 method by relating surface fluxes to Ts and
hence uses surface energy balance to solve for Ts. Such an
approach is physically based and readily generalizes to any
underlying surface that satisfies a constraint of energy balance.

Consistent with Jin99, the proposed method considers
clouds to affect surface temperature by changing the surface
insolation and downward longwave radiation, which in turn are

redistributed into sensible, latent, or soil heat fluxes. Therefore
the skin temperature of a cloudy pixel (Ts

cld) can be obtained
from its neighboring clear pixel skin temperature (Ts

clr) and the
difference of surface energy balance between the two pixels,
for example, net solar radiation (DSn), net longwave radiation
(DRn), sensible heat flux (DH), latent heat flux (DE), and
ground heat flux (DG).

Surface skin temperature variations are driven by variations
in surface insolation as affected by sky conditions, and hence
the law of energy conservation as it governs surface-
temperature–related physical processes is used here as the
theoretical basis of our proposed algorithm. The values of Ts

cld

are inferred from neighboring Ts
clr and surface energy balance

(SEB). The alternative of determining it entirely from mea-
sured cloud properties does not appear practical because of
complexity and lack of usable relationships between clouds and
surface temperature. In addition, SEB itself already includes
the influences of sky conditions on the surface. Surface inso-
lation decreases when cloudiness increases [Li et al., 1993], and
downward longwave radiation depends on cloud base temper-
ature [Fu and Liou, 1992].

This generalized method requires both satellite measure-
ments (Ts

clr, surface insolation) and surface data (air temper-
ature Ta, wind speed U). The latter are usually operationally
available from routine weather station observations. One po-
tential problem is that these observations provide information
regarding the atmospheric surface layer but may be unrepre-
sentative of neighboring areas. Shuttleworth [1991] pointed out
that data from a single site can be used to represent a large-
scale area if it is taken over a comparatively uniform, well-
watered surface with a fairly weak precipitation gradient and
that it is consistently and reliably available over a long period.

The next section describes the methodology. Section 3 eval-
uates the methodology with FIFE and BOREAS observations.
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In addition, we test the algorithm on CCM3-/BATS-produced
global data sets to examine its global application. Results pre-
sented here suggest that overall, this method is very encour-
aging for normal surfaces with rms of about 1–2 K over a
month and at pixel resolution. A large rms error occurs at
times of heavy precipitation. The final part of this paper dis-
cusses the strengths and limitations of this method and how it
might be applied to global areas using satellite measurements.

2. Methodology
Energy balance at the surface is assumed to be determined

by

H 1 E 1 G 5 Sn 2 Rn, (1)

where H is sensible heat flux, E is latent heat flux, G is energy
stored by canopy and soil, Sn is net solar absorbed by canopy
and soil, and Rn is net longwave radiation. All terms are in W
m22. The annual mean of G is near zero at most locations.
Equation (1) omits energy exchanges from changes between
solid and liquid phases (snow melting, soil freezing, etc.)

2.1. Determination of Neighboring Clear Pixel

Following Jin99, the “neighboring clear pixel” algorithm
(hereinafter referred to as “the NP algorithm” in this text) is
used. For one cloudy pixel, if there is a clear pixel close to it
either spatially or temporally and it is over the same surface
vegetative/soil type, the two pixels are considered as “neigh-
boring” here. The surface type of each pixel could be known
from a land cover map where the whole globe is divided into
several vegetation types. The cloudiness condition for each

pixel could be determinated from the temperature threshold
technique that was used in the International Satellite Cloud
Climatology Project (ISCCP) [Rossow, 1983]. As pointed out in
Jin99, spatial distances of less than 100–300 km and temporal
distances of about 2 days are considered as “close” in this work.

One cloudy pixel may have multiple neighboring clear pixels.
We need to assign weighting that would be given for multiple
clear pixels. Jin99 argued, based on spatial and temporal au-
tocorrelations, that clear pixels for the previous two days or
within 300 km could be equally weighted.

A cloudy pixel differs in temperature from a neighboring
clear pixel largely because of the different surface insolation.
With “D” representing the difference between the clear and
the cloudy pixels the NP approach is written as

DH 1 DE 1 DG 5 DSn 2 DRn. (2)

To apply this approach, each energy term in (2) is further
expressed in terms of skin temperature. By solving (2), we
could derive Ts

cld from its neighboring Ts
clr and a correction

term related to surface insolation, air temperature, and wind
speed.

2.2. Sensible Heat Flux

Sensible heat flux is given by

H 5 a~Ts 2 Ta! , (3)

where Ta is air temperature, Ts is skin temperature, and a is
rCpCDHU . Cp is specific heat, CDH is the drag coefficient for
heat flux, and U is wind speed; a is generally in the range of 10
W m22 K21 (short vegetation) to 100 W m22 K21 (tall vege-
tation). For two neighboring pixels,

Plate 1. Skin temperature of one day in July 1992 from AVHRR. The spatial resolution is 8 km. Data are
provided by NOAA/NASA Pathfinder land surface data sets.
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DH 5 H1 2 H2, (4)

H1 5 rcpCDHU1~Ts1 2 Ta1! , (5)

H2 5 rcpCDHU2~Ts2 2 Ta2! , (6)

where the subscripts “1” and “2” stand for cloudy pixel and its
neighboring clear pixel, respectively.

2.3. Latent Heat Flux

Latent heat flux is connected to sensible heat flux through
the Bowen ratio B (see equation (5.2.7) in the work of Gratt
[1992]):

B 5
H
E . (7)

The Bowen ratio usually varies with season, location, and
weather. Furthermore, since the transpiration component of
latent heat flux depends on vegetation properties, such as the
stomates, plant age, and water stress of the plant, the resis-
tance to water flux also varies. This interdependences of evapo-
transpiration, soil wetness, surface vegetation conditions, and
surface insolation makes determining the Bowen ratio prob-
lematical.

A commonly used approximation for the Bowen ratio is that
suggested by Priestly and Taylor [1972]. The Priestly-Taylor
method first introduced a concept of “equilibrium” Bowen
ratio, Be, to the evaporation into a saturated atmosphere from
a wet surface (e.g., as also discussed by Dickinson [1988]).
Because the relative humidity is generally less than 100%,
evaporation from short vegetation but moist soil generally ex-
ceeds this “equilibrium evaporation” by some factor a, which
Priestly-Taylor argued was on average a 5 1.26.

Let

Ge 5
1

1 1 Be
(8)

be the relative amount of net energy that goes into equilibrium
evaporation. The Priestly-Taylor Bowen ratio, BPT, is related
to the ratio of evaporation to the equilibrium evaporation and
given by [e.g., Garratt, 1992, equation (5.2.9)]

BPT 5
1 2 Gea

Gea
. (9)

Obviously, BPT is a function of both a and T , i.e., BPT(a , T).
If two neighboring pixels have the same surface, they are likely
to have nearly the same a.

The a compensates for neglecting of evaporation contrib-
uted by the aerodynamic component [Garratt, 1992], allowing
the equations to be useful for unsaturated conditions [Stull,
1988]. The term a has been found to have a wide range of
values. Under conditions of minimal advection for low rough-
ness length sites, experimental data show a ' 1.26 6 0.05
[Brustaert, 1982]. For a well-watered surface, a 5 1.25 [Stull,
1988]. Blanken et al. [1997] found that during the growing
period the daytime mean a of the forest is 0.91 6 0.18, but a
full-leaf hazelnut has a as much as 1.22 6 0.16. Their results
imply that a is influenced by canopy conductance, leaf area
index (LAI), and canopy architecture. The a can also vary
somewhat diurnally and seasonally, as observed from the FIFE
and HAPEX experiments [Shuttleworth, 1992].

Accuracy of the estimation of latent heat flux depends on the

accuracy of a. If the correct value of a is denoted as a0 and
error term as da, then

a 5 a0 1 da . (10)

The error in latent heat induced from on inaccurate a is ob-
tained by combining (7), (9), and (10),

d 5 S H1G1a0

1 2 G1a0
2

H2G2a0

1 2 G2a0
D S da9

a0
D 2

. (11)

Because da/a0 is generally about 0.1–0.2, from observations
[Garratt, 1992; Shuttleworth, 1992], the error in latent heat flux
estimation induced by da might be less than 10%.

2.4. Net Longwave Radiation

Net longwave radiation is composed of upward longwave
radiation (DR1) from the surface and downward radiation
(DR2) from the atmosphere. In (2),

DRn 5 DR1 2 DR2. (12)

The first term on the right-hand side is a function of surface
skin temperature and emissivity which is assumed to be unity,

DR1 5
R1
Ts

DTs. (13)

Since the surface emission is governed by the Stephan-
Boltzmann law, approximately,

DR1 5 4«sTs
3DTs, (14)

and the second term on the right-hand side said of (12) is

DR2 5 R21 2 R22, (15)

where DR2 is directly controlled by cloud properties such as
amount and temperature of cloud base.

Downward longwave radiation (R2) can be determined in
several ways. The most explicit way is from radiative transfer
theory, integrating R2 from the top of the atmosphere to the
surface with atmospheric profiles known [Frouin et al., 1988;
Fu, 1992]. Downward longwave radiation from the atmosphere
is a function of atmospheric temperature and emittance. The
emittance depends on the atmospheric gases (CO2, H2O, and
O3) and cloud properties. An explicit calculation of downward
longwave radiation using radiative transfer equations is limited
by knowledge as to the atmospheric profiles.

Alternatively, empirical formulae have been widely used to
estimate downward flux [Brunt, 1932; Swinbank, 1963; Idso and
Jackson, 1969; Brutsaert, 1975; Hatfield et al., 1983; Culf and
Gash, 1993] but may not be appropriate for global applications
because of lack of validation, need for cloud information, and
inability to provide the 10 W m22 accuracy required by most
applications [Fung et al., 1984]. This paper, for simplicity, ap-
proximates downward flux similarly to Jin99:

DR2 5 bDS2 1 c , (16)

where S2 is the surface insolation and b is a coefficient varying
with atmospheric conditions, in particular, cloud amount,
cloud level, and water vapor profile. Jin99 finds that this coef-
ficient may have a small range of variation, in general, from 0.1
to 0.17. The parameter c is zero during daylight hours and
changes with cloud-base temperature at night.
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2.5. Ground Heat Flux

The amplitude of the daily cycle of surface temperature can
be significantly greater than that of deeper soil temperature,
with timing mainly linked to that of radiation input; thus soil
heat flux G , over nonvegetated areas, can be as large as,
typically, up to 30% of the net radiation at the surface [Shuttle-
worth, 1992]. With dense vegetation, such as forest, little radi-
ation reaches the ground, and heat storage in the soil can be
neglected [Thom, 1972]. As suggested by Jin99, soil heat stor-
age is treated by a single slab,

G 5 kg

T
Z 5 kg

~Ts 2 Td!

DZ , (17)

where Td is the sublayer temperature; kg is the thermal mo-
lecular conductivity (W m21 K21), which is a measure of the
ability to conduct heat; and DZ is the depth of the sublayer.
For an appropriate soil depth, Td1 ' Td2; and the Td terms
will be canceled in differencing G between two pixels; that is,

DG 5
kg

DZ DTs, (18)

where kg depends on the soil type, and the moisture DZ , as
defined to be the minimum depth at which two soil pixels have
nearly the same temperatures, is ;0.1 m for all soil surfaces.

2.6. Solar Radiation

The DSn component in (2) can be determined from TOA
satellite-reflected solar radiation [Pinker and Ewing, 1985; Li et
al., 1993; Masuda et al., 1995]. Our proposed method relies on
the availability of surface solar radiation, the accuracy of which
is, currently, about 10 W m22 [Li et al., 1993].

3. Data
3.1. Field Experiment Data

Field experiments of the First International Satellite Land
Surface Climatology Project (ISLSCP) Field Experiment
(FIFE) and the Boreal Ecosystem-Atmosphere Study
(BOREAS) have been employed for algorithm development
and evaluation. FIFE was conducted over a 15 km by 15 km
area located in central Oklahoma [Sellers et al., 1992]. Site-
averaged data of skin temperature, air temperature, wind
speed, surface fluxes, and precipitation in July 1987 were pro-
cessed and sampled for half-hour intervals [Betts, 1995].

Unlike FIFE which was over a short-grass surface, the
BOREAS field experiment was over a high-latitude forest in
Canada [Sellers et al., 1995]. Surface and atmosphere condi-
tions were observed by portable weather stations, and surface
fluxes were obtained through tower measurements. The orig-
inal measurements were obtained at 15-min intervals and re-
sampled using half-hour intervals.

3.2. Model Simulations

In the absence of generally acceptable and simultaneously
measured data sets for the global skin temperature, air tem-
perature, wind speed, and surface insolation, simulations from
the NCAR Community Climate Model (CCM3) version 3,
coupled with Biosphere-Atmosphere Transfer Scheme
(BATS) are used to evaluate the algorithm for global applica-
tion [Jin and Dickinson, 1999]. After model equilibrium has
been reached, the monthly mean sea surface temperature in
1995 and the corresponding atmospheric forcing input were

used to run the model for an entire year. Hourly model outputs
were archived to provide hourly and daily skin temperature, air
temperature, and surface radiation and fluxes simulations used
in this paper.

4. Results
Two aspects of the NP algorithm are evaluated. First, we

examine how reliable it will be for global application, and
second, whether coefficients validated for a local area can be
used globally with acceptable accuracy tradeoff. As shown in
(2) and (3), surface air temperature, wind speed, and DSn are
needed in the algorithm. DSn can be derived from satellite
remote sensing. Accurate surface air temperature and wind
speed most likely could be obtained from surface weather
station observations, which if not available may degrade the
accuracy of the algorithm.

4.1. Small-Scale Evaluations

The NP approach uses surface energy balance to estimate a
cloudy pixel skin temperature as that of its neighboring clear
pixel skin temperature plus a correction factor (usually nega-
tive) depending on the surface fluxes, air temperature, and
wind speed as responsible for the difference between pixels:

Ts
cld 5 Ts

clr 1 f~DSn, Ta
cld, Ta

clr, U , . . . ! . (19)

The second term on the right-hand side could be considered as
a correction term related to other factors responsible for the
temperature difference between two pixels.

Figure 1 examines our algorithm using two continuous days
from FIFE 1987: one clear (Julian day 198) and one cloudy
(Julian day 197). Figure 1a presents the clear day skin temper-
ature diurnal cycle (Ts

clr(t), t 5 1, 48); Figure 1b is the
correction term at each half hour; and Figure 1c compares the
algorithm-produced skin temperature diurnal cycle (Ts

cld(t),
t 5 1, 48), which is the sum of Ts

clr(t) minus the correction
term, with the observations. Skin temperature is calculated by
using the algorithm with DSn known from the observations;
the other terms were calculated using the methods suggested in
section 2. Obviously, the algorithm-produced skin tempera-
tures show good agreement with the ground truth, implying the
usefulness of the algorithm. The rms for the whole day (48
values at half-hour intervals) is 0.81 K.

Figure 2 shows the variables that determine the variations of
surface temperature, i.e., (a) net solar radiation, (b) downward
longwave radiation, (c) upward longwave radiation, (d) sensi-
ble heat flux, (e) latent heat flux, and (f) wind speed, all over
the FIFE area for the two days used in Figure 1. Evidently, the
DSn is as much as 500 W m22 around 0200 LT. Downward
longwave radiation for a cloudy day might be expected to be
greater because of emission at the cloud-bottom temperature.
However, in the presence of precipitation the cloud R2 was
lower than that for clear days, possibly from evaporation of
rain drops and cloud-base temperatures. In general, the DR2
is about 50 W m22 in the absence of precipitation. In Figure 2c,
larger differences in R1 are observed during the day than
during the night, consistent with the surface skin temperature
differences. Interestingly enough, the shape of R1 is very
similar to that of net solar radiation. Sensible heat flux and net
solar radiation also have similar diurnal variations, indicating
the dependence of sensible flux on solar forcing. At night the
sensible heat flux varies little, so there are no obvious differ-
ences between cloudy and clear nights. During daylight hours,
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sensible heat fluxes on clear days are larger than on cloudy
days because of the larger surface-air temperature gradient.
The nighttime latent heat flux also varies little (Figure 2e); but
daytime latent heat fluxes are substantially larger on clear days
than on cloudy ones. The magnitude of E is larger than H for
the clear day, and their sum, as much as 550 W m22, largely
balances the surface Sn.

This algorithm requires air temperatures Ta
clr and Ta

cld, as
indicated in (3), to calculate sensible and latent heat fluxes.
Obtaining appropriate values may be a difficulty for this NP
algorithm. Air temperature, in general, is measured by surface
weather stations located irregularly over land surface. In addi-
tion to this irregular sampling, the high surface heterogeneity
can make the measurement unrepresentative of larger areas.
In other words, air temperature data are likely to be unavail-
able at satellite pixel resolution and globally. To avoid this
problem, it may be necessary to relate air to skin temperatures
and then use such a relationship to replace Ta in the sensible
heat flux (as (3)) so that SEB has one unknown variable, Ts.
Figure 3 is a relationship between skin and air temperatures
inferred from FIFE observations in July 1987. This relation-
ship depends on many factors, from boundary layer stability to
surface vegetative cover to soil moisture, and hence is difficult
to describe. Here a linear regression equation is used as a
first-order approximation; soon after sunrise, skin temperature

is higher than air temperature because the surface insolation
increases and exceeds the surface longwave emission [Jin et al.,
1997]. Because most of the radiation is absorbed at the surface,
the surface temperature increases more rapidly than air tem-
perature. Figure 3b compares skin temperature versus air tem-
perature at night. Because the surface layer is stable at night,
both skin and air temperatures vary moderately, and a regres-
sion equation can describe this relationship adequately.

The regression relationships concluded from Figure 3 is only
a rough approximation. Therefore we need to consider
whether less accurate Ta information in the NP algorithm
might be sufficient. This is examined in Figure 4, which is
designed to evaluate how the absence of accurate air temper-
ature degrades the accuracy of the algorithm.

Figure 4 is the same as Figure 1c except that the air tem-
peratures used here are not the measured ground truth but are
calculated from Ts using the linear relationships shown in
Figure 3. The overall daytime rms error consequently increases
from 0.81 to 2.70 K. However, the large disagreements are
found only at and after the occurrence of precipitation; at
other times the algorithm-produced and observed skin temper-
atures are in good agreement. Therefore precipitation occur-
rence appears to be the primary source of degradation of the
estimation of air temperature. One plausible explanation is
that at this time the Bowen ratio changes significantly and is
quite different from that used by the algorithm, which depends
on a predefined a (for example, at the time when the precip-
itation occurred, the observed Bowen ratio varied significantly
from 0.126 to 0.0008, but the calculated Bowen ratio was 0.132,

Figure 1. Evaluation of “neighboring-pixel” approach. Data
are from FIFE observations for Julian 197 and 198 two days
with a half-hour interval. The cloudy skin temperature, Ts

cld(t)
(t 5 1, 48), can be considered as Ts

clr(t) plus a correction
term as described in the text. (a) Skin temperature for clear
day, (b) correction term for each interval, and (c) comparison
between algorithm-produced cloudy day skin temperature and
ground truth. The root-mean-square error (rms) is given at the
right-hand top corner.

Figure 2. Diurnal cycles of variables used for Figure 1, where
Julian day 198 is the cloudy day and 197 the clear day. (a) Net
solar radiation, (b) downward longwave radiation, (c) upward
longwave radiation, (d) sensible heat flux, and (e) latent heat
flux, and (f) wind speed.
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similar to previous hours). Therefore the surface energy terms
in SEB may not generate the correct Ts at or soon after
precipitation events.

Figure 5 is a further evaluation of the algorithm for the
BOREAS forest area. Here spatially adjacent neighboring ob-
servations are used. Two BOREAS observing stations are an-
alyzed: one at Prince Albert National Park and the other at
Flin Flon. The measurements were sampled when Prince Al-
bert was cloudy and Flin Flon was clear. The rms value shows
that on the monthly pixel level, the accuracy of the “neighbor-
ing-pixel” algorithm is about 1.77 K. This error is probably an
overestimate, because of the use of airport (Flin Flon) which is

grass surface, while the other site is forest (Prince Albert Na-
tional Park).

4.2. Global Evaluations

To examine the global application of the algorithm, we uti-
lize NCAR CCM3/BATS simulations for calculating the Ts

from that of the previous day. Use of a GCM simulation
instead of real satellite data allows to test the algorithm with
physically consistent variables. Plate 2 is the modeled daily
global skin temperatures for two continuous days in August:
“hb0001” and “hb0002.” Daily variations of skin temperatures
are noticeable during these two days, in particular, over east-
ern and central North America, central Asia, southern Africa,
Australia, and South America. The prescribed sea surface tem-
peratures, however, vary little from one day to the next (not
shown). The land variations are caused by both synoptic and
local convection systems.

To evaluate the “neighboring-pixel” approach, we use skin
temperature of “hb0002,” difference of net solar radiation, air
temperature, and surface wind speed between “hb0002” and
“hb0001” to derive the skin temperature of “hb0001” day; then
we compare the algorithm-based “hb0001” skin temperature
with that of modeled “hb0001.” In this section we considered
original GCM modeled skin temperature as the “truth.” Plate
3 is the algorithm-produced land skin temperature using Plate
2b and the difference in solar radiation between these two
days, with modeled wind speed and air temperature known.
Comparing Plates 3 and 2b shows that the algorithm gives very
reasonable skin temperatures agreeing well with the “true”
skin temperature in terms of spatial patterns over both sea and
land surfaces. This implies that the algorithm can be applied
globally with most of the spatial features reproduced.

Plate 4 is the global difference of Plate 2a and Plate 3 (e.g.,
land only). Again, most areas have an error as small as 1–2 K.
However, some extreme values are observed over eastern
America and central Asia, where large differences exist in at
the original modeled “hb0001” and “hb0002” simulations. The
lesser accuracy of the Bowen ratios used in our algorithm is a
possible reason for these larger disagreements. In this test we
used predefined climatological Bowen ratio for all grids over
the same latitude bands. However, when central-eastern Asia
had precipitation, its Bowen ratio obviously differed from that
of a normal day. This inconsistency could contribute to the
disagreement of the final calculated Ts.

Figure 6a is zonal-mean difference of the “true” skin tem-

Figure 5. Algorithm evaluation using observations from the
BOREAS field experiment in January 1996. The x direction is
the algorithm-produced skin temperature and the y direction is
the field experiment measured skin temperature.

Figure 3. Relationships between skin temperature and air
temperature, both in degrees Celsius, based on the FIFE ex-
periment in July 1987. Data for the whole month at half-hour
intervals are used for (a) daytime and (b) nighttime. The linear
regression equation is given at the right-hand top corner in
each panel.

Figure 4. Same as Figure 1f except the air temperature in-
formation used in the algorithm is not based on measurement
but based on the skin and air temperature relationship derived
in Figure 2.
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perature minus the algorithm-produced skin temperature pre-
sented in Plate 3. In general, with the use of accurate air
temperature information, algorithm-produced skin tempera-
ture agrees very well with the “true” skin temperature. The
smallest differences are observed at tropical and low latitudes
where most areas are covered by ocean; the largest differences
are observed around 508N and 408–708S where the maximum is
2 K. Cloud systems over these areas are suggested as the
determined factor for these disagreements. Large differences

are noticed in high latitudes, in particular, in the winter hemi-
sphere. This may be due to the few number of land points in
the pole area or weakness of our algorithm under these con-
ditions.

How air temperature affects the accuracy of the algorithm is
indicated in Plate 4b which compares the zonal mean of skin
temperature difference with and without the use of an accurate
air temperature. The no-air-temperature case means that no-
air-temperature simulations have been used. Rather, the algo-

Plate 2. CCM3/BATS simulations of daily skin temperature for two continuous days in August: “hb0001”
and “hb0002” represent the two days.
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rithm uses a simple linear relationship between air and skin
temperatures:

Ta 5 bTs, (20)

where b # 1 during daylight hours and b $ 1 at night. At most
latitudes both cases are very similar with an accuracy between
61 and 3 K. However, high latitudes of the winter hemisphere
give a relatively large error, with a maximum as much as 5–7 K.

From this analysis the algorithm appears to be applicable glo-
bally when accurate air temperatures are unknown.

Since global, pixel-level air temperature data sets are not
available, use of relationships between Ta and Ts is desirable
but may not be derivable for all surfaces because of the com-
plexity of this problem. The relationship between Ta and Ts

strongly depends on surface roughness, topographical proper-
ties, soil moisture, and atmospheric states. Currently, no

Plate 3. Evaluation of global application of the “neighboring-pixel” approach. The presented skin temper-
ature is produced by “neighboring-pixel” algorithm for day “hb0001,” based on air temperature, wind speed,
and the difference of solar radiation between “hb0001” and “hb0002.” See text for details.

Plate 4. Difference field of algorithm-produced global skin temperature and its CCM3/BATS simulations
for day “hb0001.”
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method or boundary layer theory can adequately describe this
relationship. Some well-accepted relationships may be useful
as constraints in our algorithm. For example, Ta is lower than
Ts for daytime and usually higher than Ts at nights for clear
sky; also, Ta is close to Ts for cloudy nights [Jin et al., 1997].

Effects of cloud cover on sea surface skin temperature (SST)
may also be estimated (not shown), although the algorithm is
originally developed for land surface. Moreover, this algorithm
can be applied over high latitudes in the winter hemisphere
when there is no surface insolation, whereas the Jin99 requires
information on surface insolation thus could not be used for
polar regions or at night.

4.3. Error Analysis

Error analysis indicates the errors induced into the final
result by the uncertainty in different variables, for our case,
including surface net solar radiation, air temperature, wind
speed, and a for Bowen ratio which are used to derive Ts

cld.
The sensitivities of the algorithm to the above mentioned vari-
ables are examined by using FIFE data.

Figure 7a is the rms error in Ts
cld versus the variations of net

surface solar radiation through fraction f ,

S9n 5 f 3 Sn, (21)

where Sn is the accurate surface net solar radiation, and S9n is
the actual surface radiation used. The rms error only increases
moderately, from 0.87 to 1.3 K, for solar radiation variation as
much as 30%. Apparently, the uncertainty in solar radiation
causes little significant error in the final results of Ts

cld. One
possible reason is that although surface temperature is very
sensitive to the solar insolation, the difference between clear
and cloudy skin temperature is also influenced by longwave
radiation, sensible, and latent heat fluxes. Some of the varia-

tions of these terms might compensate each other and reduce
the variability of Ts

cld and have less variations. More impor-
tantly, in this error analysis, Ta

cld, Ta
clr, and Ts

cld are fixed, with
only DSn varying. Constraining these temperatures may al-
ready incorporate most of the dependence of Ts

clr on solar
radiation. In addition, the increase of error may be significant
(by 150% in rms ratio), but as long as the value of temperature
is of interest, an accuracy of 1.3 K in Ts

cld is acceptable.
Similarly, using

T9a 5 f 3 Ta, (22)

we can study the sensitivity of the algorithm to air temperature
Ta, as shown in Figure 7b. The pattern of Ta seems to have a
larger effect than its magnitude on the final accuracy of the
skin temperature. For Ta varying by 2%, corresponding to a
10–15 K increase, the rms varies but little, from 0.9 to 1.0 K. In
contrast to Figure 3, which uses an inaccurate air temperature
in both pattern and magnitude, Figure 7b uses the correct air
temperature pattern but with a change in magnitude. The
small rms implies that the algorithm may not be very sensitive
to air temperature if the pattern of air temperature is correct.
Similarly, error analysis of wind speed (Figure 7c) and the
coefficient of ground heat flux, K, are shown in Figures 7c and
7d. The accuracy of the algorithm is not significantly affected
by either of them.

Large sensitivity, however, is observed for a in BPT(a , T)
(Figure 7e). The change (more than 5% in a) results in error
increases from 1 to 3 K. The sensitivity of the algorithm to a

Figure 6. (a) Zonal mean of the difference field presented in
Plate 3. (b) Comparison of algorithm-produced skin tempera-
ture with and without use of air temperature.

Figure 7. Error analysis of the algorithm. RMS error versus
variation of (a) solar radiation (W m22), (b) air temperature
(8C), (c) wind speed (ms21), (d) ground heat flux coefficient K
(W m21 K21), and (e) a for Priestly-Taylor Bowen ratio.
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suggests the necessity for a good estimate of a. At this point, a
and Bowen ratio BPT(a , T) are major sources of error. Im-
proved methods to estimate the Bowen ratio are expected to
improve this aspect.

5. Discussion and Conclusions
Clouds span temporal scales on the order of hours to several

days and spatial scales of 10 to thousands of kilometers. Hence
deriving a generally acceptable relationship between clouds
and skin temperature may be problematical. Surface energy
balance (SEB) is a good starting point to study the influences
of clouds on surface skin temperature. As this work shows,
writing each energy term in terms of skin temperature, we can
infer cloudy surface skin temperature from its neighboring
clear pixel skin temperature plus other information such as
surface insolation, air temperature, and wind speed.

The present proposed algorithm differs from the preceding
Jin99 by parameterizing sensible, latent fluxes, and net long-
wave radiation in terms of skin temperature rather than net
solar radiation. With the use of surface energy balance and the
“neighboring pixel” algorithm, skin temperature of a cloudy
pixel can be determined, even under circumstances such as
nights and high latitudes where no solar insolation is available.
Similar to Jin99, this treatment still uses “air temperature” but
includes it in the “neighboring-pixel” algorithm, instead of
using the “air temperature adjustment” technique. This mod-
ification reduces the dependence on an accurate air tempera-
ture data, which may be very difficult to obtain for an inho-
mogeneous land surface. This generalized method may provide
estimates at each pixel with an accuracy as good as 1–2 K for
a monthly mean but degraded to above 2 K during precipita-
tion.

Because satellite thermal infrared sensors cannot measure
cloud-covered surface skin temperature, the goal of our work
is to develop an algorithm that could derive cloudy pixel skin
temperature (Ts

cld) from other available variables, including
clear pixel skin temperature (Ts

clr), air temperature (Ta
clr,

Ta
cld), wind speed (U), surface insolation (DSn), and heat

fluxes between clear and cloudy pixels. Figure 8 is a data
flowchart that demonstrates how to apply our proposed algo-
rithm to satellite data in some routine fashion. After receiving
a satellite image we calculate surface insolation for each pixel
using Pinker and Ewing [1985] or Li et al. [1993] technique. A
land cover flag will be obtained for each pixel from a land cover
data set. Then for each cloudy pixel, we search neighboring
clear pixel(s) over a similar land cover and latitudes. From
global weather station routine observations or from numerical
weather prediction forecasts (i.e., National Centers for Envi-
ronmental Prediction (NCEP), European Centre for Medium-
Range Weather Forecasts (ECMWF)) we need to obtain sur-
face air temperature and wind speed information. Then, input
all the above known information into our algorithm to calcu-
late Ts

cld.
Although this proposed “neighboring-pixel” method may be

most practical in calculating skin temperature for a cloudy
pixel, and thus to improve the satellite skin temperature data
sets, it still suffers from several deficiencies. (1) Data scaling:
No global pixel-level air temperature and wind speed data sets
are available to match satellite skin temperature temporal and
spatial scales. The best available data sets for these variables,
probably, are reanalysis or interpolated surface observations.
(2) Algorithm assumption: Several climatological assumptions
may be valid for typical surface or boundary situations but not
for extreme cases. For example, the Bowen ratio depends on
various factors from soil moisture to vegetation density. When
precipitation occurs, changes of soil wetness and air humidity
result in a different Bowen ratio. The method applied in this
algorithm has difficulty in capturing such changes explicitly.

Research conducted concerning the use of this algorithm on
the satellite data sets will lead to generation of better satellite
data sets, not only for EOS MODIS in the future but also for
other satellites that use thermal infrared channels to observe
surface skin temperature, such as GOES and Landsat.
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