Integrated Science Assessment for Oxides of Nitrogen – Health Criteria

(First External Review Draft)

Integrated Science Assessment for Oxides of Nitrogen – Health Criteria

National Center for Environmental Assessment-RTP Division Office of Research and Development U.S. Environmental Protection Agency Research Triangle Park, NC

DISCLAIMER

This document is a first external review draft being released for review purposes only and does not constitute U.S. Environmental Protection Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

PREFACE

Legislative Requirements

Two sections of the Clean Air Act (CAA) govern the establishment and revision of the national ambient air quality standards (NAAQS). Section 108 (U.S. Code, 2003a) directs the Administrator to identify and list "air pollutants" that "in his judgment, may reasonably be anticipated to endanger public health and welfare" and whose "presence in the ambient air results from numerous or diverse mobile or stationary sources" and to issue air quality criteria for those that are listed. Air quality criteria are intended to "accurately reflect the latest scientific knowledge useful in indicating the kind and extent of identifiable effects on public health or welfare which may be expected from the presence of [a] pollutant in ambient air."

Section 109 (U.S. Code, 2003b) directs the Administrator to propose and promulgate "primary" and "secondary" NAAQS for pollutants listed under Section 108. Section 109(b)(1) defines a primary standard as one "the attainment and maintenance of which in the judgment of the Administrator, based on such criteria and allowing an adequate margin of safety, are requisite to protect the public health."¹ A secondary standard, as defined in Section 109(b)(2), must "specify a level of air quality the attainment and maintenance of which, in the judgment of the Administrator, based on such criteria, is required to protect the public welfare from any known or anticipated adverse effects associated with the presence of [the] pollutant in the ambient air."²

The requirement that primary standards include an adequate margin of safety was intended to address uncertainties associated with inconclusive scientific and technical

¹ The legislative history of Section 109 indicates that a primary standard is to be set at "the maximum permissible ambient air level ... which will protect the health of any [sensitive] group of the population" and that, for this purpose, "reference should be made to a representative sample of persons comprising the sensitive group rather than to a single person in such a group" [U.S. Senate (1970)].

² Welfare effects as defined in Section 302(h) [U.S. Code, 2005)] include, but are not limited to, "effects on soils, water, crops, vegetation, man-made materials, animals, wildlife, weather, visibility and climate, damage to and deterioration of property, and hazards to transportation, as well as effects on economic values and on personal comfort and well-being."

information available at the time of standard setting. It was also intended to provide a reasonable degree of protection against hazards that research has not yet identified. See Lead Industries Association v. EPA, 647 F.2d 1130, 1154 (D.C. Cir 1980), cert. denied, 449 U.S. 1042 (1980); American Petroleum Institute v. Costle, 665 F.2d 1176, 1186 (D.C. Cir. 1981), cert. denied, 455 U.S. 1034 (1982). Both kinds of uncertainties are components of the risk associated with pollution at levels below those at which human health effects can be said to occur with reasonable scientific certainty. Thus, in selecting primary standards that include an adequate margin of safety, the Administrator is seeking not only to prevent pollution levels that have been demonstrated to be harmful but also to prevent lower pollutant levels that may pose an unacceptable risk of harm, even if the risk is not precisely identified as to nature or degree.

In selecting a margin of safety, the U.S. Environmental Protection Agency (EPA) considers such factors as the nature and severity of the health effects involved, the size of sensitive population(s) at risk, and the kind and degree of the uncertainties that must be addressed. The selection of any particular approach to providing an adequate margin of safety is a policy choice left specifically to the Administrator's judgment. See Lead Industries Association v. EPA, supra, 647 F.2d at 1161-62.

In setting standards that are "requisite" to protect public health and welfare, as provided in Section 109(b), EPA's task is to establish standards that are neither more nor less stringent than necessary for these purposes. In so doing, EPA may not consider the costs of implementing the standards. See generally Whitman v. American Trucking Associations, 531 U.S. 457, 465-472 and 475-76 (2001).

Section 109(d)(1) requires that "not later than December 31, 1980, and at 5-year intervals thereafter, the Administrator shall complete a thorough review of the criteria published under Section 108 and the national ambient air quality standards and shall make such revisions in such criteria and standards and promulgate such new standards as may be appropriate" Section 109(d)(2) requires that an independent scientific review committee "shall complete a review of the criteria ... and the national primary and secondary ambient air quality standards ... and shall recommend to the Administrator any new standards and revisions of existing criteria and standards as may be appropriate" Since the early 1980s, this independent review function has been performed by the Clean Air Scientific Advisory Committee (CASAC) of EPA's Science Advisory Board.

iii

History of Reviews of the Primary NAAQS for NO₂

On April 30, 1971, EPA promulgated identical primary and secondary NAAQS for nitrogen dioxide (NO₂), under Section 109 of the Act, set at 0.053 parts per million (ppm), annual average (Federal Register, 1971). In 1982, EPA published an Air Quality Criteria Document (AQCD) for Oxides of Nitrogen (Environmental Protection Agency, 1982), which updated the scientific criteria upon which the initial NO₂ standards were based. On February 23, 1984, EPA proposed to retain these standards (Federal Register, 1984). After taking into account public comments, EPA published the final decision to retain these standards on June 19, 1985 (Federal Register, 1985).

On July 22, 1987, EPA announced that it was undertaking plans to revise the 1982 AQCD for Oxides of Nitrogen (Federal Register, 1987). In November 1991, EPA released an updated draft AQCD for CASAC and public review and comment (Federal Register, 1991). The draft document provided a comprehensive assessment of the available scientific and technical information on heath and welfare effects associated with NO₂ and other oxides of nitrogen. CASAC reviewed the document at a meeting held on July 1, 1993, and concluded in a closure letter to the Administrator that the document "provides a scientifically balanced and defensible summary of current knowledge of the effects of this pollutant and provides an adequate basis for EPA to make a decision as to the appropriate NAAQS for NO₂" (Wolff, 1993).

The EPA also prepared a draft Staff Paper that summarized and integrated the key studies and scientific evidence contained in the revised AQCD and identified the critical elements to be considered in the review of the NO₂ NAAQS. The Staff Paper received external review at a December 12, 1994, CASAC meeting. CASAC comments and recommendations were reviewed by EPA staff and incorporated into the final draft of the Staff Paper as appropriate. CASAC reviewed the final draft of the Staff Paper in June 1995 and responded by written closure letter (Wolff, 1995). In September of 1995, EPA finalized the document entitled, "Review of the National Ambient Air Quality Standards for Nitrogen Dioxide Assessment of Scientific and Technical Information" (U.S. Environmental Protection Agency, 1995).

Based on that review, the Administrator announced her proposed decision not to revise either the primary or the secondary NAAQS for NO₂ (Federal Register, 1995). The decision not to revise the NO₂ NAAQS was finalized after careful evaluation of the comments received on the

iv

proposal. The level for both the existing primary and secondary NAAQS for NO₂ is 0.053 ppm annual arithmetic average, calculated as the arithmetic mean of the 1-h NO₂ concentrations.

Integrated Science Assessment for Oxides of Nitrogen – Health Criteria

(First External Review Draft)

1.	INTRODUCTION	. 1-1
2.	SOURCE TO TISSUE DOSE	. 2-1
3.	HEALTH EFFECT OF NO ₂ EXPOSURE	. 3-1
4.	SUSCEPTIBLE AND VULNERABLE POPULATIONS	. 4-1
5.	FINDINGS AND CONCLUSIONS	. 5-1
6.	REFERENCES	. 6-1

Table of Contents

Page

List of Tables	X
List of Figures	xii
Authors, Contributors, and Reviewers	XV
U.S. Environmental Protection Agency Project Team	XX
U.S. Environmental Protection Agency Science Advisory Board (SAB)	
Staff Office Clean Air Scientific Advisory Committee (CASAC)	xxiii
Abbreviations and Acronyms	xxvi

1. INTRODUCTION		1-1		
	1.1	DOCU	MENT DEVELOPMENT	1-3
	1.2	ORGA	NIZATION OF THE DOCUMENT	1-5
2.	SOUR	CE TO	TISSUE DOSE	2-1
	2.1	INTRO	DUCTION	2-1
	2.2	ATMO	SPHERIC CHEMISTRY	2-2
	2.3	MEAS	UREMENT METHODS AND ASSOCIATED ISSUES	2-6
	2.4	AMBII OXIDI	ENT CONCENTRATIONS OF NO2 AND ASSOCIATED ZED NITROGEN SPECIES AND POLICY RELEVANT	
		BACK	GROUND CONCENTRATIONS	2-7
		2.4.1	Ambient Concentrations	2-7
		2.4.2	Policy Relevant Background Concentrations Of Nitrogen Dioxide.	2-9
	2.5	EXPOS	SURE ISSUES	2-12
		2.5.1	Personal Exposures	2-12
		2.5.2	Ambient Monitors and Personal Exposures	2-15
		2.5.3	NO ₂ as a Component of Mixtures	2-35
	2.6	DOSIM	IETRY OF INHALED NITROGEN OXIDES	2-40
	2.7	INDOC	OR AND PERSONAL EXPOSURE HEALTH STUDIES	2-41
		2.7.1	Recent Indoor Studies of Exposures to Nitrogen Oxides and Heath Outcomes	2-42
		2.7.2	Recent Studies of Personal NO _x Exposure	2-48
		2.7.3	Summary Indoor and Personal Exposure Studies	2-51
3.	INTE	GRATEI	D HEALTH EFFECTS OF NO2 EXPOSURE	3-1
	3.1	POTEN	ITIAL MECHANISMS OF INJURY	3-2
	3.2	MORB	IDITY ASSOCIATED WITH SHORT-TERM NO2 EXPOSURE	3-3
		3.2.1	Respiratory Effects Associated with Short-Term NO ₂ Exposure	3-3
	3.2	CARD	IOVASCULAR EFFECTS ASSOCIATED WITH SHORT-TERM	
		$NO_2 EZ$	XPOSURE	3-62
	3.3	MORT	ALITY WITH SHORT-TERM EXPOSURE TO NO ₂	3-80

Table of Contents

(cont'd)

	2 2 1		2 01
	3.3.1	Multicity Studies and Meta-Analyses	3-81
	3.3.3	Summary of Effects of Short-Term Exposure to NO_x on	2.07
	2.2.4	Mortality	3-97
	3.3.4	Integration of Evidence Related to Mortality and Short-Term	2 00
2.4	MODE	Exposure to NO_2	3-98
3.4		SIDILY ASSOCIATED WITH LONG-TERM NO ₂ EXPOSURE	3-99
	3.4.1	Respiratory Effects Associated with Long-Term NO_2 Exposure	3-99
	3.4.2	Exposure	2 1 2 1
	3/3	Adverse Birth Outcomes Associated with Long Term NO.	3-121
	5.4.5	Exposure	3-121
	344	Cancer Incidence Associated with Long-Term NO ₂ Exposure	3-126
	345	Summary of Morbidity Effects Associated with Long-Term	5-120
	5.7.5	Exposure	3-131
3.5	MORT	CALITY ASSOCIATED WITH LONG-TERM EXPOSURE	3-131
0.0	3.5.1	US Studies on the Long-Term Exposure Effects on Mortality	3-131
	3 5 2	European Studies on the Long-Term Exposure Effects on	
	0.0.2	Mortality	3-135
	3.5.3	Estimation of Exposure in Long-Term Exposure Mortality	
		Studies	3-139
	3.5.4	Summary of Risk Estimates for Mortality with Long-Term	
		Exposure	3-141
3.6	STUD	IES OF NO, HONO, AND HNO3	3-143
SUS	CEPTIBI	E AND VULNERABLE POPULATIONS	4-1
41		DDUCTION	4-1
	411	Preexisting Disease as a Potential Risk Factor	4-1
	412	Age-Related Variations in Suscentibility/Vulnerability	4-3
	413	High-Exposure Groups	4-6
	414	Genetic Factors for Oxidant and Inflammatory Damage from	
		Air Pollutants	
	4.1.5	Vulnerability Related to Socioeconomic Status	4-10
4.2	PUBL	IC HEALTH IMPACTS	4-11
	4.2.1	Concepts Related to Defining of Adverse Health Effects	4-11
	4.2.2	Estimation of Potential Numbers of Persons in At-Risk	
		Susceptible Population Groups in the United States	4-12
FINI	DINGS A	ND CONCLUSIONS	5-1
5 1		DUCTION	5-1
5.2	ATMC	OSPHERIC SCIENCES	5-2
0.2			

4.

5.

Table of Contents

(cont'd)

5.3	EXPOSURE ASSESSMENT	
5.4	NO2 EXPOSURE INDICES	
5.5	HEALTH EFFECTS	
	5.5.1 The 1993 AQCD Findings	
	5.5.2 New Findings	
5.6	CONCLUSIONS	
REFI	ERENCES	

6.

<u>Page</u>

List of Tables

<u>Number</u>		Page
2.5-1.	Spatial Variability of NO ₂ in Selected United States Urban Areas	2-52
2.5-2.	NO2 Concentrations Near Indoor Sources: Short-Term Averages	2-53
2.5-3.	NO ₂ Concentrations Near Indoor Sources: Long-Term Averages	2-54
2.5-4A.	The Association Between Personal Exposures and Ambient Concentrations	2-55
2.5-4B.	The Association Between Personal Exposures and outdoor Concentrations	2-57
2.5-5.	Summary of Regression Models of Personal Exposure to Ambient/ Outdoor NO ₂	2-60
2.5-6.	Indoor/Outdoor Ratio and the Indoor vs. Outdoor Regression Slope	2-63
2.5-7.	Correlations (Pearson Correlation Coefficient) Between Ambient NO ₂ and Ambient Copollutants	2-65
2.5-8.	Pearson Correlation Coefficients between NO _x and Traffic-generated Pollutants	2-66
2.5-9.	Correlations (Pearson Correlation Coefficient) Between Ambient NO ₂ and Personal Copollutants	2-66
2.5-10.	Correlations (Pearson Correlation Coefficient) Between Personal NO ₂ and Ambient Copollutants	2-66
2.5-11.	Correlations (Pearson Correlation Coefficient) Between Personal NO ₂ and Personal Copollutants	2-67
3.2-1.	Proposed Mechanisms Whereby NO ₂ and Respiratory Virus Infections May Exacerbate Upper and Lower Airway Symptoms	. 3-150
3.2-2.	MultiCity Studies for Respiratory Disease Outcomes and Incremental Changes in NO ₂	. 3-151
3.2-3.	Effects of Including Copollutants with NO ₂ in Multipollutant Models	. 3-152
3.4-1.	Associations Between Exposure to Traffic at Home and Asthma History	. 3-155
3.4-2.	Associations Between Measured NO ₂ and Asthma-Related Outcomes	. 3-155
4.1.	NO ₂ Exposure Affects Asthmatics	4-14
4.1-1.	Effect of Nitrogen Dioxide (20 ppb) on the Risk of Reporting Respiratory Symptoms and Bronchodilator Use on a Given Day According to GSTM1 or GSTP1 Genotypes Among 151 Asthmatic Children in Mexico City	4-16
4.1-2.	Gradation of Individual Responses to Short-Term NO ₂ Exposure in Healthy Persons	4-17

List of Tables

(cont'd)

Page

<u>Number</u>

4.1-3.	Gradation of Individual Responses to Short-Term NO ₂ Exposure in Persons with Impaired Respiratory Systems	4-18
5.5-1.	Key Human Health Effects of Exposure to Nitrogen Dioxide— Clinical Studies	5-16
5.5-2.	Summary of Toxicological Effects from NO ₂ Exposure (LOEL based on category)	5-17
5.5 - 3a.	Effects of Short-Term NO ₂ Exposure on Respiratory Outcomes in the UNITED STATES and Canada	5-18
5.5 - 3b.	Effects of Short-Term NO ₂ Exposure on Emergency Department Visits and Hospital Admissions for Respiratory Outcomes in the United States and Canada	5-22
5.5-3c.	Effects of Long-Term NO ₂ Exposure on Respiratory Outcomes in the United States and Canada	5-27

List of Figures

<u>Number</u>		Page
2.2-1.	Schematic diagram of the cycle of reactive nitrogen species in the atmosphere	2-3
2.4-1.	Ambient concentrations of NO_2 measured at all monitoring sites located within Metropolitan Statistical Areas in the United States from 2003 through 2005	2-8
2.4-2.	Annual mean concentrations of NO_2 (ppbv) in surface air over the United States in the present-day (upper panel) and policy relevant background (middle panel) MOZART-2 simulations.	2-11
2.5-1.	Percentage of time people spend in different environments in the United States	2-13
2.5-2.	NO ₂ concentrations measured at 4 m (Van) and at 15 m at NY Department of Environmental Conservation sites (DEC709406 and DEC709407)	2-20
2.5-3.	Distribution of correlation coefficients between personal NO ₂ exposure and ambient NO ₂ concentrations, and between personal NO ₂ exposure and outdoor NO ₂ concentrations in urban areas	2-26
2.5-4a-d.	Correlations of NO ₂ to O ₃ versus correlations of NO ₂ to CO for Los Angeles, CA (2001-2005).	2-37
2.5-5.	Composite, diurnal variability in 1-h average NO ₂ in urban areas.	2-39
2.7-1.	Geometric mean symptom rates and 95% confidence intervals for cough with phlegm during the winter heating period for 388 children grouped according to estimated amount of NO ₂ exposure at home and at school	2-45
2.7-2.	Proportions (and 95% confidence intervals) of children absent from school for at least 1 day during the winter heating period grouped according to estimated amount of NO ₂ exposure at home and at school ($n = 388$)	2-46
2.7-3.	Data taken from Table 3 in van Strien et al. (2004).	2-47
2.7-4.	Mean change in respiratory-tract symptom scores and PEF rates after viral infection for children in medium and high NO ₂ exposure tertiles compared with children in the low exposure tertile	2-49
2.7-5.	Mean symptom rates per week (difficulty breathing during the day and night, and chest tightness at night) plotted against mean maximum nitrogen dioxide levels (composite of school and home exposure) groups as <20 ppb (n = 12), 20-39 ppb (n = 51), 40-50 ppb (n = 25), 60-79 ppb (n = 18), and 80+ ppb (n = 68)	2-50
3.2-1.	Effect estimates with 95% confidence intervals calculated for both uncorrected (\diamond) and corrected (\diamond) PEF: change in 5-day mean = lag 0 to lag 4 days.	3-17

List of Figures (cont'd)

Page

<u>Number</u>

3.2-2.	Effect estimates with 95% confidence intervals for subjects with both reported wheezing and a positive skin test only, calculating for both uncorrected (\diamond) and corrected (\diamond) PEF: change in 5-day man: lag 0 to lag 4 days.	3-18
3.2-3.	Results for single- and two-pollutant models: Childhood Asthma Management Program, November 1993-September 1995	3-24
3.2-4.	Results for single- and two-pollutant models: Childhood Asthma Management Program, November 1993-September 1995	3-25
3.2-5.	Odds ratios (95% CI) for associations between cough and 24-h average NO ₂ concentrations (per 20 ppb).	3-28
3.2-6.	Odds ratios (95% CI) for associations between asthma symptoms and 24-h average NO ₂ concentrations (per 20 ppb).	3-29
3.2-7.	Odds ratios and 95% confidence intervals for associations between asthma symptoms and 24-h average NO ₂ concentrations (per 20 ppb) from multipollutant models.	3-30
3.2-8	Relative risks (95% CI) for hospital admissions and ED visits for all respiratory causes with 24-h NO ₂ concentrations (per 20 ppb)	3-46
3.2-9.	Relative Risks (95% CI) for ED visits for asthma per 30-ppb increase in 1-h peak NO ₂	3-52
3.2-10.	Relative Risk (95% CI) in ED visits for asthma per 20-ppb increase in 24-h average NO ₂ .	3-53
3.2-11.	Dose response presentation of data from three studies for asthma ED visits: (a) Relative risk for an ED visit for asthma in Cincinnati and Cleveland, OH by quintile of NO ₂ . (b) A monotonic increase in Valencia, Spain. (c) Increased risk in Barcelona, Spain, but no consistent linear trend evident	3-54
3.2-12.	Relative risks and 95% confidence intervals for associations between ED visits and hospital admissions for respiratory diseases and 24-h average NO ₂ concentrations (per 20 ppb).	3-59
3.2-13.	Relative risks (95% CI) for associations between 24-h NO ₂ exposure (per 20 ppb) and hospitalizations or emergency department visits for all cardiovascular diseases (CVD).	3-63
3.2-14.	Relative risks (95% CI) for associations between 24-h NO ₂ exposure (per 20 ppb) and hospitalizations for Ischemic Heart Disease (IHD).	3-66
3.2-15.	Relative risks (95% CI) for associations between 24-h NO ₂ exposure (per 20 ppb) and hospitalizations for myocardial infarction (MI)	3-68

List of Figures (cont'd)

<u>Number</u>		Page
3.2-16.	Relative risks (95% CI) for associations between 24-h NO ₂ exposure (per 20 ppb) and hospitalizations for congestive heart failure (CHF)	3-69
3.2-17.	Relative risks (95% CI) for associations between 24-h NO ₂ exposure (per 20 ppb) and hospitalizations for cerebrovascular disease	3-71
3.3-1.	Posterior means and 95% posterior intervals of national average estimates for NO_2 effects on total mortality from nonexternal causes at lags 0, 1, and 2 within sets of the 90 cities with pollutant data available	3-82
3.3-2.	Shape of the association of total mortality with NO ₂ over 6 days (lags 0 through 5) summarized over all cities using a cubic polynomial distributed lag model.	3-86
3.3-3.	Combined NO ₂ mortality risk estimates from multicity and meta-analysis studies. Risk estimates are computed per 20-ppb increase for 24-h average or 30-ppb increase for 1-h daily maximum NO ₂ concentrations	3-93
3.4-1.	Proportion of 18-year olds with a FEV ₁ below 80% of the predicted value plotted against the average levels of pollutants from 1994 through 2000 in the 12 southern California communities of the Children's Health Study	3-101
3.4-2.	Effect of individual pollutants on the association of lung function with asthma.	3-112
3.4-3.	Odds ratios for within-community bronchitis symptoms associations with NO ₂ , adjusted for other pollutants in two-pollutant models	3-115
3.4-4.	Age-adjusted, nonparametric smoothed relationship between NO ₂ and mortality from all causes in Oslo, Norway, 1992 through 1995	3-138
3.4-5.	Total mortality risk estimates from long-term studies.	3-141

Authors

Dr. Dennis J. Kotchmar (NO_x Team Leader)—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Mary Ross (Branch Chief)—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Kathleen Belanger, Yale University, Epidemiology and Public Health, 60 College Street, New Haven, CT 06510-3210

Dr. James S. Brown—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Douglas Bryant—Cantox Environmental Inc., 1900 Minnesota Court, Mississauga, Ontario L8S 1P5

Dr. Ila Cote—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Mark Frampton—Strong Memorial Hospital, 601 Elmwood Ave., Box 692, Rochester, NY 14642-8692

Dr. Janneane Gent—Yale University, CPPEE, One Church Street, 6th Floor, New Haven, CT 06510

Dr. Vic Hasselblad—Duke University, 29 Autumn Woods Drive, Durham, NC 27713

Dr. Kazuhiko Ito—New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987

Dr. Jee Young Kim—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Ellen Kirrane—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Thomas Luben—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Andrew Maier—Toxicology Excellence for Risk Assessment, 2300 Montana Avenue, Suite 409, Cincinnati, OH 45211

XV

(cont'd)

<u>Authors</u>

(cont'd)

Dr. Qingyu Meng—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Joseph Pinto—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Paul Reinhart—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. David Svendsgaard—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Lori White—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Contributors

Dr. Dale Allen, University of Maryland, College Park, MD

Dr. Jeffrey Arnold—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Ms. Louise Camalier, U.S. EPA, OAQPS, Research Triangle Park, NC

Dr. Russell Dickerson, University of Maryland, College Park, MD

Dr. Tina Fan, EOHSI/UMDNJ, Piscataway, NJ

Dr. Arlene Fiore, NOAA/GFDL, Princeton, NJ

Dr. Panos Georgopoulos, EOHSI/UMDNJ, Piscataway, NJ

Dr. Larry Horowitz, NOAA/GFDL, Princeton, NJ

Dr. William Keene, University of Virginia, Charlottesville, VA

Dr. Randall Martin, Dalhousie University, Halifax, Nova Scotia

(cont'd)

Contributors

(cont'd)

Dr. Maria Morandi, University of Texas, Houston, TX

Dr. William Munger, Harvard University, Cambridge, MA

Mr. Charles Piety, University of Maryland, College Park, MD

Dr. Sandy Sillman, University of Michigan, Ann Arbor, MI

Dr. Helen Suh, Harvard University, Boston, MA

Ms. Debra Walsh—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Charles Wechsler, EOHSI/UMDNJ, Piscataway, NJ

Dr. Clifford Weisel, EOHSI/UMDNJ, Piscataway, NJ

Dr. Jim Zhang, EOHSI/UMDNJ, Piscataway, NJ

Reviewers

Dr. Tina Bahadori—American Chemistry Council, 1300 Wilson Boulevard, Arlington, VA 22209

Dr. Tim Benner—Office of Science Policy, Office of Research and Development, Washington, DC 20004

Dr. Daniel Costa—National Program Director for Air, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Robert Devlin—National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC

Dr. Judy Graham—American Chemistry Council, LRI, 1300 Wilson Boulevard, Arlington, VA 22209

Dr. Stephen Graham—Office of Air and Radiation, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Authors, Contributors, and Reviewers (cont'd)

Reviewers

(cont'd)

Ms. Beth Hassett-Sipple—U.S. Environmental Protection Agency (C504-06), Research Triangle Park, NC 27711

Dr. Gary Hatch—National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Scott Jenkins—Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency (C504-02), Research Triangle Park, NC 27711

Dr. David Kryak—National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Mr. John Langstaff—U.S. Environmental Protection Agency (C504-06), Research Triangle Park, NC 27711

Dr. Morton Lippmann—NYU School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987

Dr. Thomas Long—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Karen Martin—Office of Air and Radiation, U.S. Environmental Protection Agency (C504-06), Research Triangle Park, NC 27711

Dr. William McDonnell—William F. McDonnell Consulting, 1207 Hillview Road, Chapel Hill, NC 27514

Dr. Dave McKee—Office of Air and Radiation/Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency (C504-06), Research Triangle Park, NC 27711

Dr. Lucas Neas—National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC 27711

Dr. Russell Owen—National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Haluk Ozkaynak—National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

(cont'd)

Reviewers

(cont'd)

Dr. Jennifer Peel-Colorado State University, 1681 Campus Delivery, Fort Collins, CO 80523-1681

Mr. Harvey Richmond—Office of Air Quality Planning and Standards/Health and Environmental Impacts Division, U.S. Environmental Protection Agency (C504-06), Research Triangle Park, NC 27711

Mr. Joseph Somers-Office of Transportation and Air Quality, U.S. Environmental Protection Agency, 2000 Traverwood Boulevard, Ann Arbor, MI 48105

Ms. Susan Stone—U.S. Environmental Protection Agency (C504-06), Research Triangle Park, NC 27711

Dr. John Vandenberg-National Center for Environmental Assessment (B243-01), Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Alan Vette-National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Mr. Ron Williams—National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. William Wilson-Office of Research and Development, National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

U.S. Environmental Protection Agency Project Team for Development of Integrated Scientific Assessment for Oxides of Nitrogen

Executive Direction

Dr. Ila Cote (Acting Director)—National Center for Environmental Assessment-RTP Division, (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Scientific Staff

Dr. Dennis Kotchmar (NO_x Team Leader)—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Jeff Arnold—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. James S. Brown—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Jee Young Kim—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Ellen Kirrane—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Tom Long—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Thomas Luben—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Quingyu Meng—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Joseph Pinto—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Paul Reinhart—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Mary Ross—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

U.S. Environmental Protection Agency Project Team for Development of Integrated Scientific Assessment for Oxides of Nitrogen

(cont'd)

Scientific Staff

(cont'd)

Dr. David Svendsgaard—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Lori White—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. William Wilson—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Technical Support Staff

Ms. Emily R. Lee—Management Analyst, National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Ms. Christine Searles—Management Analyst, National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Ms. Debra Walsh—Program Analyst, National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Mr. Richard Wilson—Clerk, National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Document Production Staff

Ms. Barbra H. Schwartz—Task Order Manager, Computer Sciences Corporation, 2803 Slater Road, Suite 220, Morrisville, NC 27560

Mr. John A. Bennett—Technical Information Specialist, Library Associates of Maryland, 11820 Parklawn Drive, Suite 400, Rockville, MD 20852

Mrs. Melissa Cesar—Publication/Graphics Specialist, Computer Sciences Corporation, 2803 Slater Road, Suite 220, Morrisville, NC 27560

U.S. Environmental Protection Agency Project Team for Development of Integrated Scientific Assessment for Oxides of Nitrogen

(cont'd)

Document Production Staff

(cont'd)

Mrs. Rebecca Early—Publication/Graphics Specialist, TekSystems, 1201 Edwards Mill Road, Suite 201, Raleigh, NC 27607

Mr. Eric Ellis—Records Management Technician, InfoPro, Inc., 8200 Greensboro Drive, Suite 1450, McLean, VA 22102

Ms. Stephanie Harper—Publication/Graphics Specialist, TekSystems, 1201 Edwards Mill Road, Suite 201, Raleigh, NC 27607

Ms. Sandra L. Hughey—Technical Information Specialist, Library Associates of Maryland, 11820 Parklawn Drive, Suite 400, Rockville, MD 20852

Dr. Barbara Liljequist—Technical Editor, Computer Sciences Corporation, 2803 Slater Road, Suite 220, Morrisville, NC 27560

Ms. Molly Windsor—Graphic Artist, Computer Sciences Corporation, 2803 Slater Road, Suite 220, Morrisville, NC 27560

U.S. Environmental Protection Agency Science Advisory Board (SAB) Staff Office Clean Air Scientific Advisory Committee (CASAC) CASAC NO_x and SO_x Primary NAAQS Review Panel

<u>Chair</u>

Dr. Rogene Henderson*, Scientist Emeritus, Lovelace Respiratory Research Institute, Albuquerque, NM

Members

Mr. Ed Avol, Professor, Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA

Dr. John R. Balmes, Professor, Department of Medicine, Division of Occupational and Environmental Medicine, University of California, San Francisco, CA

Dr. Ellis Cowling*, University Distinguished Professor At-Large, North Carolina State University, Colleges of Natural Resources and Agriculture and Life Sciences, North Carolina State University, Raleigh, NC

Dr. James D. Crapo [M.D.]*, Professor, Department of Medicine, National Jewish Medical and Research Center, Denver, CO

Dr. Douglas Crawford-Brown*, Director, Carolina Environmental Program; Professor, Environmental Sciences and Engineering; and Professor, Public Policy, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC

Dr. Terry Gordon, Professor, Environmental Medicine, NYU School of Medicine, Tuxedo, NY

Dr. Dale Hattis, Research Professor, Center for Technology, Environment, and Development, George Perkins Marsh Institute, Clark University, Worcester, MA

Dr. Patrick Kinney, Associate Professor, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY

Dr. Steven Kleeberger, Professor, Laboratory Chief, Laboratory of Respiratory Biology, NIH/NIEHS, Research Triangle Park, NC

Dr Timothy Larson, Professor, Department of Civil and Environmental Engineering, University of Washington, Seattle, WA

U.S. Environmental Protection Agency Science Advisory Board (SAB) Staff Office Clean Air Scientific Advisory Committee (CASAC) CASAC NO_x and SO_x Primary NAAQS Review Panel (cont'd)

Members

(cont'd)

Dr. Kent Pinkerton, Professor, Regents of the University of California, Center for Health and the Environment, University of California, Davis, CA

Mr. Richard L. Poirot*, Environmental Analyst, Air Pollution Control Division, Department of Environmental Conservation, Vermont Agency of Natural Resources, Waterbury, VT

Dr. Edward Postlethwait, Professor and Chair, Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL

Dr. Armistead (Ted) Russell*, Georgia Power Distinguished Professor of Environmental Engineering, Environmental Engineering Group, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA

Dr. Richard Schlesinger, Associate Dean, Department of Biology, Dyson College, Pace University, New York, NY

Dr. Christian Seigneur, Vice President, Atmospheric and Environmental Research, Inc., San Ramon, CA

Dr. Elizabeth A. (Lianne) Sheppard, Research Professor, Biostatistics and Environmental & Occupational Health Sciences, Public Health and Community Medicine, University of Washington, Seattle, WA

Dr. Frank Speizer [M.D.]*, Edward Kass Professor of Medicine, Channing Laboratory, Harvard Medical School, Boston, MA

Dr. George Thurston, Associate Professor, Environmental Medicine, NYU School of Medicine, New York University, Tuxedo, NY

Dr. James Ultman, Professor, Chemical Engineering, Bioengineering Program, Pennsylvania State University, University Park, PA

Dr. Ronald Wyzga, Technical Executive, Air Quality Health and Risk, Electric Power Research Institute, P.O. Box 10412, Palo Alto, CA

U.S. Environmental Protection Agency Science Advisory Board (SAB) Staff Office Clean Air Scientific Advisory Committee (CASAC) CASAC NO_x and SO_x Primary NAAQS Review Panel (cont'd)

SCIENCE ADVISORY BOARD STAFF

Mr. Fred Butterfield, CASAC Designated Federal Officer, 1200 Pennsylvania Avenue, N.W., Washington, DC, 20460, Phone: 202-343-9994, Fax: 202-233-0643 (<u>butterfield.fred@epa.gov</u>) (Physical/Courier/FedEx Address: Fred A. Butterfield, III, EPA Science Advisory Board Staff Office (Mail Code 1400F), Woodies Building, 1025 F Street, N.W., Room 3604, Washington, DC 20004, Telephone: 202-343-9994)

* Members of the statutory Clean Air Scientific Advisory Committee (CASAC) appointed by the EPA Administrator

Abbreviations and Acronyms

α	alpha
ACP	accumulation mode particle
ACS	American Cancer Society
ADP	adenosine dinucleotide phosphate
AgNOR	argyrophilic nucleolar organizer region
AIRC	Atherosclerosis Risk in Communities (study)
AIRE	Acute Infarction Ramipril Efficacy (study)
AM	alveolar macrophage
AMT	average medial thickness
APHEA	Air Pollution on Health: a European Approach (study)
AQCD	Air Quality Criteria Document
AsNaO ₂	sodium dioxoarsenate
ATS	American Thoracic Society
BAL	bronchoalveolar lavage
BC	black carbon
BHPN	N-bis(2-hydroxyl-propyl)nitrosamine
BHR	bronchial hyperresponsivity
BMI	body mass index
BP	blood pressure
Br	bromine
BrdU	bromodeoxyuridine
BRFSS	Behavioral Risk Factor Surveillance System
$\mathbf{C} imes \mathbf{T}$	concentration \times time; concentration times duration of exposure
CAA	Clean Air Act
CAMP	Childhood Asthma Management Program
CAPs	concentrated ambient particles
CASAC	Clean Air Scientific Advisory Committee
CC10	Clara cell 10-kDa protein
CC16	Clara cell 16-kDa protein
CD4	helper T lymphocyte
CD8	suppressor T lymphocyte
CDC	Centers for Disease Control and Prevention
cGMP	cyclic guanosine-3',5'-monophosphate
CH ₄	methane
CHD	coronary heart disease
CHF	congestive heart failure
CHS	Children's Health Study
CI	confidence interval

CMAQ	Community Multiscale Air Quality (model)
СО	carbon monoxide
СоН	coefficient of haze
CO_2	carbon dioxide
COD	coefficient of divergence
COPD	chronic obstructive pulmonary disease
CVD	cardiovascular disease
Δ	delta; change in a variable
DEP	diesel exhaust particulates
DEPcCBP	diesel exhaust particulates extract-coated carbon black particles
DLCO	diffusing capacity of the lung for carbon monoxide
DMA	dimethylamine
DMN	dimethylnitrosamine
DNA	deoxyribonucleic acid
EC	elemental carbon
ED	emergency department
ECG	electrocardiography; electrocardiogram
ECP	eosinophil cationic protein
ELF	epithelial lining fluid
EMECAM	Spanish Multicentre Study on Air Pollution and Mortality
EPA	U.S. Environmental Protection Agency
ER	emergency room
ETS	environmental tobacco smoke
EXPOLIS	Air Pollution Exposure Distributions of Adult Urban Populations in Europe
FEF ₂₅₋₇₅	forced expiratory flow at 25 to 75% of vital capacity
FEF ₇₅	forced expiratory flow at 75% of vital capacity
FEV_1	forced expiratory volume in 1 second
FRM	Federal Reference Method
FVC	forced vital capacity
GAM	Generalized Additive Model(s)
GEE	Generalized Estimating Equation(s)
GIS	Geographic Information System
GLMM	Generalized Linear Mixed Model(s)
GM-CSF	granulocyte-macrophage colony stimulating factor
GSH	glutathione; reduced glutathione
GSSG	oxidized glutathione
GST	glutathione S-transferase (e.g., GST M1, GST P1, GST T1)
H^{+}	hydrogen ion
НСНО	formaldehyde
HF	high frequency

HNO ₃	nitric acid
HNO ₄	pernitric acid
HONO	nitrous acid
H_2O_2	hydrogen peroxide
HR	heart rate
HRV	heart rate variability
HS	hemorrhagic stroke
H_2SO_4	sulfuric acid
hv	solar ultraviolet proton
ICAM-1	intercellular adhesion molecule-1
ICD, ICD9	International Classification of Diseases, Ninth Revision
ICDs	implanted cardioverter defibrillators
Ig	immunoglobulin (e.g., IgA, IgE, IgG)
IHD	ischemic heart disease
IL	interleukin (e.g., IL-6, IL-8)
iNOS	inducible nitric oxide synthase
IQR	interquartile range
IS	ischemic stroke
ISA	Integrated Science Assessment
ISAAC	International Study of Asthma and Allergies in Children
KI	potassium iodide
LDH	lactate dehydrogenase
LF	low frequency
LOESS, LOWESS	locally weighted least squares
LT	leukotriene (e.g., LTB ₄ , LTC ₄ , LTD ₄ , LTE ₄)
MI	myocardial infarction
MMEF	maximal midexpiratory flow
MoO _x	molybdenum oxide
mRNA	messenger ribonucleic acid
MSA	metropolitan statistical area
MV	motor vehicle emissions
N, n	number of observations
NAAQS	National Ambient Air Quality Standards
NADPH	reduced nicotinamide adenine dinucleotide phosphate
NAL	nasal lavage
NAS	Normative Aging Study
NCEA-RTP	National Center for Environmental Assessment in Research Triangle Park, NC
NC _{0.01-0.10}	particle number concentration for particle diameter between 10 and 100 nm
NCICAS	National Cooperative Inner-City Asthma Study

NDMA	N-nitrosodimethylamine
NK	natural killer (lymphocytes)
NLCS	the Netherlands Cohort Study on Diet and Cancer
NMMAPS	National Morbidity, Mortality, and Air Pollution Study
NMOR	N-nitrosomorpholine
NO	nitric oxide
NO ₂	nitrogen dioxide
NO ₃	nitrate radical
NO_3^-	nitrate
NO _x	oxides of nitrogen
NO _y	sum of NO_x and NO_z
NOz	oxides of nitrogen and nitrates (difference between NO _x and NO _y)
N_2O_5	dinitrogen pentoxide
N/R	not reported
NRC	National Research Council
NSA	nitrosating agent
O ₃	ozone
OC	organic carbon
OH	hydroxyl radical
OR	odds ratio
P, p	probability value
PAARC	French air pollution and chronic respiratory diseases study
PAF	paroxysmal atrial fibrillation
PAH	polycyclic aromatic hydrocarbon
PAN	peroxyacyl nitrate; peroxyacetyl nitrate
Pb	lead
PC	principal components
PCR	polymerase chain reaction
PD20	provocative dose that produces a 20% decrease in FEV_1
PD100	provocative dose that produces a 100% increase in sRAW
PEACE	Pollution Effects on Asthmatic Children in Europe (study)
PEF	peak expiratory flow
PEFR	peak expiratory flow rate
PM	particulate matter
PM ₁₀	combination of coarse and fine particulate matter
PM _{10-2.5}	coarse particulate matter
PM _{2.5}	fine particulate matter
PMA	phorbol myristate acetate
PMN	polymorphonuclear leukocytes
ppb	parts per billion

ppm	parts per million
PS	penalized splines
R	intraclass correlation coefficient; proprietary statistical package
r	correlation coefficient
r _p	Pearson's correlation coefficient
r _s	Spearman's rank correlation coefficient
R^2	multiple correlation coefficient
RCS	Robust Component Selection (regression model)
r-MSSD	square root of the mean of the squared difference between adjacent normal R-R intervals
ROS	reactive oxygen species
RR	rate ratio; relative risk
RSV	respiratory syncytial virus
SAPALDIA	Study of Air Pollution and Lung Diseases in Adults
SCE	sister chromatid exchange
SD	standard deviation
SDNN	standard deviation of normal R-R intervals
SE	standard error
SGA	small for gestational age
SNPs	single nucleotide polymorphisms
SO_2	sulfur dioxide
SO_4^{2-}	sulfate
S-PLUS	general purpose statistics package
sRAW	specific airway resistance
STN	Speciation Trends Network
TEA	triethanolamine
Th2	T-derived helper 2 lymphocyte
TNF	tumor necrosis factor (e.g., TNF- α)
TSP	total suspended particulates
TWA	time-weighted average
TX	thromboxane (e.g., TXA ₂ , TXB ₂)
UFP	ultrafine particles; <0.1 µm diameter
VESTA	Five (V) Epidemiological Studies on Transport and Asthma
VOCs	volatile organic compounds
WHI	Women's Health Initiative
WHO	World Health Organization

1. INTRODUCTION

4 This draft Integrated Science Assessment (ISA) presents a concise synthesis and 5 evaluation of the most policy-relevant science. It forms the scientific foundation for the review 6 of the primary (health-based) National Ambient Air Quality Standards (NAAQS) for nitrogen dioxide (NO₂).¹ The draft ISA is intended to "accurately reflect the latest scientific knowledge 7 8 useful in indicating the kind and extent of identifiable effects on public health which may be 9 expected from the presence of [a] pollutant in ambient air" (Clean Air Act, Section 108 (42 U.S.C. 7408)).² Scientific research is incorporated from: atmospheric sciences, air quality 10 analyses, exposure assessment, dosimetry, controlled human exposure studies, toxicology, and 11 12 epidemiology. This document focuses on the gaseous oxides of nitrogen. The draft ISA 13 contains the key information and judgments formerly found in the Air Quality Criteria Document 14 (AQCD) for Oxides of Nitrogen. Also, a series of Annexes to the draft ISA provide more details 15 of the most pertinent scientific literature. The draft ISA and the Annexes, thus serves to update 16 and revise the information included in the 1993 AQCD document (U.S. Environmental 17 Protection Agency, 1993).

18 It will be useful at the outset to distinguish between the definition of "nitrogen oxides" as 19 it appears in the enabling legislation related to the NAAQS and the definition commonly used in 20 the air pollution research and management community. In this document, the terms "oxides of 21 nitrogen" and "nitrogen oxides" refer to all forms of oxidized nitrogen compounds, including 22 nitric oxide (NO), nitrogen dioxide (NO₂), and all other oxidized nitrogen-containing compounds 23 transformed from NO and NO₂. This follows usage in the Clean Air Act Section 108(c): "Such 24 criteria [for oxides of nitrogen] shall include a discussion of nitric and nitrous acids, nitrites, 25 nitrates, nitrosamines, and other carcinogenic and potentially carcinogenic derivatives of oxides 26 of nitrogen." By contrast, within the air pollution research and control community, the terms 27 "oxides of nitrogen" and "nitrogen oxides" are restricted to refer only to the sum of NO and NO₂, 28 and this sum is commonly abbreviated as NO_x. The category label used by this community for

1

2 3

¹ Information on legislative requirements and history of NO₂ NAAQS reviews are presented in the Preface.

² The secondary NAAQS for NO₂ is being reviewed independently, in conjunction with the review of the secondary NAAQS for sulfur dioxide (SO₂). A review of the primary NAAQS for SO₂ is also underway.

the sum of all forms of oxidized nitrogen compounds including those listed in Section 108(c) is
 NO_y.

3 For the current review, multiple species of many nitrogen oxides are considered, as 4 appropriate and as allowed by the available data. For example, descriptions of the atmospheric 5 chemistry of nitrogen oxides include both gaseous and particulate species, because a meaningful 6 analysis would not be possible otherwise. In addition, the health effects of gaseous nitrogen 7 oxides other than NO₂ are evaluated when information on these other species is available. 8 Finally, the possible influence of other atmospheric pollutants on the interpretation of the role of 9 NO_2 in health effects studies is considered, including interactions of NO_2 with other pollutants 10 that co-occur in the environment (e.g., sulfur dioxide [SO₂], carbon monoxide [CO], ozone [O₃], 11 particulate matter [PM]). The available database for this draft ISA largely provides information 12 on the health effects of NO₂, with limited information examining other forms of oxides of 13 nitrogen (e.g., nitrous acid [HONO]).

As discussed in the Draft Integrated Plan for the Review of the Primary NAAQS for Nitrogen Dioxide (U.S. Environmental Protection Agency, 2007), a series of policy-relevant questions frames this review of the scientific evidence to provide a scientific basis for a decision on whether the current primary NAAQS for NO₂ (0.053 parts per million (ppm), annual average) should be retained or revised. The draft ISA focuses on evaluation of the newly available scientific evidence to best inform consideration of these framing questions, including the following:

Has new information altered the scientific support for the occurrence of health effects
 following short- and/or long-term exposure to levels of oxides of nitrogen found in the
 ambient air?

What do recent studies focused on the near-roadway environment tell us about health
 effects of oxides of nitrogen?

• At what levels of oxides of nitrogen exposure do health effects of concern occur?

- Has new information altered conclusions from previous reviews regarding the plausibility
 of adverse health effects caused by exposure to oxides of nitrogen?
- To what extent have important uncertainties identified in the last review been reduced
 and/or have new uncertainties emerged?

1

•

- 2
- 3
- 4 5
- 1.1 **DOCUMENT DEVELOPMENT**

to oxides of nitrogen?

6 The U.S. Environmental Protection Agency formally initiated the current review of the 7 NO₂ NAAQS by announcing the commencement of the review in the Federal Register with a call 8 for information (Federal Register, 2005). In addition to the call for information, publications are 9 identified through an ongoing literature search process that includes searching MEDLINE and 10 other databases using as key words the terms: nitrogen oxides, nitrogen dioxide, NO, NO_x , NO_y , 11 nitric acid, HNO₃, pernitric acid, HNO₄, nitrate radical, NO₃⁻, dinitrogen pentoxide, N₂O₅, 12 organic nitrates, nitrous acid, HONO or HNO₂, peroxyacytyl nitrate, PAN, and total reactive 13 nitrogen. The search strategy is periodically reexamined and modified to enhance identification 14 of pertinent published papers. Additional papers are identified for inclusion in the publication 15 base in several ways. First, EPA staff reviews pre-publication tables of contents for journals in 16 which relevant papers may be published. Second, expert chapter authors are charged with 17 independently identifying relevant literature. Finally, additional publications that may be 18 pertinent are identified by both the public and CASAC during the external review process. The 19 focus of this ISA is on literature published since the 1993 AQCD for Oxides of Nitrogen. Key 20 findings and conclusions from the 1993 review are discussed in conjunction with recent findings. 21 Generally, only information that has undergone scientific peer review and that has been 22 published (or accepted for publication) in the open literature is considered. The following 23 sections briefly summarize criteria for selection of studies for this draft ISA. 24 25

What are the air quality relationships between short-term and long-term exposures

General Criteria for Study Selection

26 In assessing the scientific quality and relevance of epidemiological and human or animal 27 toxicological studies, the following considerations have been taken into account.

- 28 To what extent are the aerometric data, exposure, or dose metrics of adequate quality and 29 sufficiently representative to serve as credible exposure indicators?
- 30 Were the study populations adequately selected and are they sufficiently well defined to • 31 allow for meaningful comparisons between study groups?
- 32 • Are the health endpoint measurements meaningful and reliable?

Does the study contain unique data such as the documentation of a previously unreported
 effect, documentation of the mechanism for an observed effect, or information on
 exposure-response relationships?

• Are the statistical analyses appropriate, properly performed, and properly interpreted?

- Are likely covariates (i.e., potential confounders or effect modifiers) adequately
 controlled or taken into account in the study design and statistical analysis?
- Are the reported findings internally consistent, biologically plausible, and coherent in
 terms of consistency with other known facts?

9 Consideration of these issues informs our judgments on the relative quality of individual studies10 and allows us to focus the assessment on the most pertinent studies.

11

12 Criteria for Selecting Epidemiological Studies

13 In selecting epidemiological studies for this assessment, EPA considered whether a given 14 study contains information on (1) associations with measured oxides of nitrogen concentrations 15 using short- or long-term exposures at or near ambient levels of oxides of nitrogen, (2) health 16 effects of specific oxides of nitrogen species or indicators related to oxides of nitrogen sources 17 (e.g., motor vehicle emissions, combustion-related particles), (3) health endpoints and 18 populations not previously extensively researched, (4) multiple pollutant analyses and other 19 approaches to address issues related to potential confounding and modification of effects, and/or 20 (5) important methodological issues (e.g., lag of effects, model specifications, thresholds, 21 mortality displacement) related to interpretation of the health evidence. Among the 22 epidemiological studies, particular emphasis has been focused on those most relevant to standard 23 settings in the United States. Specifically, studies conducted in the United States or Canada are 24 discussed in more detail than those from other geographic regions. Particular emphasis has been 25 placed on: (A) new multicity studies that employ standardized methodological analyses for 26 evaluating effects of oxides of nitrogen and that provide overall estimates for effects based on 27 combined analyses of information pooled across multiple cities, (B) new studies that provide 28 quantitative effect estimates for populations of interest, and (C) studies that consider oxides of 29 nitrogen as a component of a complex mixture of air pollutants.

30

1 Criteria for Selecting Animal and Human Toxicological Studies

Criteria for the selection of research evaluating animal toxicological or controlled human exposure studies include a focus on those studies conducted at levels within about an order of a magnitude of ambient NO_2 concentrations and those studies that approximate expected human exposure conditions in terms of concentration and duration. Studies that elucidate mechanisms of action and/or susceptibility, particularly if the studies were conducted under atmospherically relevant conditions, are emphasized whenever possible.

8 The selection of research evaluating controlled human exposures to oxides of nitrogen is 9 mainly limited to studies in which subjects were exposed to <1 ppm NO₂. For these controlled 10 human exposures, emphasis is placed on studies that (1) investigate potentially susceptible 11 populations such as asthmatics, particularly studies that compare responses in susceptible 12 individuals with those in age-matched healthy controls; (2) address issues such as concentration-13 response or time-course of responses; (3) investigate exposure to NO_2 separately and in 14 combination with other pollutants such as O_3 and SO_2 ; (4) include control exposures to filtered 15 air; and (5) have sufficient statistical power to assess findings.

16

17

18

1.2 ORGANIZATION OF THE DOCUMENT

19 This draft ISA includes five chapters. This introductory chapter (Chapter 1) presents 20 background information on the purpose of the document and characterizes how policy-relevant 21 scientific studies are identified and selected for inclusion in the ISA. Chapter 2 highlights key 22 concepts or issues relevant to understanding the atmospheric chemistry, sources, exposure and 23 dosimetry of oxides of nitrogen, following a "source to dose" paradigm. Chapter 3 evaluates and 24 integrates health information relevant to the review of the primary NAAOS for NO₂. In this 25 chapter, findings from epidemiological controlled human exposure and toxicological studies are 26 integrated into an assessment of the relationships between exposure to ambient oxides of 27 nitrogen and health outcomes. This chapter focuses on the strength of epidemiological or 28 toxicological evidence and the consistency, coherence, and plausibility of the body of evidence 29 for effects on the respiratory, cardiovascular, or other system. Chapter 4 provides information 30 relevant to the public health impact of exposure to ambient oxides of nitrogen, including 31 potential susceptible population groups. Finally, Chapter 5 articulates findings, conclusions
regarding the health evidence and makes recommendations pertinent to exposure and risk
 assessments.

3 In addition, a series of Annexes provide additional details of information in the ISA. 4 Annex 1 is an introduction and background for the Annex series. In Annex 2, we present 5 evidence related to the physical and chemical processes controlling the production, destruction, 6 and levels of reactive nitrogen compounds in the atmosphere, including both oxidized and 7 reduced species. Annex 3 presents information on environmental concentrations, patterns, and 8 human exposure to ambient oxides of nitrogen. Annex 4 presents results from toxicological 9 studies as well as information on dosimetry of oxides of nitrogen. Annex 5 presents results from 10 controlled human exposure studies, and Annex 6 presents evidence from epidemiological 11 studies. Annex tables for health studies are generally organized to include information about 12 (1) concentrations of oxides of nitrogen levels or doses and exposure times, (2) description of 13 study methods employed, (3) results and comments, and (4) quantitative outcomes for oxides of 14 nitrogen measures. Annexes 2 and 3 contain additional discussion of information because these 15 Annexes will be used for other ISAs, such as Oxides of Sulfur (SO_x) .

2. SOURCE TO TISSUE DOSE

This chapter provides basic information about concepts and findings relating to considerations in atmospheric science, human exposure assessment, and human dosimetry. It is meant to serve as a prologue for detailed discussions on the evidence on health effects to follow in Chapters 3 and 4. The order of topics essentially follows that given in the National Research Council paradigm for integrating air pollutant research (National Research Council, 1998).

9 10

1 2 3

11 2.1 INTRODUCTION

12 As noted in Chapter 1, the definition of "nitrogen oxides" as it appears in the enabling 13 legislation related to the NAAQS and the definition commonly used in the air pollution research 14 and control community differ. In this document, the terms "oxides of nitrogen" and "nitrogen 15 oxides" refer to all forms of oxidized nitrogen compounds, including nitric oxide (NO), NO₂, and all other oxidized nitrogen-containing compounds transformed from NO and NO2.1 In the 16 17 Federal Register Notice for the last AQCD for Oxides of Nitrogen (1996), the term "nitrogen 18 oxides" was used to "describe the sum of NO, NO₂ and other oxides of nitrogen." 19 Nitric oxide and NO₂, along with volatile organic compounds (VOCs); anthropogenic and 20 biogenic hydrocarbons, aldehydes, etc.) and carbon monoxide (CO), are precursors in the 21 formation of ozone (O₃) and photochemical smog. Nitrogen dioxide is an oxidant and can react 22 to form other photochemical oxidants, including organic nitrates like the peroxyacyl nitrates 23 (PANs). Nitrogen dioxide can also react with toxic compounds such as polycyclic aromatic 24 hydrocarbons (PAHs) to form nitro-PAHs, some of which are more toxic than either reactant 25 alone. Nitrogen dioxide and sulfur dioxide (SO₂), another EPA criteria air pollutant, can also be 26 oxidized to the strong mineral acids nitric acid (HNO₃) and sulfuric acid (H₂SO₄), respectively, 27 thereby contributing to the acidity of cloud, fog, and rainwater and ambient particles.

¹ This follows usage in the Clean Air Act Section 108(c): "Such criteria [for oxides of nitrogen] shall include a discussion of nitric and nitrous acids, nitrites, nitrates, nitrosamines, and other carcinogenic and potentially carcinogenic derivatives of oxides of nitrogen." By contrast, within the air pollution research and control community, the terms "oxides of nitrogen" and "nitrogen oxides" are restricted to refer only to the sum of NO and NO₂, and this sum is commonly abbreviated as NO_x. The category label used by this community for the sum of all forms of oxidized nitrogen compounds including those listed in Section 108(c) is NO_y.

1 2.2 ATMOSPHERIC CHEMISTRY

2 The role of NO_x in O₃ formation was reviewed in Chapter 2 (Section 2.2) of the latest Air 3 Quality Criteria for Ozone and Related Photochemical Oxidants (2006 AQCD for O_3) (U.S. 4 Environmental Protection Agency, 2006), and has been presented in numerous texts (e.g., 5 Seinfeld and Pandis, 1998; Jacob, 1999; Jacobson, 2002). Mechanisms for transporting O₃ 6 precursors including NO_x , the factors controlling the efficiency of O_3 production from NO_x , 7 methods for calculating O₃ from its precursors, and methods for measuring NO_y were all 8 reviewed in Section 2.6 of 2006 AQCD for O₃. The main points from 2006 AQCD for O₃ will 9 be presented here along with updates based on new material. 10 The overall chemistry of reactive nitrogen compounds in the atmosphere is summarized 11 in Figure 2.2-1 and described in greater detail in this document's Annex AX2.2. Nitrogen oxides 12 are emitted by combustion sources mainly as NO with quantities of NO₂ typically in the range of 13 5 to 10% of NO. The major combustion sources of NO_x , shown schematically in Figure 2.2-1, 14 are motor vehicles and electrical utilities, although stationary engines, off-road vehicles, and 15 industrial facilities also emit NO_x. In addition to emissions from fossil fuel combustion, biomass 16 burning also produces NO_x. And apart from these anthropogenic sources, there are also smaller 17 natural sources which include microbial activity in soils, lightning, and wildfires. NO and NO₂ are often grouped together and given the category label "NO_x" because they 18 19 are emitted together and can rapidly interconvert as shown in the inner box in Figure 2.2-1. 20 Nitrogen dioxide reacts with various free radicals in the gas phase and on surfaces in multiphase 21 processes to form the oxidation products shown in Figure 2.2-1. These products include 22 inorganic species (shown on the left side of the outer box in Figure 2.2-1) and organic species 23 (shown on the right side of the outer box in Figure 2.2-1). The oxidized nitrogen species in the outer box are often collectively termed NO_z: thus, $NO_x + NO_z = NO_y$. The time scale for 24 25 reactions of NO_x to form products shown in the outer box of Figure 2.2-1 typically ranges from a 26 few hours during summer to about a day during winter. As a result, morning rush hour

27 emissions of NO_x can be converted almost completely to products by late afternoon during

Figure 2.2-1. Schematic diagram of the cycle of reactive nitrogen species in the atmosphere. MPP refers to multiphase processes, R to an organic radical, and hv to a solar photon.

1 warm, sunny conditions. As shown in Figure 2.2-1, different sources emit NO_x at different 2 altitudes. Because the prevailing winds aloft are generally stronger than those at the surface, 3 emissions from elevated sources can be distributed over a wider area than those emitted at the 4 surface, and because of the time required for mixing of emissions to the surface, emissions of 5 NO_x from elevated sources will tend to be transformed to the more oxidized NO_z products before 6 they reach the surface.

The concentrations and atmospheric lifetimes of inorganic and organic products from
reactions of NO_x vary widely in space and time. Inorganic reaction products include HONO,
HNO₃, HNO₄, and particulate nitrate (pNO₃⁻). While a broad range of organic nitrogen
compounds are emitted by combustion sources (e.g. nitrosamines and nitro-PAHs), they are also
formed in the atmosphere from reactions of NO and NO₂. These include peroxyacyl and
isoprene nitrates, other nitro-PAHs, and the more recently identified nitrated organic compounds

in the quinone family. The largest fractions of the mass of products shown in the outer box of
Figure 2.2-1 are in the form of PAN and HNO₃, although other organic nitrates, e.g., isoprene
nitrates and specific biogenic PANs can be important at locations nearer to biogenic sources
(Horowitz et al., 2007; Singh et al., 2007).

5 In addition to gas-phase reactions, reactions occurring on surfaces or occurring in 6 multiple phases are important for the formation of HONO and pNO₃⁻. These reactions can 7 occur on the surfaces of suspended particles, soil, and buildings and within aqueous media. 8 The lifetime of PAN is strongly temperature dependent and is stable enough at low temperatures 9 to be transported long distances before decomposing to release NO₂, which can then participate 10 in O_3 formation in these regions remote from the original NO_x source. Nitric acid can act 11 similarly to some extent, but its high solubility and fast deposition rate mean that it is removed 12 from the atmosphere by uptake on aqueous aerosols and cloud droplets or to the surface faster 13 than PAN. Characteristic concentrations of many of the oxides of nitrogen species are given in 14 Annex AX3.2.

15 As mentioned earlier, NO and NO₂ are important precursors of O_3 formation. However, 16 because O₃ changes in a nonlinear way with the concentrations of its precursors, it is unlike 17 many other secondarily-formed atmospheric species whose rates of formation vary directly with 18 emissions of their precursors. At the low NO_x concentrations found in most environments 19 (ranging from remote continental areas to rural and suburban areas downwind of urban centers) 20 the net production of O₃ increases with increasing NO_x. At the high NO_x concentrations found in 21 downtown metropolitan areas and especially near busy streets and roadways and in power plant 22 plumes, net destruction of O_3 is initiated with the excess NO found there. In the high NO_x 23 regime, NO₂ scavenges OH radicals that would otherwise oxidize VOCs to produce peroxy 24 radicals, which would in turn oxidize NO to NO₂. In the low NO_x regime, oxidation of VOCs 25 generates excess free radicals, and hence O₃ production varies more nearly directly with NO_x. 26 Between these two regimes, there is a transition zone in which O_3 shows only a weak 27 dependence on NO_x concentrations.

28

29 Formation of Nitro-PAHs

Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are produced either by either direct
 emissions or by atmospheric reactions. Among combustion sources, diesel emissions have been

1 identified as the major source of nitro-PAHs in ambient air (Bezabeh et al., 2003; Gibson, 1983; 2 Schuetzle, 1983; Tokiwa and Ohnishi, 1986). Direct emissions of "nitro-patts" in PM vary with 3 type of fuel, vehicle maintenance, and ambient conditions (Zielinska et al., 2004). In addition to 4 being directly emitted, nitro-PAHs can also be formed from both gaseous and heterogeneous 5 reactions of PAHs with gaseous nitrogen-containing pollutants in the atmosphere, with the 6 reactions of OH and NO₃ radicals with PAHs being the major sources of nitro-PAHs. (Arey 7 et al., 1986; Arey et al., 1989, 1998; Giancarlo Perrini, 2005; Pitts et al., 1987; Sasaki et al., 8 1997; Zielinska et al., 1989; Bamford and Baker, 2003; Reisen and Arey, 2005 and references 9 therein). Reactions involving OH and NO₃ radicals imply that nitro-PAH formation occurs 10 during both daytime and nighttime in the atmosphere. The major loss process of nitro-PAHs is 11 photodecomposition (Fan et al., 1996; Feilberg et al., 1999; Feilberg and Nielsen, 2001) with 12 lifetimes on the order of hours, followed by reactions with OH and NO₃ radicals. The reaction 13 mechanisms for forming and destroying nitro-PAHs in the atmosphere have been described in 14 Section AX2.2.3.

15 In ambient particulate organic matter (POM), 2-nitrofluoranthene (2NF) is the dominant 16 compound, followed by 1-nitropyrene (1NP) and 2-nitropyrene (2NP) (Arey et al., 1989; 17 Bamford et al., 2003; Reisen and Arey, 2005; Zielinska et al., 1989). 2NF and 2NP are not 18 directly emitted from primary combustion emissions, but are formed in the atmosphere. 1NP is 19 generally regarded as a tracer of primary combustion sources, in particular, diesel exhaust. After 20 formation, nitro-PAHs with low vapor pressures (such as 2NF and 2NP) immediately migrate to 21 particles under ambient conditions (Fan et al., 1995; Feilberg et al., 1999). More volatile nitro-22 PAHs, such as nitronapthalene (NN) remain mainly in the gas phase. 23

The concentrations for most nitro-PAHs found in ambient air are typically lower than 1 pg/m³, except NNs, 1NP, and 2NF, which can be present at levels up to several tens or hundreds of pg/m³. These levels are much lower (~2 to ~1000 times lower) than their parent PAHs. However, nitro-PAHs are much more toxic than PAHs (Durant et al., 1996; Grosovsky et al., 1999; Salmeen et al., 1982; Tokiwa et al., 1998; Tokiwa and Ohnishi, 1986). Moreover, most nitro-PAHs are present in particles with a mass median diameter of <0.1 μ m.

30

1 2.3 MEASUREMENT METHODS AND ASSOCIATED ISSUES

2 Nitric oxide is routinely measured using the principle of gas-phase chemiluminescence 3 induced by the reaction of NO with O_3 at low pressure. The Federal Reference Method (FRM) 4 for NO₂ makes use of this technique of NO detection with a prerequisite step to reduce the NO₂ 5 to NO on the surface of a molybdenum oxide (MoO_x) substrate heated to between 300 and 6 400 C. Because the FRM monitor cannot detect NO_2 , the concentration of NO_2 is determined as 7 the difference between the sample passed over the heated MoO_x substrate (the nitrogen oxides 8 total) and the sample not reduced (the NO). However, the reduction of NO₂ to NO on the MoO_x 9 substrate is not specific to NO₂; hence, the chemiluminescence analyzers are subject to unknown 10 and varying interferences produced by the presence in the sample of the other oxidized nitrogen 11 compounds (i.e., NO_z compounds shown in the outer box of Figure 2.2-1). 12 Interference by NO_z compounds has long been known (Fehsenfeld et al., 1987; Rodgers 13 and Davis, 1989; U.S. Environmental Protection Agency, 1993, 2006; Crosley, 1996; 14 Nunnermacker et al., 1998; Parrish and Fehsenfeld, 2000; McClenny et al., 2002; Dunlea et al., 15 2007). These studies have relied on intercomparisons of measurements using the FRM and other 16 techniques for measuring NO_2 . The sensitivity of the instrument to potential interference by 17 individual NO_z compounds is highly variable and is dependent in part on instrument inlet design 18 and on the temperature of the reducing substrate, and on the interactions of species with the 19 reducing substrate. Commercially available NO_x monitors have been converted to NO_y monitors 20 by moving the MoO_x convertor to interface directly with the sample inlet. Because of losses on 21 inlet surfaces and differences in the efficiency of reduction of NOz compounds on the heated 22 MoO_x substrate, NO_x can not be considered as a universal surrogate for NO_y . However, in 23 settings close to relatively high concentration fresh emissions like those in urban areas during 24 rush hour, most of the NO_v is present as NO_x . To the extent that all the major oxidized nitrogen 25 species can be reduced quantitatively to NO, measurements of NO_v should be more reliable than 26 those for NO_x, particularly at typical ambient levels of NO₂. Routine measurement reporting of 27 total NO_v rather than of NO and NO₂ by subtraction has the additional benefit of characterizing 28 the entire suite of oxidized nitrogen compounds to which humans are exposed. Reliable 29 measurements of NO_v and NO₂, especially at the low concentrations observed in many areas 30 remote from sources are also crucial for evaluating the performance of three-dimensional,

chemical transport models of oxidant and acid production in the atmosphere (described in
 Section AX2.7 of Annex 2).

3 There are other approaches to measuring NO₂ that do not suffer from the artifacts 4 mentioned above. For example, NO₂ can be photolytically reduced to NO, with an efficiency of 5 about 70%. At present, however, this method requires additional development to ensure its cost 6 effectiveness and reliability for extensive field deployment. The relatively low and variable 7 conversion efficiency of this technique, for example, means that increased attention to frequent 8 calibration exercises would be required for routine operation. Optical methods such as those 9 using differential optical absorption spectroscopy (DOAS) or laser induced fluorescence (LIF) 10 are also available, as described in Section AX2.8 of Annex AX2. However, these methods are 11 even more expensive than either the FRM monitors or photolytic reduction technique and require 12 specialized expertise to operate as well; moreover, the DOAS is an area-integrated rather than a 13 point-measured technique.

- 14
- 15
- 16 17 18

2.4 AMBIENT CONCENTRATIONS OF NO₂ AND ASSOCIATED OXIDIZED NITROGEN SPECIES AND POLICY RELEVANT BACKGROUND CONCENTRATIONS

19 This section provides a brief summary of information on ambient concentrations of NO₂ 20 and associated oxidized nitrogen compounds in the United States. It also provides estimates of 21 Policy Relevant Background Concentrations, i.e., background concentrations used to inform 22 policy-relevant decisions about the NAAQS.

23 24

2.4.1 Ambient Concentrations

25 Figure 2.4-1 shows ambient concentrations of NO₂ measured at all monitoring sites 26 located within Metropolitan Statistical Areas (MSAs) in the United States from 2003 through 27 2005. As can be seen from Figure 2.4-1, mean concentrations of NO_2 are about 15 ppb for 28 averaging periods ranging from a day to a year, with an interquartile range (IQR) of 10 to 29 15 ppb. However, the average daily maximum hourly NO₂ concentrations are \sim 30 ppb. These values are about twice as high as the 24-h averages. The highest maximum hourly 30 31 concentrations (~200 ppb) are more than a factor of ten higher than the mean hourly or 24-h 32 concentrations.

Figure 2.4-1.Ambient concentrations of NO2 measured at all monitoring sites
located within Metropolitan Statistical Areas in the United States
from 2003 through 2005.

1 Recall from the discussion above that the FRM for NO₂ is subject to positive interference 2 by other oxidized nitrogen compounds (NO_z) , and the degree of interference can be substantial. 3 In particular, Dunlea et al. (2007) found an average of about 22% of ambient NO₂ (~9 to 50 ppb) 4 measured in Mexico City was due to interference from NO_z compounds. Comparable levels of 5 NO₂ are found in many locations in the United States. The Dunlea et al. (2007) results were 6 based on comparison between the chemiluminescent instrument with other (optical) techniques. 7 The main sources of interference were HNO₃ and various organic nitrates. Peak interference of 8 up to 50% was found during afternoon hours and was associated with O₃ and NO₂ compounds 9 such as HNO₃ and the alkyl and multifunctional alkyl nitrates. 10 Data for concentrations of NO_z constituent species in urban areas in the United States are

Data for concentrations of NO_z constituent species in urban areas in the United States are sparse. The most comprehensive set of data for any NO_z species was obtained for HNO_3 as part of the Children's Health Study for which gas-phase HNO_3 was measured at 12 sites in Southern California from 1994 through 2001 (Alcorn et al., 2004). Levels ranged from <1 ppb to >10 ppb

1 in general, the highest concentrations of HNO_3 and the highest ratio of HNO_3/NO_2 were found 2 downwind of central Los Angeles in the San Bernadino Valley during summer, as one would 3 expect for this more oxidized nitrogen product. Measurements of HONO in urban areas are very 4 limited; however, data from Stutz et al., (2004) and Wang et al., (2006) indicate that levels of 5 HONO are <1 ppb even under heavily polluted conditions (with the highest levels found during 6 the night and just after dawn and lowest values found in the afternoon). Several field studies 7 such as Hayden et al. (2003) in rural Quebec, Williams et al. (1987) near Boulder, CO, and Singh 8 et al. (2007) in aircraft flights over eastern North America have also found much higher levels of 9 NO_z compounds than NO_x in relatively unpolluted rural air.

10 Calculations with EPA's Community Multiscale Air Quality (CMAQ) modeling system 11 for the mid-Atlantic region in a domain from Virginia-Southern New Jersey showed that the highest levels of HNO₃ and organic nitrates occur during mid-afternoon, consistent with their 12 13 formation by photochemical processes that also produce O_3 . Model calculations during an O_3 14 episode in July 2002 made for the Maryland State O₃ Implementation Plan (SIP) showed episode 15 averages of the ratio NO_z /NO₂ ranging from 0.26 to 3.6 in rural Virginia, with the highest ratios 16 in rural areas and lowest ratios in urban centers nearer the sources of fresh NO_x emissions. The 17 capabilities of three-dimensional transport models like CMAQ and issues associated with their 18 use are presented in Annex Section AX2.7.

19 20

2.4.2 Policy Relevant Background Concentrations of Nitrogen Dioxide

21 Background concentrations of NO₂ used for purposes of informing decisions about 22 NAAQS are referred to as Policy Relevant Background (PRB) concentrations. Policy Relevant 23 Background concentrations are those concentrations that would occur in the United States in the 24 absence of anthropogenic emissions in continental North America (defined here as the United 25 States, Canada, and Mexico). Policy Relevant Background concentrations include contributions 26 from natural sources everywhere in the world and from anthropogenic sources outside these 27 three countries. Background levels so defined facilitate separation of pollution levels that can be 28 controlled by U.S. regulations (or through international agreements with neighboring countries) 29 from levels that are generally uncontrollable by the United States. The EPA assesses risks to 30 human health and environmental effects from NO₂ levels in excess of PRB concentrations.

1 Contributions PRB concentrations include photochemical actions involving natural 2 emissions of NO, NO₂, and reduced nitrogen (NH_x) compounds; as well as their long-range 3 transport from outside North America. Natural sources of NO₂ and its precursors include 4 biogenic emissions, wildfires, lightning, and the stratosphere. Biogenic emissions from 5 agricultural activities are not considered in the formation of PRB concentrations. Discussions of 6 the sources and estimates of emissions are given in Annex Section AX2.6.2.

- 7
- 8 9

Analysis of Policy Relevant Background Contribution to Nitrogen Dioxide Concentrations over the United States

10 The MOZART-2 global model of tropospheric chemistry (Horowitz et al., 2003) was 11 used to diagnose the PRB contribution to NO₂ concentrations. The model setup for the present-12 day simulation has been published in a series of papers from a recent model intercomparison 13 (Dentener et al., 2006ab; Shindell et al., 2006; Stevenson et al., 2006; van Noije et al., 2006). 14 MOZART-2 is driven by National Center for Environmental Prediction meteorological fields and IIASA 2000 emissions at a horizontal resolution of $1.9^{\circ} \times 1.9^{\circ}$ with 28 sigma levels in the 15 16 vertical, and it includes gas-phase and aerosol chemistry. Results shown in Figure 2.4-2 are for 17 the meteorological year 2001. An additional "PRB" simulation was conducted in which 18 continental North American anthropogenic emissions were set to zero. 19 We first examine the role of PRB in contributing to NO₂ concentrations in surface air. 20 Figure 2.4-2 shows the annual mean NO₂ concentrations in surface air in the base case 21 simulation (top panel) and the PRB simulation (middle panel), along with the percentage 22 contribution of the background to the total base case NO₂ (bottom panel). Maximum 23 concentrations in the base case simulation occur along the Ohio River Valley and in the 24 Los Angeles basin. While present-day concentrations are often above 5 ppby, PRB is less than 25 300 pptv over most of the continental United States, and less than 100 pptv in the eastern United 26 States. The distribution of PRB (middle panel of Figure 2.4-2) largely reflects the distribution of 27 soil NO emissions, with some local enhancements due to biomass burning such as in western

- 28 Montana. In the northeastern United States, where present-day NO₂ concentrations are highest,
- 29 PRB contributes <1% to the total. Thus, it appears that PRB levels of NO₂ are much smaller
- 30 than observed levels.

Figure 2.4-2. Annual mean concentrations of NO₂ (ppbv) in surface air over the United States in the present-day (upper panel) and policy relevant background (middle panel) MOZART-2 simulations. The bottom panel shows the percentage contribution of the background to the present-day concentrations. See text in Annex Section AX2.9 for details. 1 2

2.5 EXPOSURE ISSUES

- 3 **2.5.1** Person
- 4

5

2.5.1 Personal Exposures

2.5.1.1 General Concepts

6 Human exposure to an airborne pollutant consists of contact between the human and the 7 pollutant at a specific concentration for a specified period of time. People spend various 8 amounts of time in different microenvironments (Figure 2.5-1) characterized by different 9 pollutant concentrations. The figure represents a composite average across the United States across all age groups. Different cohorts, e.g., the elderly might be expected to exhibit different 10 11 activity patterns. The integrated exposure of a person to a given pollutant is the sum of the 12 exposures over all time intervals for all microenvironments in which the individual spent time. 13 Therefore, the personal exposure concentration to a pollutant, such as NO₂, can be

12

14 represented by the following equation:

15

$$E_T = \sum_{i=1}^{n} C_i f_i$$
 (2.5-1)

16 where E_T is the time-weighted average personal exposure concentration over a certain period of 17 time, n is the total number of microenvironments that a person encounters, f_i is the fraction of time spent in the i^{th} microenvironment, and C_i is the average concentration in the i^{th} 18 19 microenvironment during the time fraction, f_i . The exposure a person experiences can be 20 characterized as an instantaneous exposure, a peak exposure such as might occur during cooking, 21 an average exposure, or an integrated exposure over all environments a person encounters. 22 These distinctions are important because health effects caused by long-term low-level exposures 23 may differ from those caused by short-term peak exposures.

24

25

An individual's total exposure (E_T) can also be represented by the following equation:

$$E_T = E_a + E_{na} = \{y_o + \sum_i y_i \left[P_i a_i / (a_i + k_i) \right] \} C_a + E_{na} = \{y_o + \sum_i y_i F_{inf_i} \} C_a + E_{na}$$
(2.5-2)

26 subject to the constraint

27
$$y_o + \sum_i y_i = 1$$
 (2.5-3)

August 2007

Figure 2.5-1. Percentage of time people spend in different environments in the United States.

Source: Klepeis et al. (2001).

In the case where microenvironmental exposures occur mainly in one microenvironment,
 Equation 2.5-2 may be approximated by

8

$$E_T = E_a + E_{na} = \{y + (1-y)[Pa/(a+k)]\}C_a + E_{na} = \alpha C_a + E_{na}$$
(2.5-4)

4 where y is the fraction of time people spend outdoors, and α is the ratio of a person's exposure to 5 a pollutant of ambient origin to the pollutant's ambient concentration. Other symbols have the 6 same definitions in Equation 2.5-2 and 2.5-3. If microenvironmental concentrations are 7 considered, then Equation 2.5-4 can be recast as

$$C_{me} = C_a + C_{na} = [Pa/(a+k)]C_a + S/[V(a+k)]$$
(2.5-5)

9 where C_{me} is the concentration in a microenvironment; C_a and C_{na} are the contributions to C_{me} 10 from ambient and nonambient sources; *S* is the microenvironmental source strength; *V* is the 11 volume of the microenvironment, and the symbols in brackets have the same meaning as in 12 Equation 2.5-4.

1	Microenvironments in which people are exposed to air pollutants such as NO ₂ typically
2	include residential indoor environments, other indoor locations, near-traffic outdoor
3	environments, other outdoor locations, and in vehicles as shown in Figure 2.5-1. Indoor
4	combustion sources such as gas stoves and space heaters need to be considered when evaluating
5	exposures to NO ₂ . Exposure misclassification may result when total human exposure is not
6	disaggregated between various microenvironments, and this may obscure the true relationship
7	between ambient air pollutant exposures and health outcomes.
8	In a given microenvironment, the ambient component of a person's microenvironmental
9	exposure to a pollutant is determined by the following physical factors.
10	Ambient concentration
11	• The air exchange rate
12	• The pollutant specific penetration coefficient
13	• The pollutant specific decay rate
14	• The fraction of time an individual spends in the microenvironment
15	
16	These factors are in turn determined by the following exposure factors (see Annex AX3.5).
17	• Environmental conditions, such as weather and season
18	• Dwelling conditions, such as the location of the house which determines
19	proximity to sources and geographical features that can modify transport from
20	sources; the amount of natural ventilation (e.g., open windows and doors, and the
21	"draftiness" of the dwelling) and ventilation system (e.g., filtration efficiency and
22	operation cycle)
23	• Personal activities, (e.g., the time spent cooking or commuting)
24	• Socioeconomic status, (e.g., the level of education and the income level)
25	• Demographic factors (e.g., age and gender)
26	• Indoor sources and sinks of a pollutant
27	• Microenvironmental line and point sources (e.g., lawn equipment)
28 29	In general, the relationship between personal exposures and ambient concentrations can
30	be modified by microenvironments in the following ways: (1) during infiltration, ambient
31	pollutants can be lost through chemical and physical loss processes, and therefore, the ambient

1 component of a pollutant's concentration in a microenvironment is not the same as its ambient 2 concentration but the product of the ambient concentration and the infiltration factor (F_{inf} or α if 3 people spend 100% of their time indoors) and (2) exposure to nonambient, microenvironmental 4 sources.

5 In practice, it is extremely difficult to characterize community exposures by 6 measurements of each individual's personal exposures. Instead, the distribution of personal 7 exposures in a community, or the population exposure, is characterized by extrapolating 8 measurements of personal exposure using various techniques or by stochastic, deterministic or 9 hybrid exposure modeling approaches such as APEX, SHEDS, and MENTOR (see AX3.7 for a 10 description of modeling methods). Variations in community-level personal exposures are 11 determined by cross-community variations in ambient pollutant concentrations and the physical 12 and exposure factors mentioned above. These factors also determine the strength of the 13 association between population exposure to NO₂ of ambient origin and ambient NO₂ 14 concentrations.

- 15
- 16

2.5.2 Ambient Monitors and Personal Exposures

17 Of major concern is the ability of NO₂ measured by ambient monitors to serve as a good 18 indicator of personal exposure to NO₂ of ambient origin. The key question is what errors are 19 associated with using NO₂ measured by ambient monitors as a surrogate for personal exposure to ambient NO₂ in epidemiological studies. There are three aspects of this issue: (1) ambient and 20 personal sampling issues; (2) the spatial variability of ambient NO₂ concentrations; (3) the 21 22 associations between ambient concentrations and personal exposures as influenced by exposure 23 factors, e.g., indoor sources and sinks, and the time people spend indoors and outdoors. These 24 issues are treated individually in the following subsections.

25 26

2.5.2.1 Ambient and Personal Sampling Issues

Personal exposures in human exposure and panel studies of NO₂ health effects are monitored by passive samplers. Their performance is evaluated by comparison to the chemiluminescence monitoring method. Some form of evaluation is crucial for determining measurement errors associated with exposure estimates. However, measurements of NO₂ are subject to artifacts both at the ambient level and at the personal level. As discussed above in Section 2.3, measurements of ambient NO₂ are themselves subject to variable interference caused by other NO_y compounds, in particular PANs, organic nitrates, pNO₃⁻, and HONO and
 HNO₃.

3 The most widely used passive samplers are Palmes tubes (Palmes et al., 1976), 4 Yanagisawa badges (Yanagisawa and Nishimura, 1982), Ogawa samplers (Ogawa and 5 Company, http://www.ogawausa.com) and radial diffusive samplers (Cocheo et al., 1996). The 6 theories behind and applications of Palmes Tubes and Yanagisawa badges have been described 7 in the last AQCD for Oxides of Nitrogen (U.S. Environmental Protection Agency, 1993). 8 Descriptions of the rest of the commercialized samplers will be presented in detail in Annex 9 Section AX3.3. Briefly, after penetrating into a passive sampler governed by Fick's law, 10 environmental NO₂ is fixed by the adsorbent (Krupa and Legge, 2000). The sorbent can be 11 either physically sorptive (e.g., active carbon) or chemisorptive (e.g., triethanolamine [TEA], KI, 12 and arsenate sodium oxide [AsNaO₂]); passive samplers for NO₂ are chemisorptive, i.e., a 13 reagent coated on a support (e.g., metal mesh, filter) chemically reacts with and captures NO₂. 14 The sorbent is extracted and analyzed for one or more reactive derivatives; the mass of NO_2 15 collected is derived from the concentration of the derivative(s) based on the stoichiometry of the 16 reaction.

17 The effect of environmental conditions (e.g., temperature, wind speed, humidity) on the 18 performance of passive samplers is a concern when used for residential indoor, outdoor, and 19 personal exposure studies, because of sampling rates that deviate from ideal and can vary 20 through the sampling period. Overall, field test results of passive sampler performance are not 21 consistent, and they have not been extensively studied over a wide range of concentrations, wind 22 velocities, temperatures and relative humidities (Varshney and Singh, 2003).

23 Another concern for passive sampling is interference from other pollutants. Interference 24 from other NO_v species can contribute to NO₂ exposure monitoring errors, but the kinetics and 25 stoichiometry of interferent compound reactions have not been well established, especially for 26 passive samplers. In the U.K., an NO_2 monitoring plan using a cost-effective, simpler tube-type 27 passive sampler has been proposed and implemented countrywide. However, in a comparison of 28 NO₂ concentrations measured outdoors by the passive samplers with those measured by the 29 chemiluminescence method, NO₂ concentrations measured by the passive samplers were $\sim 30\%$ 30 higher than those measured by the chemiluminescence method (Campbell et al., 1994).

1 Although the majority of studies indicate that passive samplers have very good precision, 2 generally within 5% (Gair et al., 1991; Gair and Penkett, 1995; Plaisance et al., 2004; Kirby 3 et al., 2001), field evaluation studies showed that the overall average NO₂ concentrations 4 calculated from diffusion tube measurements were likely to be within 10% of chemiluminescent 5 measurement data (Bush et al., 2001; Mukerjee et al., 2004). As mentioned before, TEA-based 6 diffusive sampling methods tend to overestimate NO₂ concentrations in field comparisons with 7 chemiluminescence analyzers (Campbell et al., 1994). This could be due in part to chemical 8 reactions between O_3 and NO occurring in the diffusion tube, or differential sensitivity to other 9 forms of NO_v, such as HONO, PAN, and HNO₃, between the passive samplers and the chemiluminescence analyzers (Gair et al., 1991). Due to spatial and temporal variability of NO 10 11 and NO₂ concentrations, especially at roadsides where NO concentrations are relatively high and 12 when sufficient O_3 is present for interconversion between the species, the lack of agreement 13 between the passive samplers and ambient monitors can represent differences in sampler 14 response (Heal et al., 1999; Cox, 2003).

A third aspect of passive sampler performance is that, compared with ambient
chemiluminescence monitors, passive samplers give relatively longer time averaged
concentrations (from days to weeks). Consequently, diffusive samplers including those used for
NO₂ monitoring provide integrated but not high time-resolution concentration measurements.
Hourly fluctuations in NO₂ concentrations may be important to the evaluation of exposure-health
effects relationships, and continuous monitors, such as the chemiluminescent monitors, remain
the only approach for estimating short-term peak exposures.

22 23

2.5.2.2 Spatial Variability

24 25

2.5.2.2.1 Spatial Variability of Ambient NO₂ Concentrations

Summary statistics for the spatial variability in several urban areas across the United States are shown in Table 2.5-1. These areas were chosen because they are the major urban areas with at least five monitors operating from 2003 to 2005. Values in parentheses below the city name indicate the number of monitoring sites in that particular city. The second column shows the mean concentration across all sites and the range in means at individual sites. The third column gives the range of Pearson correlation coefficients between individual site pairs in the urban area. The fourth column shows the 90th percentile absolute difference in concentrations between site pairs. The fifth column gives the coefficient of divergence (COD),
 an indication of the variability across the monitoring sites in each city; a COD value of 0
 indicates there are no differences between concentrations at paired sites (spatial homogeneity),
 while a COD value approaching 1 indicates extreme spatially heterogeneity.

5 As can be seen from the table, mean concentrations at individual sites vary by factors of 6 1.5 to 6 in the MSAs examined. The sites in New York City tend to be the most highly 7 correlated and show the highest mean levels, reflecting their proximity to traffic, as evidenced by 8 the highest mean concentration of all the entries. They are also located closer to each other than 9 sites in western cities. Correlations between individual site pairs range from slightly negative to 10 highly positive in all of the urban areas except for New York City. However, correlation 11 coefficients are not sufficient for describing spatial variability as concentrations at two sites may 12 be highly correlated but show differences in levels. Thus, the range in mean concentrations is 13 given. Even in New York City, the spread in mean concentrations is about 40% of the citywide 14 mean (12/29). The relative spread in mean concentrations is larger in the other urban areas 15 shown in Table 2.5-1. As might be expected, the 90th percentile concentration ranges are even 16 larger than the ranges in the means.

17 The same statistics as shown in Table 2.5-1 have been used to describe the spatial 18 variability of fine particulate matter (PM_{2.5}) (U.S. Environmental Protection Agency, 2004; Pinto 19 et al., 2005) and O_3 (U.S. Environmental Protection Agency, 2006). However, because of 20 relative sparseness in data coverage for NO₂, spatial variability in all cities that were considered 21 for PM_{2.5} and O₃ could not be considered. Thus, the number of cities included here is much 22 smaller than for either O₃ (24 urban areas) or PM_{2.5} (27 urban areas). Even in those cities where 23 there were monitors for all three pollutants, data may not have been collected at the same 24 locations, and even if they were, there will be different responses to local sources. For example, 25 concentrations of NO₂ collected near traffic will be highest in an urban area, but concentrations 26 of O_3 will tend to be lowest there because of titration by NO forming NO₂. However, some 27 general observations can still be made. Mean concentrations of NO₂ at individual monitoring sites are not as highly variable as for O₃ but are more highly variable than PM_{2.5}. Lower bounds 28 29 on intersite correlation coefficients for PM_{2.5} and for O₃ tend to be much higher than NO₂ in the 30 same areas shown in Table 2.5-1. CODs for PM_{2.5} are much lower than for O₃, whereas CODs 31 for NO₂ tend to be the largest among these three pollutants.

1 2.5.2.2.2 Small-Scale Vertical Variability

2 Inlets to instruments for monitoring gas phase criteria pollutants can be located from 3 to 3 15 m above ground level (CFR 58, Appendix E, 2002). Depending on the pollutant, either there 4 can be positive, negative, or no vertical gradient from the surface to the monitor inlet. Positive 5 gradients (i.e., concentrations increase with height) result when pollutants are formed over large 6 areas by atmospheric photochemical reactions (i.e., secondary pollutants such as O₃) and 7 destroyed by deposition to the surface or by reaction with pollutants emitted near the surface. 8 Pollutants that are emitted by sources at or just above ground level show negative vertical 9 gradients. Pollutants with area sources (widely dispersed surface sources) and that have minimal 10 deposition velocities show little or no vertical gradient. Restrepo et al. (2004) compared data for 11 criteria pollutants collected at fixed monitoring sites at 15 m above the surface on a school 12 rooftop to those measured by a van whose inlet was 4 m above the surface at monitoring sites in 13 the South Bronx during two sampling periods in November and December 2001. They found 14 that CO, SO₂, and NO₂ showed negative vertical gradients, whereas O₃ showed a positive 15 vertical gradient and PM_{2.5} showed no significant vertical gradient. As shown in Figure 2.5-2, 16 NO₂ mixing ratios obtained at 4 m (mean ~74 ppb) were about a factor of 2.5 higher than at 15 m 17 (mean ~30 ppb). Because tail pipe emissions occur at lower heights, NO₂ values could have 18 been much higher nearer to the surface and the underestimation of NO₂ values by monitoring at 19 15 m even larger. Restrepo et al. (2004) noted that the use of the NO₂ data obtained by the 20 stationary monitors underestimates human exposures to NO₂ in the South Bronx. This situation 21 is not unique to the South Bronx and could arise in other large urban areas in the United States 22 with populations of similar demographic and socioeconomic characteristics. 23 Thus, weak associations might be found between concentrations at ambient monitors and

other outdoor locations and between concentrations in indoor microenvironments and personal exposures in part because of the spatial (horizontal and vertical) variability in NO₂. As mentioned earlier, there are far fewer monitors for NO₂ than for O₃ or PM_{2.5}. Consequently, NO₂ ambient monitors may be less representative of community or personal exposures than are ambient monitors O₃ or PM_{2.5} for their respective exposures.

29

Figure 2.5-2. NO₂ concentrations measured at 4 m (Van) and at 15 m at NY Department of Environmental Conservation sites (DEC709406 and DEC709407).

1 2.5.2.3 Relationships of Personal Exposure and Ambient Concentration

2 3

2.5.2.3.1 Indoor Sources and Sinks of NO₂ and Associated Pollutants

Indoor sources and indoor air chemistry of NO₂ are important, because they influence the
indoor NO₂ concentrations to which humans are exposed and alter the association between
personal exposures and ambient concentrations.

Penetration of outdoor NO₂ and combustion in various forms are the major sources of
NO₂ to indoor environments, e.g., homes, schools, restaurants, and theaters. As might be
expected, indoor concentrations of NO₂ in the absence of combustion sources are determined by
the infiltration of outdoor NO₂ (Spengler et al., 1994; Weschler and Shields, 1994; Levy et al.,
11 1998b), with potentially significant indoor contributions from chemical reactions of NO in

Source: Restrepo et al. (2004).

exhaled breath with O₃ (see AX3.4.2 for sample calculations). Indoor sources of nitrogen oxides 1 2 have been characterized in several reviews, namely the last AQCD for Oxides of Nitrogen (U.S. 3 Environmental Protection Agency, 1993); the Review of the Health Risks Associated with 4 Nitrogen Dioxide and Sulfur Dioxide in Indoor Air for Health Canada (Brauer et al., 2002); and 5 the Staff Recommendations for revision of the NO₂ Standard in California (California Air 6 Resources Board, 2006). Mechanisms by which nitrogen oxides are produced in the combustion 7 zones of indoor sources were reviewed in the last AQCD for Oxides of Nitrogen (U.S. 8 Environmental Protection Agency, 1993) and will not be repeated here. Sources of ambient NO₂ 9 are reviewed in AX2.6. It should also be noted that indoor sources can affect ambient NO₂ 10 levels, particularly in areas in which atmospheric mixing is limited, such as in valleys. 11 Combustion of fossil fuels and biomass is the major primary source of nitrogen oxides. 12 Combustion of fossil fuels occurs in appliances used for cooking, heating, and drying clothes, 13 e.g., oil furnaces, kerosene space heaters, coal stoves. Motor vehicles and various types of 14 generators in structures attached to living areas also contribute NO_2 to indoor environments. 15 Indoor sources of NO₂ from biomass include wood burning fireplaces and wood stoves and 16 tobacco.

17 A large number of studies, as described in the reviews cited above, have all noted the 18 importance of gas cooking appliances as sources of NO₂ emissions. Depending on geographical 19 location, season, other sources of NO₂, length of monitoring period, and household 20 characteristics, homes with gas cooking appliances have approximately 50% to over 400% 21 higher NO₂ concentrations than homes with electric cooking appliances (Gilbert et al., 2006; Lee 22 et al., 2000; Garcia-Algar et al., 2003; Raw et al., 2004; Leaderer et al., 1986; Garcia-Algar, 23 2003). Gas cooking appliances remain significantly associated with indoor NO₂ concentrations 24 after adjusting for several potential confounders including season, type of community, 25 socioeconomic status, use of extractor fans, household smoking, and type of heating (Garcia-26 Algar et al., 2004; Garrett, 1999). Homes with gas appliances with pilot lights emit more NO_2 27 resulting in NO₂ concentrations ~10 ppb higher than in homes with gas appliances with 28 electronic ignition (Spengler et al., 1994; Lee et al., 1998). Secondary heating appliances are additional sources of NO2 in indoor environments, particularly if the appliances are unvented or 29 30 inadequately vented. As heating costs increase, the use of these secondary heating appliances

31 tends to increase.

- Gas heaters, particularly when unvented or inadequately vented, produce high levels of indoor NO₂ (Kodoma et al., 2002). Results summarized by Brauer et al. (2001) indicate that concentrations of NO₂ in homes with unvented gas hot water heaters were 10 to 21 ppb higher than in homes with vented heaters, which in turn, had NO₂ concentrations 7.5 to 38 ppb higher than homes without gas hot water heaters.
- Table 2.5-2 shows short-term average (i.e., minutes to hours) concentrations of NO₂ in
 homes with combustion sources (mainly gas fired), and Table 2.5-3 shows long-term average
 (i.e., 24 h to 2 weeks) concentrations of NO₂ in homes with mainly gas combustion sources.
- 9 As can be seen from Tables 2.5-2 and 2.5-3, shorter-term average concentrations tend to 10 be much higher than longer-term averages. As Triche et al. (2005) indicated, the 90th percentile 11 concentrations can be substantially greater than the medians, even for 2-week samples. This 12 finding illustrates the high variability of indoor NO₂ found among homes, reflecting differences 13 in ventilation of emissions from sources, air exchange rates, the size of rooms, etc. The 14 concentrations for short averaging periods that are listed in Table 2.5-2 correspond to about 10 to 15 30 ppb on a 24-h average basis. As can be seen from inspection of Table 2.5-3, these sources 16 would contribute significantly to the longer-term averages reported there if operated on a similar 17 schedule on a daily basis. This implies that measurements made with long averaging periods 18 may not capture the nature of the diurnal pattern of indoor concentrations of NO₂ in homes with 19 strong indoor sources, a problem that becomes more evident as ambient NO₂ levels decrease 20 with more efficient controls on outdoor sources.
- The contribution of NO_2 from combustion of biomass fuels has not been studied as extensively as that from gas. A main conclusion from the 1993 AQCD for Oxides of Nitrogen was that properly vented wood stoves and fireplaces would make only minor contributions to indoor NO_2 levels and several studies conclude that using wood burning appliances does not increase indoor NO_2 concentrations (Levesque et al., 2001; Triche et al., 2005).
- Other indoor combustion sources of NO_2 are candle burning and smoking. In a study of students living in Copenhagen, Sorensen et al. (2005) found that personal exposures to NO_2 were significantly associated with time exposed to burning candles in addition to other sources (data not reported). Results of studies relating NO_2 concentrations and exposures to environmental tobacco smoke (ETS) have been mixed. Several studies found positive associations between

NO₂ levels and ETS (e.g., Linaker et al., 1996; Farrow et al., 1997; Alm et al., 1998; Levy, 1998;
 Monn et al., 1998; Cyrys et al., 2000; Lee et al., 2000; Garcia-Algar, 2004) whereas others have
 not (Madany et al., 1993; Hackney et al., 1992; Kawamoto et al., 1993).

Some copollutants could be generated from indoor combustion sources along with NO₂.
Spicer et al. (1993) compared the measured increase in HONO in a test house resulting from
direct emissions of HONO from a gas range and from production by surface reactions of NO₂.
They found that emissions from the gas range could account for ~84% of the measured increase
in HONO. In a study of Southern California homes (Lee et al., 2002), indoor levels of NO₂ and
HONO were positively associated with the presence of gas ranges.

10 Rogge et al. (1993) reported that most of the particle mass emitted from a vented natural 11 gas space heater and a hot water heater was in the form of organic compounds. About 26% of 12 the mass could be ascribed to single organic compounds, the majority of which were PAHs, oxy-13 PAHs, aza arenes, and thia arenes. Brown et al. (2004) characterized emissions of NO₂, 14 formaldehyde (HCHO), carbon monoxide (CO) and a number of hydrocarbons, aldehydes, and 15 acids from unvented gas heaters in a chamber study in Australia. They found highly variable 16 concentrations of these pollutants depending on the model of heater and operating conditions. 17 Concentrations of NO₂ in their room-sized test chamber ranged from 180 to 810 ppb; HCHO

ranged from <10 to 2100 ppb; CO ranged from \sim 1 to 18 ppm along with smaller amounts of PM_{2.5} and hydrocarbons, aldehydes, and acids.

20 Chemistry in indoor settings can be both a source and a sink for NO_2 (Weschler and 21 Shields, 1997). NO_2 is produced by reactions of NO with O_3 or peroxy radicals, while NO_2 is 22 removed by gas phase reactions with O_3 and assorted free radicals and by surface-promoted

23 hydrolysis and reduction reactions. The concentration of indoor NO₂ also affects the

24 decomposition of PAN. Each of these processes is discussed below.

Indoor NO can be oxidized to NO₂ by reacting with O₃ or peroxy radicals. The latter are generated by indoor air chemistry involving O₃ and unsaturated hydrocarbons such as terpenes found in air fresheners and other household products (Sawar et al., 2002a,b; Nazaroff and

28 Weschler, 2004; Carslaw, 2007).

At an indoor O₃ concentration of 10 ppb and an indoor NO concentration that is significantly smaller than that of O₃, the half-life of NO is 2.5 min (using kinetic data contained in Jet Propulsion Laboratory, 2006). This reaction is sufficiently fast to compete with even relatively fast air exchange rates. Hence, the amount of NO₂ produced from NO tends to be
 limited by the amount of O₃ available (Weschler et al., 1994).

3 NO₂ reacts with O₃ to produce nitrate radicals (NO₃). To date, there have been no indoor 4 measurements of the concentration of NO_3 radicals in indoor settings. Modeling studies by 5 Nazaroff and Cass (1986), Weschler et al. (1992), Sarwar et al. (2002b), and Carslaw et al. 6 (2007) estimate indoor NO₃ radical concentrations in the range of 0.01 to 5 parts per trillion 7 (ppt), depending on the indoor levels of O₃ and NO₂. Once formed, NO₃ can oxidize organic 8 compounds by either adding to an unsaturated carbon bond or abstracting a hydrogen atom 9 (Wayne et al., 1991). In certain indoor settings, the nitrate radical may be a more important 10 indoor oxidant than either O_3 or the hydroxyl radical (Nazaroff and Weschler, 2004; Wayne 11 et al., 1991). Thus, NO₃ radicals and the products of NO₃ radical chemistry may be meaningful 12 confounders in NO₂ exposure studies.

13 Reactions between NO₂ and various free radicals can be an indoor source of organo-14 nitrates, analogous to the chain-terminating reactions observed in photochemical smog 15 (Weschler and Shields, 1997). Additionally, based on laboratory measurements and 16 measurements in outdoor air (Finlayson-Pitts and Pitts, 2000), one would anticipate that NO₂, in the presence of trace amounts of HNO₃, can react with PAHs sorbed onto indoor surfaces to 17 18 produce mono- and dinitro-PAHs. Nitrogen dioxide can also be reduced on certain surfaces, 19 forming NO. Spicer et al. (1989) found that as much as 15% of the NO₂ removed on various 20 indoor surfaces was reemitted as NO. Weschler and Shields (1996) found that the amount of 21 NO₂ removed by charcoal filters used in buildings were almost equally matched by the amount 22 of NO subsequently emitted by the same filters.

23 Nitrogen dioxide can also be converted to HONO indoors through air chemistry. As 24 noted earlier in this chapter, HONO occurs in the atmosphere mainly through multiphase 25 processes involving NO₂. Nitrous acid has been observed to form on surfaces containing 26 partially oxidized aromatic structures (Stemmler et al., 2006) and on soot particles (Aumann 27 et al., 1998). Indoors, surface-to-volume ratios are much larger than outdoors, and the surface-28 mediated hydrolysis of NO2 is a major indoor source of HONO (Brauer et al., 1990; Febo and 29 Perrino, 1991; Spicer et al., 1993; Brauer et al., 1993; Spengler et al., 1993; Wainman et al., 30 2001; Lee et al., 2002). Lee et al. (2002) reported average indoor HONO levels were about 6 31 times higher than outdoor levels (4.6 versus 0.8 ppb). Indoor HONO concentrations averaged

1 17% of indoor NO₂ concentrations, and the two were strongly correlated. Indoor HONO levels 2 were higher in homes with humidifiers compared to homes without humidifiers (5.9 versus 2.6 3 ppb). This last observation is consistent with the studies of Brauer et al. (1993) and Wainman 4 et al. (2001), indicating that the production rate of HONO from NO₂⁻surface reactions is larger at higher relative humidities. Spicer et al. (1993) reported that an equilibrium between adsorption 5 6 of HONO from the gas range (or other indoor combustion sources) and HONO produced by 7 surface reactions determines the relative importance of these processes in producing HONO in 8 indoor air.

- 9
- 10 11

2.5.2.3.2 Associations among Ambient and Outdoor Concentrations and Personal Exposures

Results of studies showing associations between ambient concentrations and personal exposures are shown in Table 2.5-4A and results of studies showing associations between outdoor concentrations and personal exposures are shown in Table 2.5-4B. Figure 2.5-3 summarizes these correlation coefficients with box-whisker plots.

16 The association between personal NO_2 exposure and ambient and outdoor NO_2 17 concentrations varies from poor to good as shown in Tables 2.5-4A and B, with stronger 18 associations generally found when outdoor rather than ambient concentrations are used. This 19 situation arises in part because outdoor measurements are generally made much closer to study 20 participants' homes than are measurements of ambient NO₂ concentrations (cf. Section 2.5.2.2). 21 Associations between ambient concentrations and personal exposures were not stratified 22 by the presence of indoor sources, except in Alm et al. (1998) and Sarnat et al. (2006). The 23 strength of the association between personal exposures and ambient and/or outdoor 24 concentrations for a population is determined by variations in indoor or other local sources, air 25 exchange rate, penetration, and decay rate of NO₂ in different microenvironments and the time 26 people spend in different microenvironments with different NO₂ concentrations. Alm et al. 27 (1998) indicated that the association between personal exposure and outdoor concentration was 28 stronger than the correlation between personal exposure and central site concentration. Kim 29 et al. (2006) pointed out that the association was not improved using the ambient sampler closest

Personal vs. Ambient Personal vs. Outdoor

1 to a home. Home ventilation is another important factor modifying the personal-ambient 2 relationships; one would expect to observe the strongest associations for subjects spending time 3 indoors with open windows. Alm et al. (1998) and Kodama et al. (2002) observed the 4 association between personal exposure and ambient concentration became stronger during the summer than the winter. However, Sarnat et al. (2006) reported that R² values decreased from 5 6 0.34 for a low ventilation population to 0.16 for a high ventilation population in the summer, and 7 from 0.47 to 0.34 in the fall. 8 The association between personal exposure and ambient concentration is complicated and

9 is determined by many factors. Exposure misclassification might occur if a single factor, such as

1 season or ventilation status, is used as an exposure indicator. Higher personal to ambient 2 correlation has been found for subjects living in rural areas and lower correlation with subjects 3 living in urban areas (Rojas-Bracho et al., 2002; Alm et al., 1998). Spengler et al. (1994) also 4 observed that the relationship between personal exposure and outdoor concentration was highest in areas with lower ambient NO₂ levels ($R^2 = 0.47$) and lowest in areas with higher ambient NO₂ 5 levels ($R^2 = 0.33$). This might reflect the highly heterogeneous distribution or the effect of local 6 7 sources of NO₂ in an urban area, and personal activities are more diverse in an urban area. 8 However, it is also possible that indoor sources could explain more personal exposure when 9 ambient concentrations become lower and more homogeneously distributed.

When there is little or no contribution from indoor sources, ambient concentrations
primarily determine exposure; however, if there are indoor sources, the importance of outdoor
levels in determining personal exposures decreases. The association between ambient
concentrations and personal exposures strengthens after controlling for indoor sources.
Raaschou-Nielsen et al. (1997), Spengler et al. (1994), and Gauvin et al. (2001) reported that R²
values increased by 10 to 40% after controlling for indoor sources, such as gas appliances and
ETS.

17 The correlation coefficient between personal exposures and ambient concentrations has 18 different meanings for different study designs. There are three types of correlations generated 19 from different study designs: longitudinal, "pooled," and daily-average correlations. 20 Longitudinal correlations are calculated when data from a study includes measurements over 21 multiple days for each subject (longitudinal study design). Longitudinal correlations describe the 22 temporal relationship between daily personal NO₂ exposure or microenvironment concentration 23 and daily ambient NO₂ concentration for each individual subject. The longitudinal correlation 24 coefficient may differ for each subject. The distribution of correlations across a population could 25 be obtained with this type of data. Pooled correlations are calculated when a study involves one 26 or only a few measurements per subject and when different subjects are studied on subsequent 27 days. Pooled correlations combine individual subject/individual day data for the calculation of 28 correlations. Pooled correlations describe the relationship between daily personal NO₂ exposure 29 and daily ambient NO₂ concentration across all subjects in the study. Daily-average correlations 30 are calculated by averaging exposure across subjects for each day. Daily-average correlations 31 then describe the relationship between the daily average exposure and daily ambient NO₂

concentration (U.S. Environmental Protection Agency, 2004). The type of correlation analysis 1 2 can have a substantial effect on the value of the resultant correlation coefficient. Mage et al. 3 (1999) showed that very low correlations between personal exposure and ambient concentrations 4 could be obtained when people with very different non-ambient exposures are pooled, even 5 though their individual longitudinal correlations are high. Most studies, (employing both cross-6 sectional and longitudinal study designs) examined in the current review showed that ambient 7 NO₂ is associated with personal NO₂ exposure, however, the strength of the association varied 8 considerably.

9 10

2.5.2.3.3 Ambient Contribution to Personal NO₂ Exposure

Another aspect of the relationship of personal NO₂ exposure and ambient NO₂ is the 11 12 contribution of ambient NO₂ to personal exposures. The infiltration factor (F_{inf}) and alpha (α) 13 are the keys to evaluate personal NO₂ exposure of ambient origin. As defined in Equations 2.5-2 14 through 2.5-5, the infiltration factor (F_{inf}) of NO₂, the physical meaning of which is the fraction 15 of ambient NO₂ found in the indoor environment, is determined by the NO₂ penetration 16 coefficient (P), air exchange rate (a), and the NO₂ decay rate (k). Alpha (α) is a function of F_{inf} 17 and the fraction of time people spend outdoors (y), and the physical meaning of α is the ratio of 18 personal ambient exposure concentration to ambient concentration, in the absence of exposures 19 to non-ambient sources (i.e., when $E_{na} = 0$).

20 The values for α and F_{inf} can be calculated physically through Equations 2.5-2 through 21 2.5-5, if P, k, a, and y are known. However, the values of P and k for NO₂ are rarely reported, 22 and in most mass balance modeling work, P is assumed to equal 1 and k is assumed to equal 0.99 h⁻¹, (Yamanaka, 1984; Yang et al., 2004; Dimitroulopoulou et al., 2001; Kulkarni et al., 23 24 2002). It is well known that P and k are dependent on a large number of indoor parameters, such 25 as temperature, relative humidity, surface properties, surface-to-volume ratio, the turbulence of 26 airflow, building type and coexisting pollutants (Lee et al., 1996; Cotterill et al., 1997; Monn 27 et al., 1998; Garcia-Algar et al., 2003; Sorensen et al., 2005; Zota et al., 2005). As a result, using a fixed value, as mentioned above, would either over- or underestimate the true α or F_{inf} . It 28 29 should also be pointed out that both P and k are functions of the complicated mass transfer 30 processes that occur on indoor surfaces, and therefore, are associated with air exchange rate,

which has an impact on the turbulence of indoor airflows. However, the relationship between *P*,
 k, and *a* has not been thoroughly investigated.

3 Alternatively, the ratio of personal exposure to ambient concentration can be regarded as 4 α in the absence of indoor or nonambient sources. Only a few studies have reported the value 5 and distribution of the ratio of personal NO_2 exposure to ambient NO_2 concentration, and even 6 fewer studies reported the value and distribution of α based on sophisticated study designs. 7 Rojas-Bracho et al. (2002) reported the median personal/outdoor ratio was 0.64 (with an IQR of 8 (0.45), but the authors reported that α was overestimated by this ratio because of indoor sources. 9 The random component superposition (RCS) model is an alternative way to calculate F_{inf} 10 or α using observed ambient and personal exposure concentrations (Ott et al., 2000). The RCS 11 statistical model (shown in Equation 2.5-2 through 2.5-5) uses the slope of the regression line of 12 personal concentration on the ambient NO₂ concentration to estimate the population averaged 13 attenuation factor and means and distributions of ambient and nonambient contributions to 14 personal NO_2 concentrations (the intercept of the regression is the averaged nonambient 15 contribution to personal exposure) (U.S. Environmental Protection Agency, 2004). As shown in 16 Table 2.5-5, α calculated by the RCS model ranges from 0.3 to 0.6. Similarly, as shown in Table 17 2.5-6, *F_{in}* ranges from 0.4 to 0.7.

18 The RCS model calculates ambient contributions to indoor concentrations and personal 19 exposures based on the statistical inferences of regression analysis. However, personal-outdoor 20 regressions could be affected by extreme values (outliers either on the x or the y axis). Another limitation of the RCS model is that this model is not designed to estimate ambient and 21 22 nonambient contributions for individuals, in part because the use of a single value for α does not 23 account for the large home-to-home variations in actual air exchange rates and penetration and 24 decay rates of NO₂. In the RCS model, α is also determined by the selection of the predictor. 25 Using residential outdoor NO₂ concentrations as the model predictor might give a different 26 estimate of α than using ambient NO₂ because of the spatial variability of NO₂ mentioned early 27 in this section.

Personal exposure levels in most of the studies considered here were lower than the corresponding outdoor or ambient levels. In the presence of local sources (indoor or local traffic sources not accounted for by the ambient monitor), personal exposure levels could be higher than outdoor or ambient levels (Spengler et al., 1994, 1996; Nakai et al., 1995; Linn et al., 1996; Raaschou-Nielsen et al., 1997; Alm et al., 1998; Levy et al., 1998; Monn et al., 1998; Liard et al.,
 1999; Kramer et al., 2000; Linaker et al., 2000; Mukala et al., 2000; Gauvin et al., 2001; Moon
 et al., 2001; Rotko et al., 2001; Sarnat et al., 2001, 2005, 2006; Kodama et al., 2002; Mosqueron
 et al., 2002; Ramirez-Aguilar et al., 2002; Rojas-Bracho et al., 2002; Lai et al., 2004; Nerriere
 et al., 2005; Sorensen et al., 2005; Kim et al., 2006).

6 Nerriere et al. (2005) investigated factors determining the discrepancies between personal 7 exposure and ambient levels in the Genotox ER study in France (Grenoble, Paris, Rouen, and 8 Strasbourg). The authors reported that factors affecting the concentration discrepancies between 9 personal exposure and corresponding ambient monitoring site concentrations were season, city 10 and land use dependent. During the winter, city and land use account for 31% of the variation of 11 the discrepancy, and during the summer, 54% of the variation in the discrepancy can be 12 explained by these factors. When using the ambient site to represent ambient levels, the largest 13 difference between ambient and personal exposure was found at the "proximity to traffic" site, 14 while the smallest difference was found at the "background" site. When using urban background 15 site as ambient level, the largest difference was observed at the "industry" site, and the smallest 16 difference was observed at the background site, which reflected the heterogeneous distribution of 17 NO₂ in an urban area. During winter, differences between ambient site and personal exposure 18 concentrations were larger than those in the summer.

19 In summary, NO₂ is monitored at far fewer sites than either O₃ or PM. Significant spatial 20 variations in ambient NO₂ concentrations were observed in urban areas. Measurements of NO₂ 21 are subject to artifacts both at the ambient level and at the personal level. Personal exposure to 22 ambient and outdoor NO₂ is determined by many factors as listed in Section 2.5.1 and mentioned 23 previously in Section 2.5.2. These factors all help determine the contribution of ambient NO_2 to 24 personal exposures. Personal activities determine when, where, and how people are exposed to 25 NO₂. The variations of these physical and exposure factors determine the strength of the 26 association between personal exposure and ambient concentrations both longitudinally and cross-27 sectionally. In the absence of indoor and local sources, personal exposures to NO_2 are between 28 the ambient level and the indoor level. However, personal exposures could be much higher than 29 either indoor or outdoor concentrations in the presence of these sources. A number of studies 30 found that personal NO₂ was associated with ambient NO₂, but the strength of the association 31 ranged from poor to good.

August 2007

1 Some researchers concluded that ambient NO_2 may be a reasonable proxy for personal 2 exposures, while others noted that caution must be exercised if ambient NO₂ is used as a 3 surrogate for personal exposure. Reasons for the differences in study results are not clear, but 4 are related in large measure to differences in study design, to the spatial heterogeneity of NO_2 in 5 study areas, to indoor sources, to the seasonal and geographic variability in the infiltration of 6 ambient NO₂ and to differences in the time spent in different microenvironments. Measurement 7 artifacts at the ambient level and differences in analytical measurement capabilities among 8 different groups could also have contributed to the mixed results. The collective variability in all 9 of the above parameters, in general, contributes to exposure misclassification errors in air 10 pollution-health outcome studies.

11 The association between community average exposures and ambient concentrations is 12 more directly relevant to epidemiological studies, in which ambient concentrations are used as a 13 surrogate for community exposure. Liard et al. (1999) conducted an exposure study for office 14 workers and children in Paris. Three 4-day averaged measurements were conducted for both 15 adults and children, and personal NO₂ exposures were measured at the same time for each study 16 participant. The authors reported that the population-averaged exposure during each 17 measurement fluctuated with the ambient concentration, with an r_s of 1, although the correlation 18 coefficient based on individual measurements was low (Table 2.5-4A). The findings in this 19 study support the assumption in time-series epidemiological studies that ambient concentrations 20 are a reasonable surrogate for community average exposures. Monn et al. (1998) and Monn 21 (2001) reported personal NO₂ exposures obtained in the SAPALDIA study (eight study centers 22 in Switzerland). In each study location, personal exposures for NO_2 were measured 23 simultaneously for all participants, as well as the residential outdoor concentrations (Table 24 2.5-4B). Monn (2001) observed a strong association between the average personal exposures in each study location and corresponding average outdoor concentrations with an R^2 of 0.965. As 25 26 pointed out by the author, in an analysis of individual single exposure and outdoor concentration data, personal versus outdoor R^2 was less than 0.3 (Monn et al., 1998). The results of Monn 27 28 (2001) imply that long-term averaged ambient concentrations are a good surrogate for population 29 exposures.

30

1 2.5.2.4 Exposure Measurement Error in Epidemiological Studies: NO₂

2 In many air pollution epidemiological studies, especially time-series studies with 3 administrative data on mortality and hospitalization outcomes, data from central ambient 4 monitoring sites generally are used as the estimate of exposure. Personal exposures of individual 5 study subjects generally are not directly measured in epidemiological studies. Routinely 6 collected ambient monitor data, though readily available and convenient, may not represent true 7 personal exposure, which includes both ambient and nonambient (i.e., indoor) source exposures. 8 Also, personal exposure measurements may or may not be subject to the same artifacts as the 9 ambient measurements. Therefore, they may not be measuring the same quantities. Zeka and 10 Schwartz (2004) state that each pollutant, as measured at a central site in each city, is a surrogate 11 for exposure to the same pollutant in personal exposure measurements.

12 In considering exposure error, it should be noted that total personal exposure can be 13 partitioned into two types of sources, ambient and nonambient. Sheppard (2005) notes that 14 nonambient source exposures typically vary across individuals, but the community averages do 15 not vary across communities. In addition, nonambient exposures are not likely to have strong 16 temporal correlations. In contrast, ambient concentrations across individuals should be highly 17 correlated, as they tend to vary over time similarly for everyone because of changes in source 18 generation, weather, and season. The independence of ambient and nonambient exposure 19 sources has important implication. Sheppard et al. (2005) observes that when ambient and 20 nonambient sources are independent, exposure variation due to nonambient source exposures 21 behaves like Berkson measurement error (i.e., statistically independent from the observed 22 variable) and does not bias the effect estimates.

23 A simulation study by Sheppard et al. (2005) also considered attenuation of the risk based 24 on personal behavior, their microenvironment, and qualities of the pollutant in time-series 25 studies. Of particular interest is their finding that significant variation in nonambient exposure or 26 in ambient source exposure that is independent of ambient concentration does not further bias the 27 effect estimate. In other words, risk estimates were not further attenuated in time-series studies 28 even when the correlations between personal exposures and ambient concentrations were weak. 29 In the case of NO₂, there are exposures to nonambient indoor sources to consider. 30 Exposures to nonambient sources are largely independent of ambient exposures for a number of

31 sources such as exposures associated with cooking or smoking. However, the relationship

1 between exposure to some nonambient sources and to ambient concentrations may not be 2 entirely straightforward. If the indoor source strength is driven by outdoor parameters that also 3 determine ambient levels, then exposures to these sources could be associated with ambient 4 concentrations. For example, use of natural gas or other fuels for heating varies with outdoor 5 temperatures and are a source of nonambient exposures to NO₂. Of course, the contribution to 6 personal exposures from indoor heating depends to a large extent on how efficiently the 7 emissions are vented. Ambient levels will also vary with emissions from local facilities, such as 8 power plants, that respond to changes in temperature. Indoor sources could also be affecting 9 ambient levels. This situation is found in many areas where there can be trapping of emissions 10 within topographic features. Again, the contribution of the nonambient sources depends largely 11 on how efficiently the emissions are vented.

12 Other complications for NO₂ in the relationship between personal exposures and ambient 13 concentrations include expected strong seasonal variation of personal behaviors and building 14 ventilation practices that can modify exposure. Also, there may be potential differential errors 15 based on different measurement techniques for ambient and personal measurement. In addition, 16 the relationship may be affected by temperature (e.g., high temperature may increase air 17 conditioning use, which may reduce NO_2 penetration indoors), further complicating the role of 18 temperature as a confounder of NO₂ health effects. It should be noted that the pattern of 19 exposure misclassification error and influence of confounders may differ across the outcomes of 20 interest as well as in susceptible populations and by study design. For example, those who may 21 be suffering from chronic cardiovascular or respiratory conditions may be in a more protective 22 environment (i.e., with less exposure to both NO₂ and its confounders such as temperature and 23 PM) than those who are healthy.

24 As discussed thoroughly in the 2004 PM AQCD (Section 8.4.5), the resulting exposure 25 measurement error and its effect on the estimates of relative risk must be considered to include 26 both Berkson type and classical-type error (i.e., statistically independent of the true variable). 27 Errors of the classical type arise when a quantity is measured by some device and repeated 28 measurements vary around the true value. Error of the Berkson type is involved when a group's 29 average is assigned to each individual suiting the group's characteristics. The group's average is 30 thus the "measured value," that is the value that enters the analysis, and the individual latent 31 value is the "true value" (Heid et al., 2004)

1 In theory, there are three components to exposure measurement error in time-series 2 studies as described by Zeger et al. (2000): (1) the use of average population rather than 3 individual exposure data, (2) the difference between average personal ambient exposure and 4 ambient concentrations at central monitoring sites, and (3) the difference between true and 5 measured ambient concentrations. The first error component, having aggregate rather than 6 individual exposure data, is a Berkson measurement error, which in a simple linear model 7 increases the standard error, but does not bias the risk estimate. The second error component 8 resulting from the difference between average personal ambient exposure and outdoor ambient 9 concentration level has the greatest potential to introduce bias. If the error is of a fixed amount 10 (i.e., absolute differences do not change with increasing concentrations), there is no bias. 11 However, if the error is not a fixed difference, this error will likely attenuate the NO₂ risk 12 estimate, as personal NO₂ exposures are generally lower than ambient NO₂ concentrations in 13 homes without sources while they are higher in homes with sources. The third error component, 14 the instrument measurement error in the ambient levels, is referred to as nondifferential 15 measurement error and, while unlikely to cause substantial bias, can lead to a bias toward 16 the null.

17 Sheppard (2005) stated that the time-series design is an ecologic study design and, thus, 18 suffers from loss of information (i.e., sources of variation) in the analysis. In air pollution 19 studies, it only uses information about the ambient concentrations, which represent only a 20 fraction of the total personal exposure variation over time and individuals in a population. Thus, 21 there is less power in time-series studies than there would be if the time-series design could use 22 all the exposure variation in the population. Sheppard concluded that the size of the populations 23 that can be feasibly studied in time-series studies, even with the lower exposure variation from 24 using only ambient concentration data, overwhelms the benefits of using total personal exposure 25 on a subset of the population in a feasible panel study. Relative to panel studies, time-series 26 studies are immensely more powerful, because they can consider all the events over time in 27 entire populations.

Interpretation of the results observed in epidemiological studies using NO₂ measurements
from ambient monitoring sites needs to consider the impact of exposure measurement error.
Results from a simulation study by Sheppard et al. (2005) seem to suggest that effect estimates
were not further biased in time-series studies even when the correlations between personal

exposures and ambient concentrations were weak. Zeger et al. (2000) indicated that realistic models for estimating air pollution health effects have elements of both classical and Berkson error models, which generally lead to effect estimates biased toward the null. However, they also noted that when a pollutant with no health effect is correlated with at least one pollutant having a nonzero effect, regression coefficients can be biased away from the null; that is, positive associations can be observed.

7 8

2.5.3 NO₂ as a Component of Mixtures

9 10

2.5.3.1 Correlations between Ambient NO₂ and Ambient Copollutants

11 Confounding of NO₂ health effects is often examined at the ambient level, as ambient 12 concentrations are generally used to reflect exposures in epidemiological studies. The majority 13 of studies examining pollutant associations in the ambient environment have focused on ambient 14 NO₂, PM_{2.5} (and its components), and CO, with fewer studies reporting the relationship between 15 ambient NO₂ and ambient O₃ or SO₂.

16 Data were compiled from EPA's Air Quality System and a number of exposure studies. 17 Correlations between ambient concentrations of NO₂ and other pollutants, PM_{2.5} (and its 18 components where available), CO, O₃, and SO₂ are summarized in Table 2.5-7. Mean values of 19 paired, site-wise correlations are shown. As can be seen from the table, NO₂ is moderately 20 correlated with PM_{2.5} (range: 0.37 to 0.78) and with CO (0.41 to 0.76) in suburban and urban 21 areas. At locations such as Riverside, CA, associations between ambient NO₂ and ambient CO 22 concentrations (both largely traffic-related pollutants) are much lower, likely as the result of 23 other sources of both CO and NO₂ increasing in importance in moving away from the urban 24 core. These sources include oxidation of CH₄ and other biogenic compounds, residential wood 25 burning and prescribed and wild land fires for CO and soil emissions, lightning, and residential 26 wood burning and wild land fires for NO₂. In urban areas, the ambient NO₂-CO correlations 27 vary widely. The strongest correlations are seen between NO₂ and elemental carbon. Note that 28 the results of Hochadel et al. (2006) for PM_{2.5} optical absorbance have been interpreted in terms 29 of elemental carbon (EC). Correlations between ambient NO_2 and ambient O_3 are mainly 30 negative, owing to the chemical relation between the two, with again considerable variability in 31 the observed correlations. Only one study (Sarnat et al., 2001) examined associations between
ambient NO₂ and ambient SO₂ concentrations, and it showed a negative correlation during
 winter. This analysis needs to be extended to other cities.

3 Figures 2.5-4a-d show seasonal plots of correlations between NO₂ and O₃ versus 4 correlations between NO₂ and CO. As can be seen from the figures, NO₂ is positively correlated 5 with CO during all seasons at all sites. However, the sign of the correlation of NO₂ with O₃ 6 varies with season, ranging from negative during winter to slightly positive during summer. 7 There are at least two main factors contributing to the observed seasonal behavior. Ozone and 8 radicals correlated with it tend to be higher during the summer, thereby tending to increase the 9 ratio of NO₂ to NO. Nitrogen oxide compounds formed by further the oxidation of NO_x are also 10 expected to be correlated with O_3 and increased summertime photochemical activity. Because 11 some of these additionally oxidized nitrogen compounds create a positive artifact in the FRM for NO_z, they may also tend to increase the correlation of NO₂ with O₃ during the warmer months. 12 13 A number of case studies show similar correlations between ambient NO₂ and other 14 pollutants presented above. Particulate and gaseous copollutants data were analyzed at 10 sites 15 in St. Louis Regional Air Pollution Study dataset (1975-1977) by Kim et al. (2005). This study examined the spatial variability in source contributions to PM_{2.5}. Table 2.5-8 shows correlations 16

17 between NO_x and traffic pollutants measured in ambient air.

Leaded gasoline was in use at the time, making Pb and Br good markers for motor vehicle exhaust. Motor vehicle emissions are the main anthropogenic source of CO in urban areas. However, outside of urban areas and away from sources burning fossil fuels, biomass burning and the oxidation of biogenic hydrocarbons, in particular isoprene and methane, can represent the major source of CO. In general, biogenic emissions of precursors to CO formation or CO from biomass burning can cause the relationship between CO and motor vehicles to break down.

In the Restrepo et al. (2004) study, NO₂ behaved as if traffic was its main source, as NO₂ behaved similarly to CO and PM_{2.5}, i.e., their concentrations decreased with height. Ozone showed the opposite vertical gradient, i.e., its concentration increased with height. Seaton and Dennekamp (2003) suggested that NO₂ may be a surrogate for ultrafine particles, in particular

Figure 2.5-4a-d. Correlations of NO_2 to O_3 versus correlations of NO_2 to CO for Los Angeles, CA (2001-2005).

1 for particle number concentrations. The results from the measurements made at a background

2 site in Aberdeen city over the course of 6 months showed very high correlation between the

3 number concentration of particles less than 100 nm in diameter and NO₂. The correlation

4 between NO₂ and the particle number concentration (r = 0.89) was much higher than that

5 between NO₂ and PM_{2.5}

1 (r = 0.55) and that between NO₂ and PM₁₀ (r = 0.45). A time-series mortality study (Wichmann 2 et al., 2000; re-analysis by Stölzel et al., 2003) conducted in Erfurt, Germany, measured and 3 analyzed ultrafine particle number and mass concentrations as well as NO₂. Unlike Seaton and 4 Dennekamp's data, in this data set, the correlation between NO₂ and various number 5 concentration indices were not much stronger than those between PM_{2.5} and number 6 concentration indices or those between PM₁₀ and number concentration indices. For example, 7 the correlation between $NC_{0.01-0.10}$ (particle number concentration for particle diameter between 8 10 and 100 nm) and NO₂, PM_{2.5}, and PM₁₀ were 0.66, 0.61, and 0.61, respectively.

- 9

10 2.5.3.2 Correlations of Personal and Ambient NO₂ and Personal and Ambient 11 **Copollutants**

12 Correlations between ambient concentrations of NO₂ and personal copollutants, PM_{2.5} 13 (and its components where available), CO, O₃, and SO₂ are summarized in Table 2.5-9. 14 Correlations between personal concentrations of NO₂ and ambient copollutants, PM_{2.5} (and its 15 components where available), CO, O₃, and SO₂ are summarized in Table 2.5-10, and correlations 16 between personal NO₂ concentrations and personal copollutant concentrations are shown in 17 Table 2.5-11.

18 Most studies examined above show that personal NO_2 concentrations are significantly 19 correlated with either ambient or personal level PM_{2.5} or other combustion generated pollutants, 20 e.g., CO and EC.

21 As might be expected from a pollutant having a major traffic source, the diurnal cycle of 22 NO₂ in typical urban areas is characterized by traffic emissions, with peaks in emissions 23 occurring during morning and evening rush hour traffic. Motor vehicle emissions consist mainly 24 of NO, with only about 10% of primary emissions in the form of NO₂. The diurnal pattern of 25 NO and NO₂ concentrations are also strongly influenced by the diurnal variation in the mixing 26 layer height. Thus, during the morning rush hour when mixing layer heights are still low, traffic 27 produces a peak in NO and NO₂ concentrations. As the mixing layer height increases during the 28 day, dilution of emissions occurs, and NO and NO₂ are converted to NO_z. During the afternoon 29 rush hour, mixing layer heights are often still at, or are near, their daily maximum values 30 resulting in dilution of traffic emissions through a larger volume than in the morning. Starting 31 near sunset, the mixing layer height drops and conversion of NO to NO₂ occurs without 32 subsequent photolysis of NO₂ recreating NO.

1 The composite diurnal variability of NO₂ in selected urban areas with multiple sites 2 (New York, NY; Atlanta, GA; Baton Rouge, LA; Chicago, IL; Houston, TX; Riverside, CA; and 3 Los Angeles, CA) is shown in Figure 2.5-5. Figure 2.5-5 shows that lowest hourly median 4 concentrations are typically found at around midday and that highest hourly median 5 concentrations are found either in the early morning or in mid-evening. Median values range by 6 about a factor of two from about 13 ppb to about 25 ppb. However, individual hourly 7 concentrations can be considerably higher than these typical median values, and hourly NO₂ concentrations of >0.10 ppm can be found at any time of day. 8

Figure 2.5-5Composite, diurnal variability in 1-h average NO2 in urban areas.
Values shown are averages from 2003 through 2005. Boxes define the
interquartile range, and the whiskers the 5th and 95th percentile
values. Asterisks denote individual values above the 95th percentile.

9 Information concerning the seasonal variability of ambient NO₂ concentrations is given 10 in the Section AX3.3. NO₂ levels are highest during the cooler months of the year and still show 11 positive correlations with CO. Mean NO₂ levels are lowest during the summer months, though 12 of course, there can be large positive excursions associated with the development of highpressure systems. In this regard, NO₂ behaves as a primary pollutant, although there is no good
 reason to suspect strong seasonal variations in its emissions.

- 3
- 4
- 5

2.6 DOSIMETRY OF INHALED NITROGEN OXIDES

6 This section provides a brief overview of NO₂ dosimetry and updates information 7 provided in the 1993 AQCD for Oxides of Nitrogen. A more extensive discussion of NO₂ 8 dosimetry appears in Annex 4. Nitrogen dioxide, classified as a reactive gas, interacts with 9 surfactants, antioxidants, and other compounds in the epithelial lining fluid (ELF). The 10 compounds thought to be responsible for adverse pulmonary effects of inhaled NO₂ are the 11 reaction products themselves or the metabolites of these products in the ELF.

12 Acute NO₂ uptake in the lower respiratory tract is thought to be rate-limited by chemical 13 reactions of NO₂ with ELF constituents rather than by gas solubility in the ELF (Postlethwait and Bidani, 1990). Postlethwait and Bidani (1994) concluded that the reaction between NO₂ and 14 15 water does not significantly contribute to the absorption of inhaled NO₂. Rather, uptake is a 16 first-order process for NO₂ concentrations of <10 ppm, is aqueous substrate-dependent, and is 17 saturable. Postlethwait et al. (1991) reported that inhaled NO₂ (<10 ppm) does not penetrate the 18 ELF to reach underlying sites and suggested that cytotoxicity may be due to NO₂ reactants 19 formed in the ELF. Related to the balance between reaction product formation and removal, it 20 was further suggested that cellular responses may be nonlinear with greater responses being 21 possible at low levels of NO₂ uptake versus higher levels of uptake.

22 Ascorbate and glutathione (GSH) are the primary NO₂ absorption substrates in rat ELF 23 (Postlethwait et al., 1995). Velsor and Postlethwait (1997) investigated the mechanisms of acute 24 epithelial injury from NO₂ exposure. Membrane oxidation was not a simple monotonic function 25 of GSH and ascorbic acid levels. The maximal levels of membrane oxidation were observed at 26 low antioxidant levels versus null or high antioxidant levels. Glutathione and ascorbic acid-27 related membrane oxidation were superoxide and hydrogen peroxide dependent, respectively. 28 The authors suggested that increased absorption of NO₂ occurred at the higher antioxidant 29 concentrations, but little secondary oxidation of the membrane occurred because the reactive 30 species (e.g., superoxide and hydrogen peroxide) generated during absorption were quenched. A 31 lower rate of NO₂ absorption occurred at the low antioxidant concentrations, but oxidants were 32 not quenched and so were available to interact with the cell membrane. Illustrating the complex

1 interaction of antioxidants, some studies suggest that NO₂-oxidized GSH may be again reduced 2 by uric acid and/or ascorbic acid (Kelly et al., 1996; Kelly and Tetley, 1997).

3 Very limited work related to the quantification of NO₂ uptake has been reported since the 4 1993 AQCD for Oxides of Nitrogen. In both humans and animals, the uptake of NO₂ uptake by 5 the upper respiratory tract decreases with increasing ventilator rates. This causes a greater 6 proportion of inhaled NO_2 to be delivered to the lower respiratory tract. In humans, the 7 breathing pattern shifts from nasal to oronasal during exercise relative to rest. Since the nasal 8 passages absorb more inhaled NO₂ than the mouth, exercise (with respect to the resting state) 9 delivers a disproportionately greater quantity of the inhaled mass to the pulmonary region of the 10 lung, where the NO_2 is readily absorbed. Bauer et al. (1986) reported a statistically significant 11 increase in uptake from 72% during rest to 87% during exercise in a group of 15 asthmatic 12 adults. The minute ventilation also increased from 8.1 L/min during rest to 30.4 L/min during 13 exercise. Hence, exercise increased the dose rate of NO₂ by 5-fold in these subjects. Similar 14 results have been reported for beagle dogs where the dose rate of NO₂ was 3-fold greater for the 15 dogs during exercise than rest (Kleinman and Mautz, 1991).

16

17 18

2.7

INDOOR AND PERSONAL EXPOSURE HEALTH STUDIES

19 At the time of the 1993 AQCD for Oxides of Nitrogen, many of the available health 20 effects studies consisted predominately of indoor NO₂ exposure studies. Although indoor 21 sources in these studies include both gas-fueled cooking and heating appliances, in most of the 22 older studies the focus was primarily on cooking stoves. Indoor studies evaluated in the 1993 23 AQCD for Oxides of Nitrogen include Neas et al. (1991), Dijkstra et al. (1990), Ekwo et al. 24 (1983), Ware et al. (1984), Melia et al. (1977, 1979, 1982a,b, 1990), and Keller et al. (1979a,b). 25 Indoor studies examining children 2 years old or younger include Samet et al. (1993, 1992), 26 Ogston et al. (1985), and Margolis et al. (1992). Available outdoor studies with ambient NO₂ 27 measures include Dockery et al. (1989), Braun-Fahrlaender et al. (1992), Schwartz (1989), 28 Schwartz et al. (1991), Schwartz and Zeger (1990), and Vedal et al. (1987). Although there was 29 some evidence suggesting that increased NO₂ exposure was associated with increased respiratory 30 symptoms in children aged 5 to 12 years, the main conclusion was that there was insufficient 31 epidemiological evidence for an association between short-term exposure and health effects. 32

1 2

2.7.1 **Recent Indoor Studies of Exposures to Nitrogen Oxides and Heath** Outcomes

3 These studies consist of NO₂ exposures that may differ from ambient exposure in relation 4 to pattern, levels, and associated copollutants (see Annex Table AX6.1 for details). Samet and 5 Bell (2004) state that, while "evidence from studies of outdoor air pollution cannot readily 6 isolate an effect of NO_2 because of its contribution to the formation of secondary particles and 7 ozone, observational studies of exposure indoors can test hypothesis related to NO_2 specifically 8 although confounding by combustion sources in the home is a concern." Thus, indoor NO₂ 9 sources are not likely confounded by other ambient pollutants such as PM, O₃, CO, and SO₂. 10 Most of the studies conducted since 1993 have taken place in Australia and attempted to

11 capture indoor exposures (with passive diffusion badges) from both cooking and heating sources 12 in homes and schools (Pilotto et al., 1997a, 2004; Garrett et al., 1998; Smith et al., 2000).

13 Several indoor exposure studies have also been conducted in Europe (Farrow et al., 1997; Simoni 14 et al., 2002, 2004), one in Singapore (Ng et al., 2001), and one cohort study in the United States 15 (Belanger et al., 2006; van Strien et al., 2004). The key results from these studies are 16 summarized in the Annex Table AX6.1. These include one key intervention study (Pilotto et al., 17 2004) that provides strong evidence of a detrimental effect of exposure to indoor levels of NO_2 .

18 Pilotto et al. (2004) conducted a randomized intervention study of respiratory symptoms 19 of asthmatic children in Australia before and after selective replacement of unflued gas heaters in 20 schools. In the study, 18 schools using unflued gas heaters were randomly allocated to have an 21 electric heater (n = 4) or a flued gas heater (n = 4) installed or to retain their original heaters 22 (n = 10). Changes to the heating systems were disguised as routine maintenance to prevent bias 23 in reporting of symptoms. Children were eligible for the study if they had physician-diagnosed 24 asthma and no unflued heater in their homes. For the 114 children enrolled, symptoms were 25 recorded daily and reported in fortnightly telephone interviews during 12 weeks in the winter. 26 Passive diffusion badges were used to measure NO₂ exposure in classrooms (6 h/day) and in the 27 children's homes. Schools in the intervention group (with new heaters) averaged with overall 28 means (SD) of 15.5 (6.6) ppb NO₂, while control schools (with unflued heaters) averaged 29 47.0 (26.8) ppb. Exposure to NO_2 in the children's homes was quite variable but with similar 30 mean levels. Levels at homes for the intervention group were 13.7 (19.3) ppb, and 14.6 31

1 reductions in several symptoms: difficulty breathing during the day (rate ratio [RR] = 0.41

2 [95% CI: 0.07, 0.98]) and at night (RR = 0.32 [95% CI: 0.14, 0.69]); chest tightness during the

- 3 day (RR = 0.45 [95% CI: 0.25, 0.81]) and at night (RR = 0.59 [95% CI: 0.28, 1.29]); and
- 4 asthma attacks during the day (RR = 0.39 [95% CI: 0.17, 0.93]).

5 Samet and Bell (2004) state that Pilotto et al. (2004) provides persuasive evidence of an 6 association between exposure to NO₂ from in-class heaters and the respiratory health of children 7 with asthma and further that the study provides evidence from an intervention and, thus, avoids 8 some potential limitations at observational studies. The two groups of children studied had 9 similar baseline characteristics. In addition, the concentrations in the home environment were 10 similar for the two groups, implying that exposure at school was likely to be the primary 11 determinant of a difference in indoor NO₂ exposure between the two groups. Samet and Utell 12 (1990) concluded that, the "absence of significant differences between the groups for lung 13 function tests and bronchial responsiveness are consistent with the majority of chamber study results." 14

15 In an earlier study of the health effects of unflued gas heaters on wintertime respiratory 16 symptoms of 388 Australian schoolchildren, Pilotto et al. (1997a) measured NO_2 in 41 classrooms in 8 schools, with half using unflued gas heaters and half using electric heat. 17 18 Although similar methods were used to measure NO₂ levels (passive diffusion badge monitors 19 exposed for 6 h at a time), there were three major differences between this study and the 2003 20 study: (1) the 1997 study was not a randomized trial, (2) enrollment was not restricted to 21 asthmatic children, and (3) enrollment was not restricted to children from homes without unflued 22 gas heaters. In Pilotto et al. (1997a), only children from nonsmoking homes were enrolled and a 23 subset of children (n = 121) living in homes with unflued gas heaters were given badges to be 24 used at home. Symptoms were recorded daily by each child's parents. Children were classified 25 into low- and high-exposure groups based on their measured exposure at school, their measured 26 exposure at home (if they lived in homes with unflued gas heaters), or their reported use of 27 electric heat at home. Maximum hourly concentration in these classrooms each day over 28 2 weeks of hourly monitoring were highly correlated with their corresponding 6-h concentrations 29 measured over the same 2 weeks (r = 0.85). Hourly peaks of NO₂ of the order of \ge 80 ppb were 30 associated with 6-h average levels of approximately \geq 40 ppb. They inferred that children in 31 classrooms with gas heaters that had 6-h average levels of \geq 40 ppb were experiencing

1 approximately 4-fold or higher 1-h peaks of exposure than the NO₂ levels experienced by

2 children who had no gas exposure (6-h average levels of 20 ppb). The importance of this study

3 is that it examines the effect of repeated peaks over time as have been used in toxicological

4 infectivity studies (e.g., Miller et al., 1987).

5 Pilotto et al. (1997a) report that during the winter heating season, children in the high 6 exposure category (NO₂ > 40 ppb) had higher rates of sore throat, colds, and absenteeism than all 7 other children. In models adjusted for personal risk factors including asthma, allergies, and 8 geographic area, classroom NO₂ level and school absence were significantly associated (odds 9 ratio [OR] = 1.92 [95% CI: 1.13, 3.25]). Increased likelihood of individual respiratory 10 symptoms was not significantly associated with classroom level of NO_2 (e.g., cough with 11 phlegm: adjusted OR = 1.28 (95% CI: 0.76, 2.15). Dose-response relationships are illustrated 12 in Figure 2.7-1 for symptom rates for cough and in Figure 2.7-2 for school absence. Pilotto et al. 13 (1997b) notes that this study "provides evidence that short-term exposure to the peak levels of 14 NO₂ produced by unflued gas appliances affects respiratory health and that the significant dose-15 response relationship seen with increasing NO₂ exposure strengthens the evidence for a cause-16 effect relationship."

17 One recent birth cohort study in the United States measured indoor exposure to NO_2 18 (Belanger et al., 2006; van Strien et al., 2004). Families were eligible for this study if they had a 19 child with physician-diagnosed asthma (asthmatic sibling) and a newborn infant (birth cohort 20 subject). NO₂ levels were measured using Palmes tubes left in the homes for 2 weeks. Higher 21 levels of NO₂ were measured in homes with gas stoves (mean [SD], 26 [18] ppb) than in homes 22 with electric ranges (9 [9] ppb). Children living in multifamily homes were exposed to more 23 NO₂ (23 [17] ppb) than children in single-family homes (10 [12] ppb). The authors examined 24 associations between NO₂ concentrations and respiratory symptoms experienced by the 25 asthmatic sibling in the month prior to sampling (Belanger et al., 2005). For children living in 26 multifamily homes, each 20-ppb increase in NO₂ concentration increased the likelihood of any 27 wheeze or chest tightness (OR for wheeze = 1.52 [95% CI: 1.04, 2.21]; OR for chest 28 tightness = 1.61 [95% CI: 1.04, 2.49]) as well as increasing the risk of suffering additional days 29 of symptoms. No significant associations were found between level of NO₂ and symptoms for 30 children living in single-family homes. The authors suggested that the low levels of exposure 31 may have been responsible for the lack of association observed in single-family homes. In these

Figure 2.7-1.Geometric mean symptom rates and 95% confidence intervals for
cough with phlegm during the winter heating period for 388 children
grouped according to estimated amount of NO2 exposure at home and
at school. Group means and trends (p = 0.02) estimated from mixed
models allowing for correlation between children within classrooms
(unadjusted for confounding).

Source: Pilotto et al. (1997a).

- 1 same families, van Strien et al. (2004) compared the measured NO₂ concentrations with
- 2 respiratory symptoms experienced by the birth cohort infants during the first year of life.
- 3 Although wheeze was not associated with NO₂ concentration, persistent cough was associated
- 4 with increasing NO₂ concentration in a dose-response relationship as shown in Figure 2.7-3
- 5 (van Strien et al., 2004).

6 An important consideration in the evaluation of these study results is that NO_x is part of a

- 7 complex mixture of chemicals emitted from unvented gas heaters. In addition to NO and NO₂,
- 8 indoor combustion sources such as unvented gas heaters emit other pollutants that are present in
- 9 the fuel or are formed during combustion. The major products from the combustion of natural
- 10 gas are carbon dioxide (CO₂) and CO followed by HCHO with smaller amounts of other
- 11 oxidized organic compounds in the gas phase. In a study of pollutants emitted by unvented gas
- 12 heaters, Brown et al. (2004) found that CO in a room test chamber ranged from 1 to 18 ppm for

Figure 2.7-2.Proportions (and 95% confidence intervals) of children absent from
school for at least 1 day during the winter heating period grouped
according to estimated amount of NO2 exposure at home and at school
(n = 388). Group means and trend (p < 0.001) estimated from
Generalized (binomial) Linear Mixed Models (GLMM) allowing for
correlation between children with classrooms (unadjusted for
confounding).

Source: Pilotto et al. (1997a).

NO₂ ranging from 100 to 300 ppb; corresponding levels of HCHO were highly variable, ranging
 from <10 ppb to a few hundred ppb (with an outlier at >2 ppm).

3 PM in the sub-micrometer size range is also produced during natural gas combustion. 4 Ristovski et al. (2000) concluded that particulate mass emissions from natural gas heaters are 5 low but that natural gas heaters are larger sources of organic compounds, such as HCHO. They 6 also measured emission rates for individual particles, which are expected to be present mainly in 7 the ultrafine size range, but concluded that these rates are low and they could not detect an 8 increase in particle number from one of the two model heaters tested. However, Rogge et al. 9 (1993) found that at least 22% of the fine particle mass emitted by natural gas heaters consists of 10 PAHs, oxy-PAHs, and aza-and thia-arenes. They also identified emissions of speciated alkanes, 11 n-alkanoic acids, polycyclic aromatic ketones, and quinones. However, these accounted for only 12 about another 4% of the fine PM emitted. Although the rates of emission of PM are low and are

not likely to affect PM levels, their PAH content indicates that natural gas combustion could be a
 significant source of PAHs in indoor environments.

3 Overall, the recent studies build upon the evidence available from personal and indoor 4 exposure studies in the 1993 AQCD, showing consistent evidence of respiratory effects with 5 exposure to NO₂. These studies can serve as a bridge between epidemiological studies and 6 controlled human exposure studies, as noted above, and provide some evidence of coherence for 7 respiratory effects. As is true for NO_x in the ambient air, indoor NO_x concentrations may be 8 correlated with a mixture of other pollutants. The major products of combustion of natural gas 9 include CO₂ and CO, followed by HCHO, with smaller amounts of other oxidized organic 10 compounds in the gas phase and sub-micrometer PM whose major identifiable components are 11 PAHs, possibly complicating the interpretation of associations between health effects and indoor 12 NO₂ levels. 13

1 2.7.2 Recent Studies of Personal NO_x Exposure

2 Several studies collected personal exposure data for NO₂. Personal exposure to NO₂ and 3 the severity of virus-induced asthma (Chauhan et al., 2003), including risk of airflow obstruction 4 (Linaker et al., 2000) was studied in a group of 114 asthmatic children in England. Children 5 were supplied with Palmes diffusion tubes, which they clipped to their clothing during the day 6 and placed in the bedroom at night. Tubes were changed every week for the duration of the 7 13-month study period. Nasal aspirates were obtained and analyzed for a variety of respiratory-8 illness causing viruses (Chauhan et al., 2003). The authors found significant increases in the 9 4 point symptom severity score associated with exposure to NO₂ levels greater than 14 μ g/m³ 10 (7.4 ppb) in the week preceding any viral infection (score increase of 0.6 [95% CI: 0.01, 1.18]) 11 or respiratory syncytial virus alone (score increase of 2.1 [95% CI: 0.52, 3.81]). Chauhan 12 et al. 2003 also found a significant reduction in PEF associated with exposure greater than 14 µg/m³ (by 12 L/min [95% CI: -23.6, -0.80]). Exploration of the relationship between PEF and 13 14 NO₂ showed that the risk of a PEF episode (as diagnosed by a clinician's review of each child's 15 PEF data) beginning within a week of a upper respiratory infection was significantly associated with exposure to NO₂ greater than 28 μ g/m³ (14.9 ppb) (RR = 1.9 [95% CI: 1.1, 3.4]) (Linaker 16 17 et al., 2000). See Figure 2.7-4. Thus, high personal NO₂ exposure in the week before an upper 18 respiratory infection was associated with either increased severity of lower-respiratory-tract 19 symptoms or reduction of PEF for all virus types together and for two of the common respiratory 20 viruses, C picornavirus and RSV, individually.

21 Nitschke et al. (2006) used passive diffusion badges for measuring NO₂ exposures in 6-h 22 increments at home and school for 174 asthmatic children in Australia. School and home 23 measurements were based on 3 consecutive days of sampling. The maximum of 9 days of 24 sampling (for 6 h each day) NO₂ value was selected as the representative daily exposure for dose-response analyses. Children kept a daily record of respiratory symptoms for the 12-week 25 26 study period. Significant associations were found between the maximum NO₂ level at school or 27 home and respiratory symptom rates (see Annex Table AX 6-1). The dose response relationship 28 is illustrated in Figure 2.7-5.

In a cross-sectional survey of 344 children in Australia, Ponsonby et al. (2001) used passive gas samplers to measure personal exposure to NO₂. Personal badges were pinned to a child's clothing at the end of each school day and removed when the child arrived at school the

Figure 2.7-4.Mean change in respiratory-tract symptom scores and PEF rates after
viral infection for children in medium and high NO2 exposure tertiles
compared with children in the low exposure tertile.

Source: Chauhan et al. (2003).

Figure 2.7-5. Mean symptom rates per week (difficulty breathing during the day and night, and chest tightness at night) plotted against mean maximum nitrogen dioxide levels (composite of school and home exposure) groups as <20 ppb (n = 12), 20-39 ppb (n = 51), 40-50 ppb (n = 25), 60-79 ppb (n = 18), and 80+ ppb (n = 68).

Source: Nitschke et al. (2006).

1 next day. School exposures were measured with passive samplers placed in each child's 2 classroom. Sampling took place for 2 consecutive days. Mean (SD) personal exposure was 3 10.4 (11.1) ppb and mean total NO₂ exposure (personal plus schoolroom) was 10.1 (8.6) ppb. 4 Of the health outcomes measured (recent wheeze, asthma ever, lung function measured when 5 NO_2 sampling stopped), only the FEV₁/FVC ratio following cold air challenge was significantly 6 associated with NO₂ levels measured with the personal badges (-0.12 [95% CI: -0.23, -0.01]) 7 per 1 ppb increase in personal exposure). 8 In Finland, Mukula et al. (1999, 2000) studied 162 preschool-age children. Mukula et al. 9 (2000) used passive monitors exposed for 1-week periods over the course of 13 weeks both 10 indoors, outdoors, and on the clothing of preschool children attending 8 day care centers in 11 Helsinki. The only significant association between NO₂ measured personally and symptoms was

12 for cough during the winter (relative risk [RR] = 1.86 [95% CI: 1.15, 3.02] for NO₂ at levels

above 27.5 μ g/m³ [14.5 ppb]). Similar results were obtained when data were analyzed unstratified by season, but including a factor for season (RR = 1.52 [95% CI: 1.00, 2.31] for NO₂ at levels above 27.5 μ g/m³ [14.5 ppb], Mukala et al., 1999).

- 4
- 5

2.7.3 Summary Indoor and Personal Exposure Studies

6 Overall, the recent studies build upon the evidence available from personal and indoor 7 exposure studies in the 1993 AQCD, showing consistent evidence of respiratory effects with 8 exposure to NO₂. There is convincing evidence for a direct effect of NO₂ exposure on 9 respiratory health from the randomized intervention study by Pilotto et al. (2003) and from other 10 studies enrolling asthmatic children (Pilotto et al., 1997; Nitschke et al., 2006; Smith et al., 2000; 11 Belanger et al., 2006). From indoor and personal exposure studies, effects observed in these 12 studies all occurred at ambient levels and are relatively unconfounded by copollutants found in 13 ambient air that make unambiguous interpretation of many of the health effects studies of 14 ambient exposure problematic. Chauhan et al. (2003) shows an association between increased 15 personal exposure to NO_2 and the severity of virus-induced asthma exacerbations in children. 16 The study design reduced potential bias from misclassification of other pollutant exposure or 17 health outcomes. As is true for NO₂ in the ambient air, indoor NO₂ concentrations may be 18 correlated with a mixture of other pollutants, as the major products of combustion of natural gas 19 includes CO₂, CO, and HCHO, along with smaller amounts of other oxidized organic compounds 20 in the gas phase and sub-micrometer PM, particularly PAHs, thus complicating the interpretation 21 of associations between health effects and indoor NO₂ levels. Nonetheless, the findings of these 22 recent indoor and personal exposure studies, combined with studies available in the previous 23 AQCD, provide strong evidence that NO₂ exposure is associated with respiratory effects. These 24 studies can serve as a bridge between epidemiological studies and controlled human exposure 25 studies, as noted above, and provide some evidence of coherence for respiratory effects.

	Mean	-	D00 (mmh)	COD
	Concentration (ppb)	<u>r</u>	130 (hhn)	COD
New York, NY (5)	29 (25 – 37)	0.77 - 0.90	7 – 19	0.08-0.23
Atlanta, GA (5)	11 (5 – 16)	0.22 - 0.89	7 - 24	0.15 - 0.59
Chicago, IL (7)	22 (6 - 30)	-0.05-0.83	10-39	0.13 - 0.66
Houston, TX (7)	13 (7 – 18)	0.31 - 0.80	6 – 20	0.13 - 0.47
Los Angeles, CA (14)	25 (14 – 33)	0.01 - 0.90	8-32	0.08 - 0.51
Riverside, CA (9)	21 (5 – 32)	0.03 - 0.84	10-40	0.14 - 0.70

TABLE 2.5-1. SPATIAL VARIABILITY OF NO2 IN SELECTED UNITED STATESURBAN AREAS

Avg Concentration (ppb)	Peak Concentration (ppb)	Comment	Reference
191 kitchen,	375 kitchen,	Cooked full meal with use of gas	Fortman et al.
195 living room,	401 living room,	stove and range for	(2001)
184 bedroom	421 bedroom	2 h and 20 min; 7 h TWA	
400 kitchen, living room, bedroom	673 bedroom	Automatic oven cleaning of gas stove. Avgs are over the entire cycle.	Fortman et al. (2001)
90 (low setting), 350 (med setting), 360 (high setting)	N/R	Natural gas unvented fireplace, 0.5 h TWA in main living area of house (177 m^3) .	Dutton et al. (2001)
N/R	1000	Room concentration with kerosene heater operating for 46 min.	Girman et al. (1982)
N/R	1500	Room concentration with gas heater operating for 10 min.	Girman et al. (1982)
180 to 650	N/R	Calculated steady-state concentration from specific unvented gas space heaters operating in a 1400 ft^2 house, 1.0 h ⁻¹ for air exchange rate.	Girman et al. (1982)

TABLE 2.5-2. NO2 CONCENTRATIONS NEAR INDOOR SOURCES:SHORT-TERM AVERAGES

N/R = not reported

TWA = time-weighted avg

¹Unvented are not permitted in many areas such as California.

Avg Concentration (ppb)	Comment	Reference
30 to 33	Gas stoves with pilot lights	Lee et al. (1998)
22	Gas stoves without pilot lights	
6 to 11	Electric ranges	
	Study conducted in 517 homes in Boston, values represent 2-wk avgs	
55 (Median)	Gas space heaters	Triche et al.
41 (90th %-ile)	No indoor combustion source	(2005)
80 (90th %-ile)	Fireplaces	
84 (90th %-ile)	Kerosene heaters	
147 (90th %-ile)	Gas space heaters	
52 (90th %-ile)	Wood stoves	
	All values represent 2-wk avgs in living rooms	
18	Bedrooms	Zipprich et al.
19	Living rooms	(2002)
15	Outdoors	
	Almost all homes had gas stoves. Values represent 2-wk avgs	

TABLE 2.5-3. NO2 CONCENTRATIONS NEAR INDOOR SOURCES:LONG-TERM AVERAGES

Study	Study Design	Association Variable	Location	Season	$\mathbf{r}_{\mathrm{p}}, \mathbf{r}_{\mathrm{s}}, \mathrm{or} \ \mathbf{R}^2$
Linn et al. (1996)	Longitudinal, Southern California, 269 School Children, fall, winter, and spring 1992-1994, 24-h avg, 1-wk consecutive measurement for each season for each child.	Personal vs. central	Pooled	Pooled	0.63 (r _p) (n = 107)
Alm et al. (1998)	Longitudinal, Helsinki, 246 children aged 3-6 yrs old, winter and spring of 1991,	Personal vs. central	Downtown	Spring	0.64 (r _p), p < 0.001 (Sample size was not reported.)
	1-wk averaged sample for each person, 6 consecutive wks in the winter and 7 consecutive wks in the spring.	Personal vs. central	Suburban	Spring	0.78 (r _p), p < 0.001 (Sample size was not reported.)
		Personal vs. central	Downtown	Winter	-0.06 (r _p), p > 0.05 (Sample size was not reported.)
		Personal vs. central	Suburban	Winter	$0.32 (r_p), p > 0.05$ (Sample size was not reported.)
		Personal vs. central	Downtown (electric stove home)	Pooled	0.42 (r _p), p < 0.01 (Sample size was not reported.)
		Personal vs. central	Downtown (gas stove home)	Pooled	0.16 (r_p), $p > 0.01$ (Sample size was not reported.)
		Personal vs. central	Suburban (electric stove home)	Pooled	0.55 (r _p), p < 0.001 (Sample size was not reported.)
		Personal vs. central	Downtown (nonsmoking home)	Pooled	0.47 (r _p), p < 0.001 (Sample size was not reported.)
		Personal vs. central	Downtown (smoking home)	Pooled	0.23 (r_p), $p > 0.01$ (Sample size was not reported.)
		Personal vs. central	Suburban (nonsmoking home)	Pooled	0.53 (r _p), p < 0.001 (Sample size was not reported.)
		Personal vs. central	Suburban (smoking home)	Pooled	0.52 (r _p), p < 0.001 (Sample size was not reported.)
		Personal vs. central	Pooled	Pooled	$0.37 (R^2)$ (n = 24)

TABLE 2.5-4A. THE ASSOCIATION BETWEEN PERSONAL EXPOSURESAND AMBIENT CONCENTRATIONS

Study	Study Design	Association Variable	Location	Season	r _p , r _s , or R ²
Liard et al. (1999)	Daily avg/cross-sectional, Paris, 55 adults and 39 children, May-June 1996, three 4-day avg measurements for each person, during each measurement session, all subjects were measured at	Adults vs. central	Urban	Summer	0.41 (R ²), p < 0.0001 (Sample size was not reported.)
	the same time.	Children vs. central	Urban	Summer	$0.17 (R^2),$ p = 0.0004 (Sample size was not reported.)
Gauvin et al. (2001)	Daily avg/cross-sectional, three French metropolitan areas, 73 children, April-June 1998 in Grenoble, May-June 1998 in Toulouse, and	Personal vs. central (Grenoble)	Urban	Pooled	0.01 (R ²) (Sample size was not reported.)
	June-October 1998 in Paris, one 48-h avg measurement for each child, all children in the same city were measured on the same day.	Personal vs. central (Toulouse)	Urban	Pooled	0.04 (R ²) (Sample size was not reported.)
		Personal vs. central (Paris)	Urban	Pooled	0.02 (R ²) (Sample size was not reported.)
Kim et al. (2006)	Longitudinal, Toronto, 28 adults with coronary artery disease, Aug 1999 to Nov 2001, 1 day/wk, 24-h avg, for a maximum of 10 wks for each person.	Personal vs. central (subject wise)	Urban	Pooled	-0.36 to 0.94 (r _s) with a median of 0.57 (15 subjects)
Sarnat et al. (2001)	Longitudinal, Baltimore, 56 seniors, schoolchildren, and people with COPD, summer of 1998 and winter of 1999, 14 of 56 subjects participated in both sampling seasons; all subjects were monitored for 12 consecutive days (24-h avg samples) in each of the one or two seasons, with the exception of children who were measured for 8 consecutive days during the summer.	Personal vs. central (subject wise)	Urban	Summer	-0.45 to 0.85 (rs) with a median of 0.05* (24 subjects)
				Winter	-0.6 to 0.75 (r _s) with a median of 0.05* (45 subjects)
Sarnat et al. (2005)	Longitudinal, Boston, 43 seniors and schoolchildren, summer of 1999 and winter of 2000, Similar study design as Sarnat et al. (2001).	Personal vs. central (subject wise)	Urban	Summer	-0.25 to 0.5 (r_s) with a median of 0.3* (Sample size was not reported in the text.). Slope = 0.19, 0.08-0.30
				Winter	-0.5 to 0.9 (r_s) with a median of 0.4* (Sample size was not reported in the text.) Slope = -0.03, -0.21-0.15
Sarnat et al. (2006)	Longitudinal, Steubenville, 15 senior subjects, summer and fall of 2000,	Personal vs. central	Urban	Summer	0.14 (R ²) (n = 122), p < 0.05
	two consecutive 24-h samples were collected for each subject for each wk, 23 wks total			Fall	$0.43 (R^2),$ p < 0.05 (n = 138)

2-56

TABLE 2.5-4A (cont'd). THE ASSOCIATION BETWEEN PERSONAL EXPOSURES AND AMBIENT CONCENTRATIONS

* Values were estimated from figures in the original paper.

Study	Study Design	Association Variable	Location	Season	r _p , r _s , or R ²
Kramer et al. (2000)	West Germany, 191 children.	Personal vs. outdoor	Pooled	Pooled	$0.37 (r_p)$ (n = 281)
	March and Sept 1996, two 1-wk averaged measurements for each child in each mo.	Personal vs. outdoor	Urban	Pooled	$0.06 (r_p)$ (n = 182)
Rojas-Bracho et al. (2002)	Santiago, 20 children, winters of 1998 and 1999, five 24-h avg samples for 5 consecutive days for each child.	Personal vs. outdoor	Urban	Winter	0.27 (R ²) (n = 87)
Raaschou- Nielsen et al.	Copenhagen and rural areas, 204 children, 0ct 1004 April Mars and June 1005	Personal vs. outdoor	Urban	Pooled	$0.15 (R^2)$ (n = 97)
(1997)	two 1-wk avg measurements for each child in each mo.	Personal vs. outdoor	Rural	Pooled	$0.35 (R^2)$ (n = 99)
Alm et al. (1998)	 Helsinki, 246 children aged 3-6 yrs old, winter and spring of 1991, 1-wk averaged sample for each person for 6 consecutive wks in the winter and 7 consecutive wks in the spring. 	Personal vs. outdoor	Downtown	Winter	0.46 (r _p) (Sample size was not reported.)
		Personal vs. outdoor	Suburban	Winter	0.49 (r _p) (Sample size was not reported.)
		Personal vs. outdoor	Downtown	Spring	0.80 (r _p) (Sample size was not reported.)
		Personal vs. outdoor	Suburban	Spring	0.82 (r _p) (Sample size was not reported.)
		Personal vs. outdoor	Downtown (electric stove home)	Pooled	0.55 (r _p) (Sample size was not reported.)
		Personal vs. outdoor	Downtown (gas stove home)	Pooled	0.59 (r _p) (Sample size was not reported.)
		Personal vs. outdoor	Suburban (electric stove home)	Pooled	0.63 (r _p) (Sample size was not reported.)

TABLE 2.5-4B. THE ASSOCIATION BETWEEN PERSONAL EXPOSURESAND OUTDOOR CONCENTRATIONS

Study	Study Design	Association Variable	Location	Season	r _p , r _s , or R ²
Alm et al. (1998) (cont'd)		Personal vs. outdoor	Downtown (nonsmoking home)	Pooled	0.73 (r _p) (Sample size was not reported.)
		Personal vs. outdoor	Downtown (smoking home)	Pooled	0.51 (r _p) (Sample size was not reported.)
		Personal vs. outdoor	Suburban (nonsmoking home)	Pooled	0.59 (r _p) (Sample size was not reported.)
		Personal vs. outdoor	Suburban (smoking home)	Pooled	0.46 (r _p) (Sample size was not reported.)
		Personal vs. outdoor	Pooled	Pooled	$0.86 (R^2)$ (n = 23)
Monn et al. (1998)	Geneva, Basel, Lugano, Aarau, Wald, Payerne, Montana, and Davos (SAPALDIA study, Switzerland), 140 subjects, Dec 1993 to Dec 1994, each home was monitored for 3 periods of 1 mo; in the 1st wk of each period, personal, indoor rand outdoor levels were measured, and in the next 3 consecutive wks, only outdoor levels were measured (1-wk averaged measurement).	Personal vs. outdoor	Pooled	Pooled	0.33 (R ²) (n = 1,494)
Levy et al. (1998)	18 cities across 15 countries, 568 adults, Feb or March 1996, one 2-day avg measurement for each person, all people were measured on the same winter day.	Personal vs. outdoor	Urban	Winter	0.57 (r _s) (n = 546)

TABLE 2.5-4B (cont'd). THE ASSOCIATION BETWEEN PERSONAL EXPOSURESAND OUTDOOR CONCENTRATIONS

Study	Study Design	Association Variable	Location	Season	r _p , r _s , or R ²
Kodama et al. (2002)	Tokyo, 150 junior-high school students and their family members,	Personal vs. outdoor	Urban	Summer	0.24 (r _p) (Sample size was not reported.)
	Feb 24-26, Jun 2-4, July 13- 15, and Oct 14-16 in 1998 and Jan 26-28 in 1999, 3-day avg, personal exposures were monitored on the same day.	Personal vs. outdoor	Urban	Winter	0.08 (r _p) (Sample size was not reported.)
Spengler et al. (1994)	Los Angeles Basin, probability-based sample, 70 subjects, May 1987 to May 1988, each participant was monitored during each of 8 cycles (48-h avg sampling period) throughout the yr in the microenvironmental component of the study.	Personal vs. outdoor	Pooled	Pooled	0.48 (R ²) (Sample size was not reported.)
Linaker et al. (2000)	Southampton, 114 asthmatic children, Oct 1994 to Dec 1995, 13 mos (1-wk avgs) for each child.	Personal vs. outdoor (overall measurements across children and time) Personal vs. outdoor	Pooled, urban, no major indoor sources	Pooled	Not significant (Sample size was not reported.)
		(subject-wise)	By person	Pooled	-0.77 to 0.68 and median -0.02 (r _p) (Sample size was not reported.)
Lai et al. (2004)	Oxford, 50 adults, Dec 1998 to Feb 2000, one 48-h avg measurement per person.	Personal vs. outdoor	Urban	Pooled	0.41 (r _p) (Sample size was not reported.)

TABLE 2.5-4B (cont'd). THE ASSOCIATION BETWEEN PERSONAL EXPOSURESAND OUTDOOR CONCENTRATIONS

* Values were estimated from figures in the original paper.

Study	Location	Season	Model Type	Slope (SE)	Intercept / ppb	R ²
Rojas-Bracho et al. (2002)	Santiago, 20 children, winters of 1998 and 1999, five, 24-h avg samples on consecutive days for each child.	Winter	Personal vs. outdoor (n = 87)	0.33 (0.05)	7.2	0.27
Alm et al. (1998)	Helsinki, 246 children aged 3-6 yrs, winter and spring of 1991, 1-wk averaged sample for each person, 6 consecutive wks in the winter and 7 consecutive wks in the spring.	Winter + Spring	Population vs. outdoor (n = 23)	0.4	4.7	0.86
Monn et al. (1998)	Geneva, Basle, Lugano, Aarau, Wald, Payerne, Montana, and Davos	All	Personal (all subjects) vs. outdoor ($n = 1,494$)	0.45	7.2	0.33
	 (SAPALDIA study, Switzerland), 140 subjects, Dec 1993 to Dec 1994, each home was monitored for 3 periods of 1 mo; in the 1st wk of each period, personal, indoor rand outdoor levels were measured, and in the next 3 consecutive wks, only outdoor levels were measured (1-wk averaged measurement). 		Personal (no smokers and gas cooking) vs. outdoor (n = 943)	0.38	7.2	0.27
Levy et al. (1998)	18 cities across 15 countries,568 adults,Feb or March 1996,One, 48-h avg measurement for eachperson, all people were measured on thesame day.	Winter	Personal vs. outdoor (n = 546)	0.49	14.5	_
Spengler et al. (1994)	Los Angeles Basin, probability-based sample, 70 subjects, May 1987 to May 1988, in the microenvironmental component of the study, each participant was monitored for 48 hours during each of 8 sampling cycles throughout the yr.	All	Personal vs. outdoor	0.56	15.8	0.51

TABLE 2.5-5. SUMMARY OF REGRESSION MODELS OF PERSONAL EXPOSURE TO AMBIENT/OUTDOOR NO2

TABLE 2.5-5 (cont'd).SUMMARY OF REGRESSION MODELS OF PERSONAL EXPOSURE TO
AMBIENT/OUTDOOR NO2

Study	Location	Season	Model Type	Slope (SE)	Intercept / ppb	\mathbf{R}^2
Sorensen et al.	Copenhagen,	All	Personal vs. outdoor $(n = 73)$	0.60 (0.07)		
(2005)	30 subjects (20-33 yrs old) in each	(>8 °C)	Personal vs. outdoor $(n = 35)$	0.68 (0.09)	—	
	measurement campaign, fall 1999, and winter, spring and summer of 2000,	(<8 °C)	Personal vs. outdoor $(n = 38)$	0.32 (0.13)	—	—
	four measurement campaigns in 1 yr; each campaign lasted 5 wks with 6 subjects each wk; one 48-h avg NO_2 measurement for each subject.					
Sorensen et al. (2005)	Copenhagen, 30 subjects (20-33 yrs old) in each measurement campaign, fall 1999, and winter, spring and summer of 2000, four measurement campaigns in 1 yr; each campaign lasted 5 wks with 6 subjects each wk; one 48-h avg NO ₂ measurement for each subject.	All	Personal vs. central (n = 66)	0.56 (0.09)		

TABLE 2.5-5 (cont'd).SUMMARY OF REGRESSION MODELS OF PERSONAL EXPOSURE TO
AMBIENT/OUTDOOR NO2

Study	Location	Season	Model Type	Slope (SE)	Intercept / ppb	\mathbf{R}^2
Alm et al. (1998)	Helsinki, 246 children aged 3-6 yrs, winter and spring of 1991, 1-wk averaged sample for each person, 6 consecutive wks in the winter and 7 consecutive wks in the spring.	Winter + Spring	Population vs. central (n = 24)	0.3	5.0	0.37
Sarnat et al. (2001)	Baltimore, 56 seniors, Schoolchildren, and people with COPD, summer of 1998 and winter of 1999, 14 of 56 subjects participated in both sampling seasons; all subjects were monitored for 12 consecutive days (24-h avg sample) in each of the one or two	Summer	Personal vs. central (n = 225 for 24 subjects)	0.04*	9.5	_
	seasons, with the exception of children who were measured for 8 consecutive days during the summer.	Winter	Personal vs. central (n = 487 for 45 subjects)	-0.05*	18.2	
Sarnat et al.	Boston,	Summer	Personal vs. central $(n = 341)$	0.19	—	
(2005)	43 seniors and schoolchildren, summer of 1999 and winter of 2000, Similar study design as Sarnat et al., 2001.	Winter	Personal vs. central (n = 298)	-0.03*	_	_
Sarnat et al.	Steubenville,	Summer	Personal vs. central ($n = 122$)	0.25 (0.06)		0.14
(2006)	15 senior subjects, summer and fall of 2000, two consecutive 24-h samples were collected for each subject for each wk, 23 wks total.	Fall	Personal vs. central (n = 138)	0.49 (0.05)	_	0.43

*Not significant at the 5% level.

Study	Description	Season	Regression Format or Ratio	Indoor Characteristics	Finf	Comments
Mosqueron et al. (2002)	Paris, 62 Paris office workers, Dec 1999 to Sept 2000, 48-h residential indoor,	Overall study seasons	Residential indoor vs. ambient and using gas cooking	Cooking	0.26 (n = 62)	The overall R^2 is 0.14, and ambient NO ₂ and indoor cooking account for 0.07 each
	workplace, outdoor, and personal exposure were measured.		Office indoor vs. ambient and floor height	None	0.56 (n = 62)	The overall R^2 is 0.24, partial R^2 for ambient and floor height were 0.18 and 0.06, respectively
Lee et al. (1999)	Hong Kong, 14 public places with mechanical ventilation systems, Oct 1996 to March 1997, Teflon bags were used to collect indoor and outdoor NO and NO ₂ during peak hours.	Overall study seasons	Indoor vs. outdoor	_	0.59 (n = 14)	R^2 was 0.59. The slopes for NO and NO _x were 1.11 and 1.04 respectively
Monn et al. (1997)	Switzerland, 17 homes across Switzerland, winter 1994 to summer 1995, 48- to 72-h indoor, outdoor and personal NO ₂ were measured.	Overall study seasons	Indoor/outdoor ratio	Without gas cooking	0.4, -0.7 (n = 26)	
Lee et al. (1995)	Boston area, 517 residential homes, Nov 1984 to Oct 1986, 2-wk averaged indoor (kitchen, living room, and bedroom) and outdoor NO ₂ were measured.	Summer	Indoor/outdoor ratio	Electric stove homes	0.77 (bedroom) (Sample size was not reported)	Homes with gas stove and gas stove with pilot light have an I/O ratio > 1, but the values were not reported

TABLE 2.5-6. INDOOR/OUTDOOR RATIO AND THE INDOOR VS. OUTDOOR REGRESSION SLOPE

Study	Description	Season	Regression Format or Ratio	Indoor Characteristics	F_{inf}	Comments
Garrett et al. (1999)	The Latrobe Valley, Victoria, Australia, 80 homes, March-April 1994, and Jan-Feb, 1995, 4-day averaged indoor (bedroom, living room, and kitchen) and outdoor NO ₂ was monitored.	Overall study seasons	Indoor/outdoor ratio	No major indoor sources (major sources were gas stove, vented gas heater, and smoking)	0.8 6 (n = 15)	The ratio increased to 1.3, to 1.8, and to 2.2 for homes with one, two and three major indoor sources.
Monn et al. (1998)	Geneva, Basle, Lugano, Aarau, Wald, Payerne, Montana, and Davos (SAPALDIA study, Switzerland), 140 subjects, Dec 1993 to Dec 1994, each home was monitored for 3 periods of 1 mo; in the 1st wk of each period, personal, indoor rando outdoor levels were measured, and in the next 3 consecutive wks, only outdoor levels were measured (1-wk averaged measurement)	Overall study seasons	Residential indoor vs. residential outdoor	All homes Homes without smokers and gas- cooking	0.47 (n = 1544) 0.40 (n = 968)	R ² was 0.37. R ² was 0.33.
Spengler et al. (1994)	Los Angeles Basin, probability-based sample, 70 subjects, May 1987 to May 1988, 48-h averaged, in the microenvironmental component of the study, each participant was monitored during each of eight sampling cycles throughout the yr.	Overall study seasons	Residential indoor vs. residential outdoor	Gas range with pilot light Gas range without pilo light Electric stove	$\begin{array}{c} 0.49 \\ (n = 314) \\ t \ 0.4 \\ (n = 148) \\ 0.4 \\ (n = 170) \end{array}$	R^{2} was 0.44. R^{2} was 0.39. R^{2} was 0.41.

TABLE 2.5-6 (cont'd). INDOOR/OUTDOOR RATIO AND THE INDOOR VS. OUTDOOR REGRESSION SLOPE

Study (ambient)	Location	PM _{2.5}	СО	O_3	SO_2
This Assessment	Los Angeles	0.49 (u ³), 0.56 (s)	0.59 (u), 0.64 (s)	-0.29 (u), -0.11 (s)	
This Assessment	Riverside, CA		0.43 (u), 0.41 (s), 0.15 (r)	0.045 (u), 0.10 (s), -0.31 (r)	
This Assessment	Chicago	0.49 (s)	0.53 (u), 0.46 (s)	-0.20 (u)	
This Assessment	New York City	0.58 (u)	0.46 (u)	-0.06 (u)	
Kim et al. (2006)	Toronto	0.44	0.72		
Sarnat et al. (2006)	Steubenville, OH (autumn)	0.78 (0.70 for sulfate, 0.82 for EC)			
Sarnat et al. (2006)	Steubenville, OH (summer)	0.00 (0.1 for sulfate, 0.24 for EC)			
Connell et al. (2005)	Steubenville, OH	0.50			
Kim et al. (2005)	St. Louis (RAPS)		0.641		
Sarnat et al. $(2001)^4$	Baltimore, MD (summer)	0.37	0.75	0.02 not significant	
Sarnat et al. (2001)	Baltimore, MD (winter)	0.75	0.76	-0.71	-0.17
Hochadel et al. (2006)	Ruhr area, Germany	0.41, (0.93 for EC ²)			
Arx et al. (2004)	21 European cities	0.75			
Cyrys et al. (2003)	Ehrfurt, Germany	0.50	0.74		
Mosqueron et al. (2002)	Paris	0.69			
Rojas-Bracho et al. (2002)	Santiago, Chile	0.77			

TABLE 2.5-7. CORRELATIONS (PEARSON CORRELATION COEFFICIENT)BETWEEN AMBIENT NO2 AND AMBIENT COPOLLUTANTS

 1 Value with respect to NO_x.

 $^2 Inferred based on EC as dominant contributor to <math display="inline">PM_{2.5}$ absorbance.

³u: urban; s: suburban; and r: rural

⁴Spearman correlation coefficient was reported

TABLE 2.5-8. PEARSON CORRELATION COEFFICIENTS BETWEEN NOx AND
TRAFFIC-GENERATED POLLUTANTS

NO _x : PM _{2.5} (MV component)	$0.48 < r < 0.75^{1}$	$0.48 < r < 0.75^2$
NO _x : CO	$0.30 < r < 0.77^{1}$	$0.54 < r < 0.77^2$
NO _x : Pb	$0.42 < r < 0.76^{1}$	$0.48 < r < 0.76^2$
NO _x : Br	$0.55 < r < 0.73^{1}$	$0.58 < r < 0.73^2$
NO ₂ : $EC^3 0.93$		
NO ₂ : $EC^4 0.82$ autumn, 0.24 summer		

¹St. Louis RAPS (Kim et al., 2006), all sites

²St. Louis RAPS (Kim et al., 2006), all sites with upwind background site removed

³Ruhr Valley (Hochadel et al., 2006)

⁴Steubenville, OH (Sarnat et al., 2006)

TABLE 2.5-9. CORRELATIONS (PEARSON CORRELATION COEFFICIENT)BETWEEN AMBIENT NO2 AND PERSONAL COPOLLUTANTS

Study	Location	PM _{2.5}	Sulfate	EC	Ultrafine particle
Sarnat et al. (2006)	Steubenville, Fall	0.71	0.52	0.70	
Sarnat et al. (2006)	Steubenville, Summer	0.00	0.1 not significant	0.26	_
Vinzents et al. (2005)	Copenhagen	—	—	—	0.49 (R^2) explained by ambient NO ₂ and ambient temperature

TABLE 2.5-10. CORRELATIONS (PEARSON CORRELATION COEFFICIENT)BETWEEN PERSONAL NO2 AND AMBIENT COPOLLUTANTS

Study	Location	PM _{2.5}	Sulfate	EC	PM_{10}	СО
Sarnat et al. (2006)	Steubenville, Fall	0.46	0.35	0.57	—	
Sarnat et al. (2006)	Steubenville, Summer	0.00	0.1 not significant	0.17	—	—
Kim et al. (2006)	Toronto	0.30	—		—	0.20
Rojas-Bracho et al. (2002)	Santiago	0.65	_		0.39	

BETWEEN TERSONAL NOT AND TERSONAL COLOCIDE TANTS							
Study	Location	PM _{2.5}	СО	VOCs	HONO		
Kim et al. (2006)	Toronto	0.41	0.12				
Modig et al. (2004)	Umea	_		0.06 for 1, 3-butadiene; and 0.10 for benzene	_		
Mosqueron et al. (2002)	Paris	0.12 but not significant	—	_	_		
Jarvis et al. (2005)	21 European cities		—	_	0.77 for indoor NO_2 and indoor HONO		
Lee et al. (2002)	_		—	_	0.51 for indoor NO_2 and indoor HONO		
Lai et al. (2004)	Oxford	-0.1	0.3	-0.11 for TVOCs			

TABLE 2.5-11. CORRELATIONS (PEARSON CORRELATION COEFFICIENT)BETWEEN PERSONAL NO2 AND PERSONAL COPOLLUTANTS

1 2

3. INTEGRATED HEALTH EFFECTS OF NO₂ EXPOSURE

3

4 5 This chapter integrates epidemiological, human clinical, and toxicological evidence for 6 adverse health effects associated with exposure to NO₂, alone or in combination with other 7 pollutants. The body of epidemiological and experimental evidence is evaluated for strength, 8 consistency, coherence, and plausibility. Judgments are made about the extent to which causal 9 inferences can be made on the observed associations between health effects and exposure to 10 oxides of nitrogen. The focus is on studies conducted at environmentally relevant 11 concentrations, i.e., primarily studies that identify effects associated with NO₂ levels \leq 5 ppm. 12 The evaluations of those studies incorporate the science and conclusions from the 1993 AQCD 13 for Oxides of Nitrogen. More detailed information is summarized in the Annexes, highlighting 14 key study findings. The chapter first presents a brief overview of the toxicological evidence for 15 potential mechanisms of injury. Morbidity and mortality associated with short-term exposures to 16 NO₂ are presented next, followed by morbidity and mortality associated with long-term 17 exposures. The chapter concludes with discussions of the limited literature on health effects 18 associated with other oxides of nitrogen, including NO, HONO, and HNO₃. 19 Issues relevant to the evaluation of epidemiological study findings were discussed in 20 previous documents, particularly in the AQCDs for PM (U.S. Environmental Protection Agency, 21 2004) and O₃ (U.S. Environmental Protection Agency, 2006). These include the influence of 22 model specification on study findings, the evaluation of lag periods used in epidemiological 23 analyses, and general considerations regarding confounding or effect modification. In evaluating 24 NO₂ epidemiological studies, the consideration of measurement and exposure errors are of

25 particular relevance. Chapter 2 describes the extent and significance of the positive artifacts

26 from other oxidized nitrogen compounds in the FRM-reported NO₂ values found in standard

27 regulatory networks. Because nearly all epidemiological studies use FRM-reported NO₂ as the

28 population exposure estimates, these estimates represent the effects of other oxidized nitrogen

29 compounds in addition to NO₂.

In the 1993 AQCD for Oxides of Nitrogen, human clinical evidence indicated that NO₂
 caused decrements in lung function, particularly increased airways resistance in healthy subjects

1 with exposures of >2.0 ppm for 2 h. Other studies showed increased airways responsiveness in 2 healthy subjects at concentrations of >1 ppm for 1 h. Asthmatics and COPD patients 3 demonstrated increased decrements in lung function that were dependent on exposure conditions. 4 However, concentration-response relationships were not observed for changes in lung function, 5 airways responsiveness, or symptoms, and no association was apparent between lung function 6 responses and respiratory symptoms. Epidemiological evidence was somewhat mixed for the 7 effects of NO₂ exposure on lower respiratory symptoms and disease, but supportive for effects in 8 children aged 5 to 12 years. However, at the time, data were inadequate to determine a 9 quantitative relationship between estimates of exposure and symptoms. There was similarly 10 insufficient epidemiological evidence regarding the long- or short-term effects of NO₂ on 11 pulmonary function. Animal toxicology studies evaluated in the 1993 AQCD identified 12 biochemical and cellular mechanisms whereby NO_2 induces effects. The ability of NO_2 to 13 modulate host defenses and enhance susceptibility to bacterial and viral disease was attributed to 14 alterations in alveolar macrophage (AM) structure, function, and metabolic activity. Animal 15 infectivity models also demonstrated decreased resistance to bacterial infections associated with 16 NO₂ exposure. Analysis of exposure regimens showed the dependence of effects on the 17 concentration and duration and the exposure profile, rather than the cumulative product of 18 concentration times duration of exposure ($C \times T$).

- 19 20
- 21

3.1 POTENTIAL MECHANISMS OF INJURY

The effects of NO₂ on respiratory tract function account for most of the currently available literature relevant to this evaluation of the effects of gaseous NO_x, and the evidence includes a variety of endpoints ranging from biochemical effects to morphological and functional changes. Limited relevant data are available for effects of other gaseous oxides of nitrogen, such as NO and HNO₃ vapor. This evidence is briefly discussed in Section 3.7 with further details available in Annex Chapters 4, 5, and 6.

Biochemical studies on the effects of NO₂ on the lung focus on the possible mechanism(s) of toxicity and/or on detection of indicators of tissue and cellular damage. The biochemical effects observed in the respiratory tract after NO₂ exposure include chemical alteration of lipids, amino acids, proteins, and enzymes and changes in oxidant/antioxidant homeostasis. Membrane polyunsaturated fatty acids and thiol groups are the main biochemical

1 targets for NO₂ exposure: data available in the 1993 AQCD indicated that NO₂ induces lipid 2 peroxidation and changes in lipid content of cell membranes. These effects appear to occur at 3 concentrations as low as 0.04 ppm. Another likely mechanism involves the oxidation of water-4 soluble low-molecular-weight reducing substances and proteins, resulting in enzyme dysfunction 5 that manifests itself as toxicity (Freeman and Mudd, 1981). Mechanisms of respiratory tract 6 toxicity may relate to NO₂ metabolites or reaction products resulting in local pH changes or to 7 direct damage to target cells via reactive metabolites. The underlying mechanisms are complex, 8 because their effects may occur directly through the action of nitrogen or oxygen radicals 9 generated via NO₂-mediated chemical reactions or may be secondary to release of reactive 10 oxygen species (ROS) by leukocytes responding to local irritation caused by cell damage. For a 11 detailed description of mechanism studies, see Annex Chapter 4. 12 13 3.2 **MORBIDITY ASSOCIATED WITH SHORT-TERM NO2** 14 **EXPOSURE** 15 16 3.2.1 **Respiratory Effects Associated with Short-Term NO₂ Exposure** 17 18

18 19

20

3.2.1.1 Lung Host Defenses and Immunity

21 Lung host defenses are sensitive to NO₂ exposure, with numerous measures of such 22 effects observed at concentrations of <1 ppm. According to Chauhan et al. (2003), potential 23 mechanisms include "direct effects on the upper and lower airways by ciliary dyskinesis (Carson 24 et al., 1993), epithelial damage (Devalia et al., 1993a), increases in pro-inflammatory mediators 25 and cytokines (Devalia et al., 1993b), rises in IgE concentration (Siegel et al., 1997), and 26 interaction with allergens (Tunnicliffe et al., 1994), or indirectly through impairment of bronchial immunity (Sandstrom et al., 1992)." Table 3.2-1 summarizes a range of proposed 27 28 mechanisms by which exposure to NO_2 in conjunction with viral infections may exacerbate 29 upper and lower airways symptoms (Chauhan et al., 1998). A major concern has been the 30 potential for NO_2 exposure to enhance susceptibility to, or the severity of, illness resulting from 31 respiratory infections and asthma, especially in children. The following discussion focuses on 32 studies published since the 1993 AQCD and conducted at near-ambient exposure concentrations.

1 One new epidemiological field study (Chauhan et al., 2003) discussed in Section 2.7 2 provided evidence that increased personal exposure to NO₂ worsens virus-associated symptoms 3 and lung function in children with asthma. Personal exposure concentrations were low, with 4 medians for the exposure quartiles ranging from 2.6 to 10.9 ppb. These concentrations are at 5 least 2 orders of magnitude lower than the lowest concentrations demonstrated to have 6 measurable effects on airways inflammation in association with allergen challenge in clinical 7 studies. Differences that can influence the interaction of NO₂ and infectious agents include 8 exercise (Illing et al., 1980), the presence of O3 (Ehrlich et al., 1977; Gardner, 1980; Gardner 9 et al., 1982; Graham et al., 1987), and elevated temperatures (Gardner et al., 1982). 10 Several clinical studies have attempted to address the question of whether NO₂ exposures 11 impaired host defenses and/or increased susceptibility to infection and produced mixed results 12 (Rehn et al., 1982; Goings et al., 1989; Rubinstein et al., 1991; Sandström et al. 1990, 1991, 13 1992a,b; Devlin 1992, 1999; Frampton et al., 2002: from Samet and Bell, 2004, review) (see the 14 1993 AQCD for details of older studies and Annex Table AX5-1 for additional details on newer 15 studies). One approach has been to examine the effects of in vivo NO_2 exposure on the function 16 of AMs obtained by bronchoalveolar lavage, including the susceptibility of these cells to viral 17 infection in vitro. Two studies since 1993 involved 2.0-ppm NO₂ exposures for 4 or 6 h with 18 intermittent exercise and found no effect on AM inactivation of influenza virus either 19 immediately or 18 h after exposure (Azadniv et al., 1998; Devlin et al., 1999). However, the 20 Devlin et al. (1999) study found reduced AM phagocytic capacity after NO₂ exposure, 21 suggesting a reduced ability to clear inhaled bacteria or other infectious agents. Frampton et al. 22 (2002) examined NO₂ effects on viral infectivity of airways epithelial cells. Subjects were 23 exposed to air, or 0.6- or 1.5-ppm NO₂ for 3 h, and bronchoscopy was performed 3.5 h after 24 exposure. Epithelial cells were harvested from the airways by brushing and then challenged in 25 vitro with influenza virus and respiratory syncytial virus (RSV). NO₂ exposure did not alter viral 26 infectivity, but appeared to enhance epithelial cell injury in response to infection with RSV 27 (p = 0.024). Similar results were seen with influenza virus. These findings suggest that prior 28 exposure to NO₂ may increase the susceptibility of the respiratory epithelium to injury by 29 subsequent viral challenge. Over all results from clinical studies are equivocal but suggestive of 30 the potential for NO₂ effects.
1 Animal studies provide clearer evidence that host defense system components such as 2 mucociliary transport and AMs (see Annex Tables AX.4.3 and 4.4) are targets for inhaled NO₂. 3 Animal studies further show that NO₂ can impair the respiratory host defense system sufficiently 4 to render the host more susceptible to respiratory infections (See Annex Table 4.5). Ciliated 5 epithelial cells involved in mucociliary transport in the conducting airways exhibit 6 morphological changes at NO₂ concentration as low as 0.5 ppm with 7 months of exposure 7 (Yamamoto and Takahashi, 1984). However, mucociliary clearance is not affected by NO₂ 8 exposure as low as 3 ppm. In a 1994 study, exposure of guinea pigs to 5640- or 16,920-µg/m3 9 (3 or 9 ppm) NO₂ 6 h/day, 6 days/week for 2 weeks resulted in concentration-dependent 10 decreases in ciliary activity of 12 and 30% of control values at NO₂ concentrations of 11 5640 µg/m3 (3 ppm) and 16,920 µg/m3 (9 ppm), respectively (Ohashi et al., 1994). These 12 concentration-dependent decreases are accompanied by a concentration-dependent increase in 13 eosinophil accumulation on the epithelium and submucosal connective tissue layer of the nasal 14 mucosa. For foreign agents such as some bacteria and viruses that deposit below the mucociliary 15 region in the gas-exchange region of the lung, AMs primarily provide host defenses by acting to 16 remove or kill viable particles, remove nonviable particles, and process and present antigens to 17 lymphocytes for antibody production. AMs are one of the sensitive targets for NO₂, as 18 evidenced by in vivo acute and long-term animal exposures and in vitro studies (see Annex 19 Table AX4.4 for details of studies related to each of these morphological or functional 20 parameters in exposed animals). The susceptibility to bacterial and viral pulmonary infections in 21 animals also increases with NO₂ exposures of as low as 0.5 ppm. No new studies published 22 since 1993 were identified that evaluated this endpoint. Annex Table AX4.5 summarizes the 23 effects of NO₂ exposure and infectious agents in animal studies as compiled in the 1993 AQCD 24 for Oxides of Nitrogen. It is important to note that the 1993 AQCD provides evidence that the 25 host's response to inhaled NO₂ can be significantly influenced by the duration and temporal 26 patterns of exposure. This is important in considering continuous versus intermittent exposures 27 and attempting to understanding observed differences in reported results.

In summary, the evidence for altered host defense is coherent across disciplines and plausible. Taken as a whole, however, the body evidence lacks consistency and robustness. The epidemiologic, clinical, and animal data provide supportive evidence of impaired host-defense systems and increased risk of susceptibility to both viral and bacterial infections. In particular, the Pilotto et al. (2004) and the Chauhan et al. (2003) studies add to the weight of evidence produced since the last AQCD. Their findings indicate that exposure to NO₂ before the start of a respiratory infection is associated with an increase in respiratory symptoms and exacerbation of asthma. These effects are reported to occur at levels near and below the current NAAQS. These indoor/personal NO₂-exposure studies all were controlled for some variable associated with ambient NO₂ exposure; however, confounding with ultrafine emissions remains a concern.

7

8 Clinical Studies on Host Defense and Immunity

9 Clinical studies have attempted to address the question of whether NO_2 exposure 10 increases susceptibility to infection. Goings et al. (1989) exposed healthy volunteers to either 1- to 3 ppm NO₂ or to air for 2 h/day for 3 consecutive days. A live, genetically engineered 11 12 influenza A vaccine virus was administered intranasally to all subjects after exposure on day 2. 13 Infection was determined by virus recovery from nasal washings, a 4-fold or greater increase in 14 antibody titer, or both. The findings of this study were inconclusive, in part, because of 15 limitations in sample size. In addition, the attenuated, cold-adapted virus used in the study was 16 incapable of infecting the lower respiratory tract, where NO₂ may have the most important 17 impact on host defense.

18 There is evidence from both animal and human studies that exposure to NO₂ may alter 19 lymphocyte subsets in the lung and possibly in the blood. Lymphocytes, particularly T cells and 20 NK cells, play a key role in the innate immune system and host defense against respiratory 21 viruses. Sandström et al. (1990, 1991) observed a significant, dose-related increase in 22 lymphocytes and mast cells recovered by bronchoalveolar lavage (BAL) 24-h after a 20-min 23 exposure to NO₂ at 2.25 to 5.5 ppm. Rubinstein et al. (1991) found that a series of 4 daily, 2-h 24 exposures to 0.60 ppm NO₂ resulted in a small increase in NK cells recovered by BAL. In 25 contrast, repeated exposures to 1.5- or 4 ppm NO₂ for 20 min every second day on six occasions 26 resulted in decreased CD16⁺56⁺ (NK cells) and CD19⁺ cells (B lymphocytes) in BAL fluid, 24-h 27 after the final exposure (Sandström et al., 1992a,b). No effects were seen on polymorphonuclear 28 leukocytes (PMN) or total lymphocyte numbers. Solomon et al. (2000) found a decrease in 29 CD4⁺ T lymphocytes in BAL fluid 18-h after 4 daily, 4-h exposures to 2.0 ppm NO₂. Azadniv 30 et al. (1998) observed a small but significant reduction in CD8⁺ T lymphocytes in peripheral 31 blood, but not BAL, 18-h following single 6-h exposures to 2.0 ppm NO₂. Frampton et al.

(2002) found small increases in BAL lymphocytes and decreases in blood lymphocytes with
 exposures to 0.6 and 1.5 ppm NO₂ for 3 h.

3 The observed effects on lymphocyte responses, as described above, have not been 4 consistent among studies. Differing exposure protocols and small numbers of subjects among 5 these studies may explain the varying and conflicting findings. Furthermore, the clinical 6 significance of transient, small changes in lymphocyte subsets is unclear. It is possible that the 7 inflammatory response to NO₂ exposure involves both lymphocytes and PMNs, with lymphocyte 8 responses occurring transiently and at lower concentrations and PMN responses predominating 9 at higher concentrations or more prolonged exposures. The airways lymphocyte responses do 10 not provide convincing evidence of impairment in host defense.

11 One study found that 20-min exposures to NO₂ at 1.5 to 3.5 ppm transiently reduced 12 airways mucociliary activity, assessed by fiberoptic bronchoscopy (Helleday et al., 1995). 13 Reduced mucus clearance would be expected to increase susceptibility to infection by reducing 14 the removal rate of microorganisms from airways. However, the study was weakened by a lack 15 of a true air control exposure as well as by the absence of randomization and blinding. As a 16 clarification, Helleday et al. (1995) did not measure mucus clearance rates directly using 17 radiolabeled particles; rather they utilized an optical technique to characterize ciliary activity. 18 Rehn et al. (1982) examined the effect of NO₂ exposure on mucociliary clearance of a 19 radiolabeled Teflon aerosol. After a 1-h exposure to either 0.27- or 1.06-ppm (500 or 20 $2000 \ \mu g/m^3$) NO₂, there were no changes in airways clearance rates.

21 Another approach has been to examine the effects of in vivo NO₂ exposure on the 22 function of AMs obtained by bronchoalveolar lavage, including the susceptibility of these cells 23 to viral infection in vitro. Several NO₂ exposure scenarios, including continuous low-level 24 exposure or intermittent peak exposures have been examined (Frampton et al., 1989). AMs 25 obtained by BAL 3.5-h after a 3-h continuous exposure to 0.60 ppm NO₂ tended to inactivate 26 influenza virus in vitro less effectively than cells collected after air exposure. The effect was 27 observed in cells from 4 of the 9 subjects studied; AMs from these 4 subjects increased release of 28 interleukin-1 (IL-1) after exposure to NO₂, whereas cells from the remaining 5 subjects 29 decreased release of IL-1 following exposure. However, two subsequent studies (Azadniv et al., 30 1998; Devlin et al., 1999) involving 2.0 ppm NO₂ exposures for 4 or 6 h, with intermittent 31 exercise, found no effect on AM inactivation of influenza virus either immediately or 18-h after

exposure. However, the Devlin et al. (1999) study found reduced AM phagocytic capacity after 1 2 NO₂ exposure, suggesting a reduced ability to clear inhaled bacteria or other infectious agents. 3 Frampton et al. (2002) examined NO₂ effects on viral infectivity of airways epithelial 4 cells. Subjects were exposed to air, or 0.6- or 1.5-ppm NO₂ for 3 h, and bronchoscopy was 5 performed 3.5-h after exposure. Epithelial cells were harvested from the airways by brushing 6 and then challenged in vitro with influenza virus and respiratory syncytial virus (RSV). NO_2 7 exposure did not alter viral infectivity, but appeared to enhance epithelial cell injury in response 8 to infection with RSV (p = 0.024). A similar nonsignificant change was seen with influenza 9 virus. These findings suggest that prior exposure to NO₂ may increase the susceptibility of the 10 respiratory epithelium to injury by subsequent viral challenge.

11

12 Toxicological Studies on Host Defense and Immunity

13

14 Mucociliary Clearance

15 Substances capable of disrupting or impairing mucociliary clearance can result in an 16 excess accumulation of cellular secretions, increased acute bacterial and viral infections, chronic 17 bronchitis, and prolonged pulmonary complications (Schlesinger et al., 1987). The respiratory 18 tract often responds to irritants by increasing mucus secretion. Ideally, this would enhance the 19 capture of harmful substances to be removed to the upper respiratory tract through the action of 20 the ciliated epithelium. The ciliated epithelial cells lining the respiratory tract (tracheobronchial 21 region) can respond to insults by changing cilia beat frequency, cessation of beating, and/or 22 development of abnormal forms of cilia. With even greater exposures, loss of cilia and ciliated 23 epithelial cells can be found in animals exposed to NO_2 , and a description of such 24 histopathologic changes can be found in the Section 3.2.1.1 on morphological changes. 25 Changes in the functional impairment of mucociliary clearance are observed at high concentrations of NO₂ (\geq 5.0 ppm) (Giordano and Morrow, 1972; Kita and Omichi, 1974). At 26 lower exposures (2 h/day for 2, 7, and 14 days to 564- and 1880- μ g/m³ [0.3 and 1.0 ppm] NO₂), 27 28 the mucociliary clearance of inhaled tracer particles deposited in the tracheobronchial tree of 29 rabbits was not altered (Schlesinger et al., 1987). Vollmuth et al. (1986) studied the clearance of 30 strontium-85-radiolabelled polystyrene latex spheres from the lungs of rabbits following a single 2-h exposure to NO₂ at 564, 1880, 5640, or 18,800 μ g/m³ (0.3, 1.0, 3.0, or 10.0 ppm). An 31

32 acceleration in clearance occurred immediately after exposure to the two lowest NO₂

1 concentrations; a similar effect was found by Schlesinger and Gearhart (1987). At the higher 2 levels of NO₂, acceleration in clearance was not evident until midway through the 14-day postexposure period. Repeated exposure for 14 days (2 h/day) to 1880- or 18,800-µg/m³ (1.0 or 3 4 10.0 ppm) NO₂ produced a response similar to a single exposure at the same concentration. Exposure of guinea pigs to 5640- or $16,920-\mu g/m^3$ (3 or 9 ppm) NO₂ 6 h/day, 5 6 6 days/week for 2 weeks resulted in concentration-dependent decreases in ciliary activity of 12 and 30% of control values at NO₂ concentrations of 5640 μ g/m³ (3 ppm) and 16,920 μ g/m³ 7 8 (9 ppm), respectively, (Ohashi et al., 1994) accompanied by concentration-dependent increase in 9 eosinophil accumulation on the epithelium and submucosal connective tissue layer of the nasal 10 mucosa. Morphological changes (i.e., compound cilia, cytoplasmic vacuolization, sloughing) 11 were observed only in the nose of animals in the high-concentration group.

12

13 Effects on AMs and Mast Cells

14 The effectiveness of AMs depends on the type, number, and viability of the cells. To 15 perform their primary function of detoxifying and/or clearing the lung of infectious and 16 noninfectious particles, AMs must maintain an intact membrane, mobility, and phagocytic 17 activity, and have functioning enzyme systems as well as secrete cellular mediators that recruit 18 and activate inflammatory cells in the lungs (Fels and Cohn, 1986). AMs are one of the sensitive 19 targets for NO₂, as evidenced by in vivo acute and long-term animal exposures and in vitro 20 studies, and there are studies (see Annex Table AX4.4) related to each of these morphological or 21 functional parameters in exposed animals.

22 Structural changes, including the loss of surface processes, appearance of fenestrae, bleb

23 formation, and denuded surface areas, have been observed in AMs isolated from mice

continuously exposed to $3760-\mu g/m^3$ (2.0 ppm) NO₂ or to $940-\mu g/m^3$ (0.5 ppm) NO₂

25 continuously with a 1-h peak to 3760 μ g/m³ (2.0 ppm) for 5 days/week. The AMs showed

26 distinctive morphological changes after 21 weeks of exposure that would be expected to interfere

27 with cellular functions such as chemotaxis and phagocytosis (Aranyi et al., 1976). Continuous

exposure to lower NO₂ concentrations, i.e., to 940 μ g/m³ (0.5 ppm) continuous or to 1.8 μ g/m³

29 (0.1 ppm) continuous with a 3-h peak to 1880 μ g/m³ (1.0 ppm) for periods up to 24 weeks, did

30 not result in any significant morphological or biochemical changes.

31 Mochitate et al. (1986) reported a significant increase in the total number of AMs isolated 32 from rats during 10 days of exposure to $7520-\mu g/m^3$ (4.0 ppm) NO₂, but the number of PMNs

1 did not increase. The AMs from exposed animals also exhibited increased metabolic activity, as 2 measured by the activities of glucose-6-phosphate dehydrogenase, glutathione peroxidase, and 3 pyruvate kinase. The AMs also showed increased rates of synthesis of protein and DNA. All 4 responses peaked on day 4 and returned to control levels by the day 10. Increased numbers and 5 metabolic activity of AMs would be expected to have a positive influence on host defenses. However, AMs are rich in proteolytic enzymes and increased numbers could result in some 6 7 tissue destruction when the enzymes are released. Schlesinger (1987a,b) found no significant 8 changes in the number or the viability of AMs in BAL fluid from rabbits exposed to 564- or $1880-\mu g/m^3$ (0.3 or 1.0 ppm) NO₂, 2 h/day for 13 days. Although there were no effects on the 9 numbers of AMs that phagocytosed latex spheres, 2 days of exposure to 564 μ g/m³ (0.3 ppm) 10 11 decreased the phagocytic capacity (i.e., number of spheres phagocytosed per cell). The higher 12 level of NO₂ increased phagocytosis, whereas longer exposures had no effect. In rats, continuous exposure at 7520- μ g/m³ (4.0 ppm) or 15,000- μ g/m³ (8.0 ppm) NO₂ for 10 days 13 14 significantly increased the number of AMs in the BAL fluid, with the increase becoming 15 significant by the fifth day of exposure. Viability of these isolated cells decreased on day 1 and 16 remained depressed throughout exposure. However, phagocytic activity of AMs was significantly depressed (after 5 days of exposure to 15,000 μ g/m³ [8.0 ppm] and 7 days of 17 exposure to 7520 μ g/m³ [4.0 ppm]), but returned to the control value at 10 days of exposure 18 19 (Suzuki et al., 1986). There may be a species difference in responsiveness, because Lefkowitz 20 et al. (1986) did not observe a depression in phagocytosis in mice exposed for 7 days to 9400- μ g/m³ (5.0 ppm) NO₂. 21 22 Suzuki et al. (1986) proposed that the inhibition of phagocytosis might be due to NO_2

Suzuki et al. (1986) proposed that the inhibition of phagocytosis might be due to NO₂
effects on membrane lipid peroxidation. Studies by Dowell et al. (1971) and Goldstein et al.
(1977) add support to this hypothesis. Acute exposure to 5640 to 7520 µg/m³ (3.0 to 4.0 ppm)
caused swelling of AMs (Dowell et al., 1971) and increased agglutination of AMs with
concanavalin A (Goldstein et al., 1977), suggesting damage to membrane functions.
NO₂ exposure appears to decrease the ability of rat AMs to produce superoxide anion,
which may limit antibacterial activity (Amoruso et al., 1981). Amoruso et al. (1981) presented
evidence of such an effect at NO₂ concentrations ranging from 1.3 to 17.0 ppm. The duration of

30 the NO₂ exposure was not given; all exposures were expressed in terms of parts per million \times h

31 (ppm-h). A 50% decrease of superoxide anion production began after exposure to

54,700-μg/m³-h (29.1 ppm-h) NO₂. Suzuki et al. (1986) reported a marked decrease in the
ability of rat AMs to produce superoxide anion following a 10-day exposure to either 7520- or
15,000-μg/m³ (4.0 or 8.0 ppm) NO₂. At the highest concentration, the effect was significant
each day, but at the lower concentration, the depression was significant only on exposure days 3,
5, and 10. Superoxide production in AMs from rat BAL fluid, stimulated by phorbol myristate
acetate (PMA), was decreased after 0.5 days of exposure to 940-μg/m³ (0.5 ppm) NO₂ and
continued to be depressed after 1, 5, and 10 days of exposure (Robison et al., 1993).

8 Kumae and Arakawa (2006) compared the female offspring of Brown-Norway rats that were exposed continuously to NO₂ at 376, 940, or 3760 μ g/m³ (0.2, 0.5, or 2.0 ppm) during 9 10 breeding and gestation and up through 12 weeks of age to female offspring who were exposed 11 continuously to 376, 940, or 3760 μ g/m³ (0.2, 0.5, or 2.0 ppm) only during the weanling period 12 (from weeks 5 to 12). The ROS generation from AMs was significantly suppressed in the 940- and 3760-µg/m³ (0.5 and 2.0 ppm) NO₂-exposed weanling animals; no change in ROS-13 14 generating capability was observed in the embryonic-exposed animals compared to the air 15 controls.

16 The AMs obtained by BAL from baboons exposed to $3760 - \mu g/m^3$ (2.0 ppm) NO₂ for 17 8 h/day, 5 days/week for 6 months had impaired responsiveness to migration inhibitory factor 18 produced by sensitized lymphocytes (Green and Schneider, 1978). This substance affects the 19 behavior of AMs by inhibiting free migration, which in turn, interferes with AM functional 20 capacity. In addition, the random mobility of AMs was significantly depressed in rabbits 21 following a 2 h/day exposure for 13 days to NO₂ at 564 $\mu g/m^3$ (0.3 ppm) but not at 1880 $\mu g/m^3$ 22 (1.0 ppm) (Schlesinger, 1987b).

Mast cells also play an important role in modulating lung inflammatory responses. IgEmediated histamine release from lung mast cells was significantly increased in guinea pigs, but not rats, exposed to $7520-\mu g/m^3$ (4.0 ppm) NO₂, 24 h/day for 12 weeks (Fujimaki and Nohara, 1994). No effect of NO₂ on histamine release was observed at the lower concentrations of 1880or $3760-\mu g/m^3$ (1 or 2 ppm) NO₂.

Several newer studies provide information on the concentration at which effects on the recruitment and infiltration of PMNs into the lung occur following NO₂ exposure. When Robison et al. (1993) exposed rats to 0 or 0.5-ppm NO₂, 8 h/day, 5 days/week for 0.5, 1, 5, or 10 days, no effects were observed on neutrophil, lymphocyte, or macrophage/monocyte levels or cell population percentages in BAL. Results, therefore, suggest no significant influx of
inflammatory cells into lung airways and alveolar spaces. In rats exposed to 0 or 1.2-ppm NO₂,
there were no significant differences in cell viability and percentages of pulmonary AMs or
PMNs between animals exposed to 1.2-ppm NO₂ and nonexposed controls (Bermudez, 2001).
However, when Pagani et al. (1994) exposed rats to NO₂ at 0, 5, or 10 ppm, 24-h or 24 h/day for
7 days, exposure to 10 ppm caused maximal influx of PMN at 24 h, but no influx was observed
after 7 days of exposure. Likewise, no significant changes in lymphocyte counts were observed.

8

9 Humoral Immunity and Response to Challenge Agents

10 As noted by U.S. Environmental Protection Agency (1993), it is most relevant to assess 11 the effects of inhaled compounds on cell-mediated and antibody responses in the lung itself, 12 because this is the primary site of defense against respiratory infections. However, because of 13 technical obstacles, many older studies have assessed the responses in inhaled pollutants or NO_2 14 in the spleen or peripheral blood. These studies are more difficult to interpret in terms of 15 enhanced risk of respiratory infections. Some studies suggest little effect, whereas others 16 suggest suppression or activation, depending not only on concentration but also on length of 17 exposure, species tested, and specific endpoints measured. Annex Table AX4.3 summarizes the 18 various humoral and cell-mediated effects seen in animals exposed to NO₂.

19

20 Interaction with Infectious Microorganisms

21 Suppression of host defense mechanisms by NO₂ as described in the studies above would 22 be expected to result in an increased incidence and severity of pulmonary infections (Miller 23 et al., 1987, Gardner et al., 1979; Coffin and Gardner, 1972). Various experimental approaches 24 have been employed using animals in an effort to determine the overall functional efficiency of 25 the host's pulmonary defenses following NO₂ exposure. In the most commonly used infectivity 26 model, animals are exposed to either NO₂ or filtered air and the treatment groups are combined 27 and exposed briefly to an aerosol of a viable agent, such as Streptococcus spp., *Klebsiella* 28 pneumoniae, Diplococcus pneumoniae, or influenza virus and mortality rates are determined 29 (Ehrlich, 1966; Henry et al., 1970; Coffin and Gardner, 1972; Ehrlich et al., 1979; Gardner, 30 1982). Although the endpoint is mortality, this experimental test is considered a sensitive 31 indicator of the depression of the defense mechanisms and is a commonly used assay for 32 assessing immunotoxicity.

1 Annex Table AX4.5 summarizes the effects of NO_2 exposure and infectious agents in 2 animal studies as compiled in the 1993 AOCD for Oxides of Nitrogen. No new studies 3 published since 1993 were identified that evaluated this endpoint. The susceptibility to bacterial 4 and viral pulmonary infections in animals increases with NO₂ exposure. After acute exposure, 5 the lowest observed concentration that increased lung susceptibility to bacterial infections was $3750-\mu g/m^3$ (2 ppm) NO₂ in a 3-h exposure study with mice (Ehrlich et al., 1977; Ehrlich, 1980). 6 Acute (17 h) exposures to greater than 4250- μ g/m³ (2.3 ppm) NO₂ also decreased pulmonary 7 8 bactericidal activity in mice (Goldstein et al., 1974). Long-term exposure studies have 9 demonstrated that NO₂ exposure reduces the efficiency of defense against infections at concentrations as low as 940 μ g/m³ (0.5 ppm). Mice challenged with influenza A/PR/8 virus 10 11 after continuous exposure for 39 days had increased mortality (Ito, 1971); a 6-month exposure 12 to the same NO₂ concentration likewise resulted in increased bacterial-induced mortality in mice 13 (Ehrlich and Henry, 1968). Gardner et al. (1977a,b) also reported an increase in mortality with increasing length of exposure in mice exposed to NO₂ from 940 to 52,640 μ g/m³ (0.5 to 14 15 28 ppm).

16 The influence of a wide variety of exposure regimens has been evaluated using the 17 infectivity model (Annex Table AX4.5). For example, the effect of varying durations of 18 continuous exposure on the mortality of mice exposed to NO₂ was determined for varying 19 durations of time (Gardner et al., 1977b). When the product of $C \times T$ was held constant, the 20 relationship between concentration and time produced significantly different mortality responses. 21 Concentration had more influence than duration on the outcome. A more complete discussion of 22 the C \times T relationship issues for NO₂ is summarized in a later section. The effect of continuous 23 versus intermittent exposure to NO₂ followed by bacterial challenge has been studied (Ehrlich 24 and Henry, 1968; Gardner et al., 1979); results suggest that fluctuating levels may ultimately be 25 as toxic as sustained higher levels (Gardner et al., 1979). Extensive investigations have also 26 been made on the response to airborne infections in mice breathing spike exposures to NO_2 superimposed on a lower continuous background level of NO₂, which simulates the pattern 27 28 (although not the NO₂ concentrations) of exposure in the urban environment in the United States 29 (Gardner 1980; Gardner et al., 1982; Graham et al., 1987). The pattern of exposure determined 30 the response and that the response was found not to be predictable based on a simple $C \times T$ 31

spikes on murine antibacterial lung defenses using a spike-to-baseline ratio of 4:1, which is not
 uncommon in the urban environment in the United States. Mice were exposed 23 h/day.

3 7 days/week for 1 year to a baseline of 376 μ g/m³ (0.2 ppm) or to this baseline level on which

4 was superimposed a 1-h spike of $1500 \mu g/m^3$ (0.8 ppm) NO₂, twice a day, 5 days/week. There

5 was significantly greater mortality in mice exposed to peak plus baseline compared to baseline-

6 exposed animals.

7 A dose-related decrease in pulmonary antibacterial defenses occurs from NO₂ exposure.

8 Decreases in antibacterial defenses occurred at concentrations ranging from $7520 - \mu g/m^3$

9 (4.0 ppm) NO₂ for *Staphylococcus aureus* to 37,500- μ g/m³ (20 ppm) NO₂ for *Proteus mirabilis*

10 (Jakab, 1987).

Differences in species susceptibility to NO_2 or to a pathogen may play a role in the enhancement of mortality seen in experimental animals. Additional factors can influence the interaction of and infectious agents such as exercise (Illing et al., 1980), the presence of O_3 (Ehrlich et al., 1977; Gardner, 1980; Gardner et al., 1982; Graham et al., 1987), or elevated temperatures (Gardner et al., 1982). Table 3.2-1 summarizes a range of proposed mechanisms by which exposure to NO_2 in conjunction with viral infections may exacerbate upper and lower airways symptoms (Chauhan et al., 1998).

18

19 3.2.1.2 Effects of Short-Term NO₂ Exposure on Lung Function

20

21 Epidemiological Studies of Lung Function

22

23 Spirometry (FEV₁)—Children

24 Reliable, repeatable measurement of lung function in children presents special 25 challenges. The method that seems to produce the most accurate results is spirometry, but 26 because it requires special equipment and trained testers, it is not generally used for large-scale 27 studies. Of the three studies reviewed here that did use spirometry (Hoek and Brunekreef, 1994; 28 Linn et al., 1996; Timonen et al., 2002), all conducted repeat lung function measurements in 29 schoolchildren. All found significant associations between small decrements in lung function 30 and increases in ambient NO₂ levels. Hoek and Brunekreef (1994) enrolled 1,079 children in the Netherlands to examine the effects of low-level winter air pollution on FVC, FEV₁, MMEF, and 31 32 PEF. A significant effect was found only for the PEF measure: the mean (over all subjects)

1 slope (SE) was a reduction of 52 mL/s (95% CI: 21, 83) for 20-ppb increase in the previous 2 day's NO₂. The authors do not give mean values for lung function measurements, so it is not 3 possible to calculate what percentage of PEF this decrement represents. Linn et al. (1996) 4 examined 269 Los Angeles-area schoolchildren and short-term air pollution exposures. The 5 authors found statistically significant associations between previous-day 24-h NO₂ 6 concentrations and FVC the next morning (mean decline of 8 mL [95% CI: 2, 14] per 20-ppb 7 increase in NO₂), and current-day 24-h NO₂ concentrations and morning to evening changes in 8 FEV₁ (mean decline of 8 mL [95% CI: 2, 14] per 20-ppb increase in NO₂). Timonen et al. 9 (2002) enrolled 33 Finnish children with chronic respiratory symptoms to study the effects of 10 exercise-induced lung function changes and ambient air pollution. No significant effects were 11 observed for lung function changes due to exercise, but significant associations were observed 12 for level of NO₂ lagged by 2 days and baseline FVC (mean decline of 21 mL [95% CI: -29, -12] 13 for 20-ppb NO₂) and FEV₁ (mean decline of 20 mL [95% CI: -26, -13] for 20-ppb NO₂).

14

15 Supervised Peak Flow Meter Measurements—Children

16 Other studies conducted supervised lung function measurements in schoolchildren using 17 peak flow devices (Scarlett et al., 1996; Peacock et al., 2003; Steerenberg et al., 2001). Scarlett 18 et al. (1996) used portable peak flow meters to measure lung function in 154 pupils in a school in 19 southern England. No significant associations were found between level of ambient NO₂ and 20 $FEV_{0.75}$, FVC, or the ratio of $FEV_{0.75}$ to FVC. They also reported that lung function of children 21 with current wheeze (n = 14) was not differentially affected. In a second study by the same 22 group of investigators, Peacock et al. (2003) measured peak flow rates for 177 children in three 23 schools in southern England. Although no significant associations were found between level of 24 NO₂ and peak flow, there was a significant association for peak flow decrements of 20% or more 25 with NO₂ lagged by 2 days or averaged over the previous 4 days. For all children, the OR 26 (95% CI) for each 20-ppb increase in NO₂ was 1.91 (95% CI: 1.52, 2.76) and 2.32 (95% CI: 27 1.00, 5.50) for a 2-day lag and 1 to 4 day lag, respectively. Odds ratios (OR) were similar for a 28 subset of 43 children with current wheeze (as determined by a questionnaire administered to 29 parents) (OR = 1.70 [95% CI: 1.00, 2.86] and OR = 2.81 [95% CI: 0.98, 8.06], for a 2-day lag 30 and 1 to 4 day lag, respectively). Steerenberg et al. (2001) enrolled 82 children (38 urban,

31 44 suburban) in the Netherlands and collected supervised peak flow measurements at their

schools. Significant inverse associations were found between PEF and NO₂: each 20-ppb
increase in NO₂ lagged by 1 day was associated with a 3.1% decrease in PEF. Ward et al. (2002)
studied the effects of air pollutants on PEF on a panel of 162 nine-year-old children in England
for winter and summer periods and reported no significant associations between NO₂ and lung
functions or symptoms.

- 6
- 7

Home-Use Peak Flow Meter Measurements—Children

8 Reliable data are notoriously difficult to come by using portable peak flow measuring 9 devices (for example, see Wensley and Silverman, 2001). This may help explain why, in 10 contrast to studies with supervised measurements, none of the nine studies using home peak flow 11 measurements reported any significant associations with ambient NO₂ (Roemer et al., 1998 12 [2,010 children in the PEACE study in Europe]; Roemer et al., 1999 [a subset of 1,621 children 13 from the PEACE study with chronic respiratory symptoms]; Mortimer et al., 2002 14 [846 asthmatic children from the NCICAS]; Van der Zee et al., 1999 [633 children in the Netherlands]; Timonen and Pekkanen, 1997 [169 children including asth3matics in Finland]; 15 16 Ranzi et al., 2004 [118 children, some with asthma, in the Italian AIRE study]; Segala et al., 17 1998 and Just et al., 2002 [over 80 asthmatic children in Paris]; Delfino et al., 2003a 18 [22 asthmatic children in southern California]).

19 Ward et al. (2000) examined the effect of correcting peak flow for nonlinear errors on 20 NO₂ effects estimates in a panel study of 147 (47% female) 9-year olds. The correction resulted 21 in a small increase in the group mean PEF (1.1 L-min⁻¹). For the entire panel, NO₂ effect 22 estimates were all corrected in the positive direction with a narrowing of the 95% confidence 23 interval, and all but the result for 0-day lag were decreased in absolute size by up to 73% (effect 24 estimate for NO₂ lagged 3 days corrected from -0.56 to -0.15% per 10 ppb). When only the 25 symptomatic/atopic children (i.e., reported wheezing and positive skin test) were considered, the 26 estimates for associations with 5-day average NO₂ decreased in size from -2.53% to -0.90% per 27 10 ppb. In addition, lag 0 became significant with an increase in magnitude from -0.51% to 28 -1.22% per 10 ppb. Figures 3.2-1 and 3.2-2 illustrate the results for the whole panel and the 29 symptomatic/atopic children, respectively. The authors concluded that correction for PEF meter 30 measurements resulted in small but important shifts in the direction and size of effect estimates

Figure 3.2-1. Effect estimates with 95% confidence intervals calculated for both uncorrected (◊) and corrected (♦) PEF: change in 5-day mean = lag 0 to lag 4 days.

Source: Ward et al. (2000).

1 and probable interpretation of results. The effects of correction were, however, not consistent

2 across pollutants or lags and could not be easily predicted (Ward et al., 2000).

3

4 Spirometry (FEV₁)—Adults

5 Spirometry was used in a large cross-sectional study in Switzerland (Schindler et al.,

6 2001). A subset of 3,912 lifetime nonsmoking adults participated in the spirometric lung

7 function measurements in the SAPALDIA study (Study of Air Pollution and Lung Diseases in

8 Adults). Significant inverse relationships were found between increases in NO₂ and decreases in

9 FVC (by 2.74% [95% CI: 0.83, 4.62]) and FEV₁ (by 2.52% [95% CI: 0.49, 4.55]) for a 20-ppb

10 increase in NO₂ on the same day as the examination. FEF_{25-75} (forced expiratory flow at 25% to

11 75% of FVC) was found to decrease by 6.73% (95% CI: 0.038, 13.31) for each 20-ppb increase

Figure 3.2-2. Effect estimates with 95% confidence intervals for subjects with both reported wheezing and a positive skin test only, calculating for both uncorrected (◊) and corrected (♦) PEF: change in 5-day man: lag 0 to lag 4 days.

Source: Ward et al. (2000).

1 in average NO₂ concentration over the previous 4 days. Spirometry was also used in a panel

- 2 study enrolling 29 adults with COPD (n = 11), asthma (n = 11) or IHD (ischemic heart disease,
- 3 n = 7) in Rome (Lagorio et al., 2006). Patients were followed for two 1-month periods during a
- 4 spring and winter. Significant inverse relationships were also found for FEV₁ in this study for
- 5 both COPD and asthmatic patients. For each 20-ppb increase in NO₂ concentration FEV₁
- 6 decreased by 4.36% (95% CI: 1.18, 7.54) for previous day's NO₂ or by 5.19% (95% CI: 1.58,
- 7 8.80) for the mean of the previous 2 days' NO₂ levels for COPD patients. Decreases were
- 8 similar for asthmatic patients: 4.14% (95% CI: 1.55, 6.73) decrease in FEV₁ for previous day's
- 9 NO₂ concentration and 4.81% (95% CI: 2.09, 7.53) for the mean of the previous 2 days.
- 10 A study of 34 patients with severe COPD in Denver used self-administered, home spirometry

measurements to examine the effects of winter air pollution on lung function (Silkoff et al.,
2005). Subjects were enrolled in one of two winters (n = 16 and 18 per winter panel). The
authors observed no adverse effects of ambient air pollution on lung function for the first winter,
but in the second winter did see a significant decrease in morning PEF associated with same day
and previous day NO₂ level (quantitative results not provided).

6 7

Home-Use Peak Flow Meter Measurements—Adults

8 Of the studies reviewed that employed portable peak flow meters for subject-measured 9 lung function, none reported significant associations with NO₂ levels (van der Zee et al., 2000 10 [489 adults in the Netherlands]; Higgins et al., 1995 [153 adults in the UK including COPD and 11 asthma patients]; Park et al., 2005a [64 asthmatic adults in Korea]; Hiltermann et al., 1998 12 [60 asthmatic adults in the Netherlands]; Harre et al., 1997 [40 adults with COPD in New 13 Zealand]; Forsberg et al., 1998 [38 adult asthmatics in Sweden]; and Higgins et al., 2000 14 [35 adults in the UK with COPD or asthma]).

15

16 Clinical Studies of Lung Function

17

18 Healthy Adults

19 Studies examining responses of healthy volunteers to acute exposure to NO₂ have 20 generally failed to show alterations in lung mechanics such as airways resistance (Hackney et al., 21 1978; Kerr et al., 1979; Linn et al., 1985a; Mohsenin, 1987a, 1988; Frampton et al., 1991; Kim 22 et al., 1991; Morrow et al., 1992; Rasmussen et al., 1992; Vagaggini et al., 1996; Azadniv et al., 23 1998; Devlin et al., 1999). Exposures ranging from 75 minutes to 5 h at concentrations up to 24 4.0-ppm NO₂ did not alter pulmonary function. Bylin et al. (1985) found increased airways 25 resistance after a 20-min exposure to 0.25-ppm NO₂ and decreased airways resistance after a 26 20-min exposure to 0.5-ppm NO₂, but no change in airways responsiveness to aerosolized 27 histamine challenge in the same subjects. These effects have not been confirmed in other 28 laboratories. 29 Few human clinical studies of NO₂ have included elderly subjects. Morrow et al. (1992)

30 studied the responses of 20 healthy volunteers, 13 smokers, and 7 nonsmokers, of mean age

31 61 years, following exposure to 0.3-ppm NO₂ for 4 h with light exercise. There was no

32 significant change in lung function related to NO₂ exposure for the group as a whole. However,

1	the 13 smokers experienced a slight decrease in FEV_1 during exposure, and their responses were
2	significantly different from the 7 nonsmokers (% change in FEV_1 at end of exposure:
3	-2.25 versus $+1.25%$, p = 0.01). The post-hoc analysis and small numbers of subjects,
4	especially in the nonsmoking group, limits the interpretation of these findings.
5	The controlled studies reviewed in O ₃ AQCD (U.S. Environmental Protection Agency,
6	2006) generally reported only small pulmonary function changes after combined exposures of
7	NO ₂ or HNO ₃ with O ₃ , regardless of whether the interactive effects were potentiating or additive.
8	Hazucha et al. (1994) found that preexposure of healthy women to 0.6-ppm NO_2 for 2 h
9	enhanced spirometric responses and methacholine airways responsiveness induced by a
10	subsequent 2-h exposure to 0.3-ppm O ₃ , with intermittent exercise. Following a 1-h exposure
11	with heavy exercise, Adams et al. (1987) found no differences between spirometric responses to
12	0.3-ppm O_3 and the combination of 0.6-ppm $NO_2 + 0.3$ -ppm O_3 . However, the increase in
13	airways resistance was significantly less for $NO_2 + O_3$ than for O_3 alone.
14	Gong et al. (2005) studied 6 healthy elderly subjects (mean age 68 years) and 18 patients
15	with COPD (mean age 71 years), all exposed to: (a) air, (b) 0.4-ppm NO ₂ , (c) \sim 200 µg/m ³
16	concentrated ambient fine particles (CAPs), and (d) CAPs + NO ₂ . Exposures were for 2-h with
17	exercise for 15 min of each half hour. CAPs exposure was associated with small reductions in
18	mid-expiratory flow rates on spirometry, and reductions in oxygen saturation, but there were no
19	effects of NO ₂ on lung function, oxygen saturation, or sputum inflammatory cells. However, the
20	exposures were not fully randomized or blinded, and most of the NO ₂ exposures took place
21	months after completion of the CAPs and air exposures. In addition, the small number of healthy
22	subjects severely limits the statistical power for this group.

23

24 Chronic Obstructive Pulmonary Disease Patients

Few studies have examined responses to NO₂ in subjects with chronic obstructive
pulmonary disease (COPD). Hackney et al. (1978) found no lung function effects of exposure to
0.3-ppm NO₂ for 4-h with intermittent exercise in smokers with symptoms and reduced FEV₁.
In a group of 22 subjects with moderate COPD, Linn et al. (1985b) found no pulmonary effects
of 1-h exposures to 0.5-, 1.0-, or 2.0-ppm NO₂ with 30 min of exercise.

In a study by Morrow et al. (1992), 20 subjects with COPD were exposed for 4-h to
 0.3-ppm NO₂ in an environmental chamber, with intermittent exercise. Progressive decrements

in forced vital capacity (FVC) occurred during the exposure, becoming statistically significant
 only at the end of the exposure. The decrements in FVC occurred without changes in flow rates.
 These changes in lung function were typical of the "restrictive" pattern seen with O₃ rather than
 the obstructive changes described by some studies of NO₂ exposure in asthmatics.

- Gong et al. (2005) exposed 6 elderly healthy adults and 10 COPD patients to four
 separate atmospheres: (a) air, (b) 0.4-ppm NO₂, (c) ~200-μg/m³ CAPs, or (d) CAPs + NO₂. As
 noted above, there were no significant effects of NO₂ in either the healthy or the COPD subjects.
- 8 9

Asthmatic Individuals

10 Kleinman et al. (1983) evaluated the response of lightly exercising asthmatic subjects to inhalation of 0.2-ppm NO₂ for 2 h, during which resting minute ventilation doubled. Forced 11 12 expiratory flows and airways resistance were not altered by the NO₂ exposure. Bauer et al. 13 (1986) studied the effects of mouthpiece exposure to 0.3-ppm NO₂ for 30 min (20 min at rest 14 followed by 10 min of exercise at ~40 L/min) in 15 asthmatics. At this level, NO₂ inhalation 15 produced significant decrements in forced expiratory flow rates after exercise, but not at rest. 16 Jörres and Magnussen (1991) found no effects on lung function in 11 patients with mild asthma 17 exposed to 0.25-ppm NO₂ for 30-min, including 10-min of exercise. However, small reductions 18 in FEV₁ were observed following 1-ppm NO₂ exposure for 3-h with intermittent exercise in 19 12 mild asthmatics. Koenig et al. (1994) found no pulmonary function effects of exposure to 20 0.3-ppm NO₂ in combination with 0.12-ppm O₃, with or without sulfuric acid (H_2SO_4) 21 $(70 \ \mu g/m^3)$ or HNO₃ (0.05 ppm), in 22 adolescents with mild asthma. However, 6 additional subjects dropped out of the study citing uncomfortable respiratory symptoms. 22 23 Jenkins et al. (1999) examined FEV_1 decrements and airways responsiveness to allergen 24 in a group of mild, atopic asthmatics. The subjects were exposed during rest for 6 h to filtered 25 air, NO₂ (200 ppb), O₃ (100 ppb), or NO₂ (200 ppb) + O₃ (100 ppb). The subjects were also 26 exposed for 3 h to NO₂ (400 ppb), O₃ (200 ppb), or NO₂ (400 ppb) + O₃ (200 ppb) to provide 27 doses identical to those in the 6-h protocols (i.e., equal $C \times T$). Immediately following the 3-h 28 exposure, but not after the 6-h exposure, there were significant decrements in FEV₁ following 29 O_3 and $NO_2 + O_3$ exposures.

30

1 Summary

Epidemiological studies using data from supervised lung function measurements or
spirometry report small decrements in lung function (Hoek and Brunekreef, 1994; Linn et al.,
1996; Schindler et al., 2001) or peak flow meters (Peacock et al., 2003). Each 20-ppb increase in
same-day NO₂ concentration was associated with FVC deficits of 0.3% (Linn et al., 1996) to
2.7% (Schindler et al., 2001). No significant associations were reported in any studies using
unsupervised, self-administered peak flow measurements with portable devices.

8 Clinical studies have not provided compelling evidence of NO₂ effects on pulmonary 9 function. Acute exposures of young, healthy volunteers to NO₂ at levels as high as 4.0 ppm do 10 not alter lung function as measured by spirometry or airways resistance. The small number of 11 studies of COPD patients prevents any conclusions about effects on pulmonary function. The 12 Morrow et al. (1992) study, performed in Rochester, NY, suggested restrictive type effects of 13 0.3-ppm NO₂ exposure for 4 h. However, three other studies, performed in Southern California 14 at similar exposure concentrations, found no effects. The contrasting findings in these studies 15 may, in part, reflect the difference in duration of exposure or the differing levels of background 16 ambient air pollution to which the subjects were exposed chronically, as there were much lower 17 background levels in Rochester, NY than in Southern California. For asthmatics, the effects of 18 NO₂ on pulmonary function have also been inconsistent at exposure concentrations of less than 19 1-ppm NO₂. Overall, clinical studies have failed to show effects of NO₂ on pulmonary function 20 at exposure concentrations relevant to ambient exposures. However, highly variable findings in 21 COPD and asthmatic patients suggest that some individuals may be particularly susceptible to 22 NO₂ effects.

23 24

3.2.1.3 **Respiratory Symptoms**

25 Since the 1993 AOCD, results have been published from several single-city and multicity 26 studies, including three large longitudinal studies in urban areas covering the continental United 27 States and southern Ontario: the Harvard Six Cities study (Six Cities; Schwartz et al., 1994), the 28 National Cooperative Inner-City Asthma Study (NCICAS; Mortimer et al., 2002), and the 29 Childhood Asthma Management Program (CAMP; Schildcrout et al., 2006). Because of similar 30 analytic techniques (i.e., multistaged modeling and generalized estimating equations [GEE]), one 31 strength of all three of these studies is that, as Schildcrout et al. (2006) stated, they could each be 32 considered as a meta-analysis of "large, within-city panel studies" without some of the

1 limitations associated with meta-analyses, e.g., "between-study heterogeneity and obvious 2 publication bias."

3 The report from the Six Cities study includes 1,844 schoolchildren who were followed 4 for 1 year (Schwartz et al., 1994). Symptoms (in 13 categories, analyzed as cough, lower or 5 upper respiratory symptoms), were recorded daily. Cities included Watertown (MA), Baltimore, 6 Kingston-Harriman (TN), Steubenville, Topeka, and Portage (WI). In Mortimer et al. (2002), 7 864 asthmatic children were followed daily for four 2-week periods over the course of 9 months. 8 The eight NCICAS cities were New York City (Bronx, E. Harlem), Baltimore, Washington 9 (DC), Cleveland, Detroit, St Louis, and Chicago. Morning and evening asthma symptoms 10 (analyzed as none versus any) and peak flow were recorded. Schildcrout et al. (2006) reported 11 on 990 asthmatic children living within 50 miles of one of 31 NO₂ monitors located in eight 12 North American cities (Boston, Baltimore, Toronto, St. Louis, Denver, Albuquerque, San Diego, 13 and Seattle). Symptoms (analyzed as none versus any per day) and rescue medication use 14 (analyzed as number of uses per day) were recorded daily for 2 months. All three studies found 15 significant associations between level of NO₂ exposure and risk of respiratory symptoms in 16 children (Schwartz et al., 1994), and in particular, asthmatic children (Mortimer et al., 2002; 17 Schildcrout et al., 2006).

18 In Schwartz et al. (1994), a significant association was found between a 4-day mean of 19 NO₂ exposure and incidence of cough among all children in single-pollutant models: the odds 20 ratio (OR) was reported for each 10-ppb increase in NO₂ as OR = 1.27 (95% CI: 1.04, 1.56) 21 (given in Annex Table AX6.2 for a 20-ppb increase). Cough incidence was not significantly 22 associated with NO₂ on the previous day. The local nonparametric smooth of the 4-day mean 23 concentration showed increased (p = 0.01) cough incidence up to approximately the mean 24 concentration (~13 ppb), after which no further increase was observed. The significant 25 association between cough and 4-day mean NO₂ remained unchanged in models that included 26 O_{3} , but was attenuated and lost significance in two-pollutant models including PM_{10} (OR for 27 10-ppb increase in NO₂ = 1.17 [95% CI: 0.94, 1.46]) or SO₂ (OR for NO₂ = 1.19 [95% CI: 0.95,

28 1.51]).

29 In Mortimer et al. (2002), the greatest effect of the pollutants studied for morning 30

symptoms was for a 6-day moving average. For increased NO₂, the risk of any asthma

31 symptoms (cough, wheeze, shortness of breath) among the asthmatic children in the NCICAS

- was somewhat higher than for the healthy children in the Six Cities study: OR = 1.48 (95% CI: 1.02, 2.16). Effects were attenuated in multipollutant models that included O₃ (OR for 20-ppb increase in NO₂ = 1.40 [95% CI: 0.93, 2.09]), O₃ and SO₂ (OR for NO₂ = 1.31 [95% CI: 0.87, 2.09]), or O₃, SO₂, and PM₁₀ (OR for NO₂ = 1.45 [95% CI: 0.63, 3.34]).
- 5 In the CAMP study (Shildcrout et al., 2006), the strongest association between NO₂ and 6 increased risk of cough was found for a 2-day lag: each 20-ppb increase in NO₂ occurring 2 days 7 before measurement increased risk of cough (OR = 1.09 [95% CI: 1.03, 1.15]). Two-pollutant 8 models including CO, PM₁₀, or SO₂ produced similar results . (See Figure 3.2-3.) Further, 9 increased NO₂ exposure was associated with increased use of rescue medication in the CAMP 10 study, with the strongest association for a 2-day lag, both for single- and multipollutant models 11 (e.g., for an increase of 20-ppb NO₂ in the single-pollutant model, the RR for increased inhaler 12 usage was 1.05 (95% CI: 1.01, 1.09). (See Figure 3.2-4.)

Two 3-month-long panel studies recruited asthmatic children from the one outpatient clinic in Paris: one study followed 84 children in the fall of 1992 (Segala et al., 1998), and the other followed 82 children during the winter of 1996 (Just et al., 2002). GEE in logistic regression analyses found significant associations between respiratory symptoms and level of NO₂ and are shown in Annex Table AX6.2 for each 20-ppb increase in NO₂. No multipollutant models were shown.

In metropolitan Sydney, 148 children with a history of wheeze were followed for 11 months (Jalaludin et al., 2004). Daily symptoms, medication use, and doctor visits were examined. In regression models using GEE, significant associations were found between increased likelihood of wet cough and each 8.2-ppb increase in NO₂ (OR = 1.05 [95% CI: 1.00, 1.10]). The authors report that estimates did not change in multipollutant models including O₃ or PM₁₀. Ward et al. (2002) examined respiratory symptoms in a panel of 162 children in the United Kingdom.

No significant associations were reported for the winter period, but a significant
association was reported for the summer period for cough and NO₂ (lag 0; OR = 1.09 [95% CI:
1.17, 1.01]).

For adults, most studies examining associations between ambient NO₂ pollution and respiratory symptoms were conducted in Europe. Various studies have enrolled older adults

Figure 3.2-3. Results for single- and two-pollutant models: Childhood Asthma Management Program, November 1993-September 1995. Odds ratios for daily asthma symptoms associated with shifts in within-subject concentrations.

Source: Schildcrout et al. (2006).

Figure 3.2-4.Results for single- and two-pollutant models: Childhood Asthma
Management Program, November 1993-September 1995. Odds ratios for
daily rescue inhaler use associated with shifts in within-subject
concentrations. All city-specific estimates of pollutant effects were
included in calculations of study-wide effects except nitrogen dioxide in
Seattle, Washington. Horizontal lines represent the 95% confidence
interval (with limits specified at ends).

Source: Schildcrout et al. (2006).

- 1 (van der Zee et al., 2000; Harre et al., 1997; Silkoff et al., 2005), nonsmoking adults (Segala
- 2 et al., 2004), patients with COPD (Higgins et al., 1995; Desqueyroux et al., 2002), bronchial
- 3 hyperresponsiveness (Boezen et al., 1998), or asthma (Hiltermann et al., 1998; Forsberg et al.,
- 4 1998; von Klot et al., 2002). Associations were found between NO₂ and either respiratory
- 5 symptoms or inhaler use in a number studies (van der Zee et al., 2000; Harre et al., 1997; Silkoff

et al., 2005; Segala et al., 2004; Hiltermann et al., 1998), but not in all studies (Desqueyroux
 et al., 2002; von Klot et al., 2002).

3

4

Summary Analysis Methodology of Respiratory Symptom Studies

5 Of the ambient exposure studies reviewed above, it is striking that the studies using 6 generalized estimating equations (GEE) in the analysis also report significant associations 7 between daily exposure to NO₂ and respiratory effects (see list of these studies in Annex 8 Table AX6.2). It is possible that the development of the GEE extension to generalized linear 9 models (GLM) for analysis of longitudinal data (Liang and Zeger, 1986) and subsequent 10 availability of GEE in statistical analysis packages permitted a much more accurate estimate of 11 within-subjects variability in repeated-measures designs. This may explain, in part, why so 12 many of the studies using GEE in the analysis show associations between daily exposure and 13 symptoms, while other studies using alternative methods to estimate (and perhaps overestimate) 14 autocorrelation do not (e.g., Roemer et al., 1998 and the PEACE study). Among the studies 15 using GEE, with the exception of Mortimer et al. (2002) where the strongest association was 16 with a mean of the previous 6 days, studies enrolling asthmatics, children or adults, found 17 significant associations between ambient NO₂ exposure and respiratory symptoms for lags of 18 0, 1, or 2 days (see Annex Table AX6.2). Interestingly, for the three studies enrolling healthy 19 subjects (Schwartz et al., 1994; Pino et al., 2004; Segala et al., 2004) significant associations are 20 only found for longer lag times (of 4 to 6 days). All significant associations between ambient 21 NO₂ and respiratory symptoms occurred in locations with 24-h average NO₂ levels below the 22 annual EPA standard of 53 ppb.

23 Odds ratios and 95% confidence limits for associations with cough and asthma symptoms 24 in children are presented in Figures 3.2-5 and 3.2-6, respectively. These figures are called forest 25 plots, and the area of the square denoting the odds ratio is the proportional to the weight of the 26 study. When combined in a random effect meta-analysis, the results for cough showed a 27 significant association with NO₂ exposure (OR = 1.09 [95% CI: 1.05, 1.24]; p value in test for 28 heterogeneity = 0.110). For asthma symptoms, the combined odds ratio from a meta-analyses 29 was 1.14, (95% CI: 1.05, 1.24), and the test for heterogeneity had a p value of 0.055. The 30 effects used in the analysis were selected as follows. Those studies having 0 lag were preferred 31 to 1-day lags and moving averages, longer single-day lags were not included; if a study had both

Figure 3.2-5. Odds ratios (95% CI) for associations between cough and 24-h average NO₂ concentrations (per 20 ppb).

Schwartz et al. (1994): incidence; lags: 1-4 day moving average 0, and 1. Jalaludin et al. (2002): prevalence; dry cough, wet cough; lags 0, 0, 0. Just et al. (2002): prevalence; nocturnal cough; lags 0, 0-2, 0-4 day moving average. Vot Klot et al. (2002): prevalence; cough; lags 1-5 day moving average, 0. Just et al. (2002): incidence; nocturnal cough; lags 0, 0-2, 0-4. The effects used in the meta-analysis are denoted by *.

- 1 incidence and prevalence, then the incidence effect was to be used; and "dry cough" was
- 2 preferred to "wet cough."

3 The results of multipollutant analyses for the three U.S. multicity studies are presented in

4 Figure 3.2-7. Associations with NO₂ were generally robust to adjustment for copollutants, as

5 stated previously. Odds ratios were often unchanged with the addition of copollutants, though

Figure 3.2-6. Odds ratios (95% CI) for associations between asthma symptoms and 24-h average NO₂ concentrations (per 20 ppb).

Mortimer et al. (2002): prevalence; lag: 1-6 day moving average. Schildcrout et al. (2006): prevalence; lags 0, 1, 3 day moving average. Delfino et al. (2002): prevalence; lag 0. Just et al. (2002): prevalence; lags 0, 0-2, 0-4; incidence; lags 0, 0-2, 0-4. Segala et al. (1998): incidence; lags 0, 1. The effects used in the meta-analysis are denoted by *.

- 1 reductions in magnitude are apparent in certain models, such as with adjustment for SO₂ in the
- 2 Six Cities study results (Schwartz et al., 2004).
- 3

4 School Absence

5 The few studies available that used school absence as a health endpoint did not find a 6 significant association with increased levels of ambient NO₂ (Gilliland et al., 2001; Rondeau

- Figure 3.2-7. Odds ratios and 95% confidence intervals for associations between asthma symptoms and 24-h average NO₂ concentrations (per 20 ppb) from multipollutant models. Details about effects from the top of the figure to the bottom entries are: Mortimer et al. (2002): prevalence; lag: 1-6 day moving average. Schildcrout et al. (2006): prevalence; lags 0, 1, 3 day moving average. Delfino et al. (2002): prevalence; lag 0. Just et al. (2002): prevalence; lags 0, 0-2, 0-4; incidence; lags 0, 0-2, 0-4. Segala et al. (1998): incidence; lags 0, 1.
- 1 et al., 2005; Park et al., 2002). As part of the Children's Health Study, Gilliland et al. (2001) 2 examined school absence among 2,081 schoolchildren in 12 communities in Southern California 3 and found significant associations between 20-ppb increases in O₃ and respiratory illness related absences, but no association in single-pollutant models with NO₂ or PM₁₀. Annual mean daily 4 5 NO₂ in the 12 communities ranged from 5 to 45 ppb. Park et al. (2002) studied school 6 absenteeism in an elementary school in Seoul, Korea, and found significant risks associated with increases of PM_{10} (RR = 1.06 [95% CI: 1.04, 1.09] for each 42.1-µg/m³ increase), SO₂ 7 (RR = 1.09 [95% CI: 1.07, 1.12] for each 5.68-ppb increase), and O₃ (RR = 1.08 [95% CI: 1.06, 8

1.11] for each 15.94-ppb increase) but none with NO₂ (although there is a suggestion of an
 association with an RR of 1.02 (95% CI: 0.99, 1.04) for each 14.51-ppb increase).

3

4 Summary

5 Taken together, these studies indicate that short-term exposure to NO₂ is associated with 6 respiratory symptoms in children and adults. For children, the results of new multicity studies 7 provide substantial support for associations with respiratory symptoms, particularly in asthmatic 8 children. In adults, the recent studies link short-term NO₂ exposure with various respiratory 9 symptoms or medication use, but the findings are not always consistent.

10

11 **3.2.1.4** Airways Inflammation

12

13 Epidemiological Studies of Airways Inflammation

14 A number of studies have examined biological markers for inflammation (exhaled NO 15 and inflammatory nasal lavage [NAL] markers [Steerenberg et al., 2001, 2003]; exhaled NO 16 [Adamkiewicz et al., 2004]) and lung damage (urinary Clara cell protein CC16 [Timonen et al., 17 2004]). Steerenberg et al. (2001) studied 126 schoolchildren from urban and suburban 18 communities in the Netherlands. Sampling of exhaled air and NAL fluid was performed seven 19 times, once per week over the course of 2 months. On average, the ambient NO₂ levels were 20 1.5 times higher and ambient NO levels 7.8 times higher in the urban compared to suburban 21 community. Compared to children in the suburban community, urban children had significantly 22 greater levels of inflammatory NAL markers (IL-8, urea, uric acid, albumin) but not greater levels of exhaled NO. However, within the urban group, a concentration-response relationship 23 24 was seen. For increases of 20 ppb in NO₂ lagged by 1 or 3 days, exhaled NO increased 25 significantly by 6.4 to 8.8 ppb. Exhaled NO also increased for suburban children versus 26 comparable increases in NO₂, but not significantly. Another study by Steerenberg et al. (2003) 27 of 119 schoolchildren in the Netherlands found associations between ambient NO₂ and level of 28 exhaled NO, but quantitative regression results are not given. The authors concluded from their 29 data that an established, ongoing inflammatory response to pollen was not exacerbated by 30 subsequent exposure to high levels of air pollution or pollen Steerenberg et al., (2003). 31 Adamkiewicz et al. (2004) studied 29 elderly adults in Steubenville and found significant

associations between increased exhaled NO and increased daily levels of PM_{2.5}, but no
 association was found with ambient NO₂.

3 Timonen et al. (2004) collected biweekly urine samples for 6 months from 131 adults 4 with coronary heart disease living in Amsterdam, Helsinki, and Erfurt, Germany. Estimates 5 using data from all three communities showed significant associations between urinary levels of 6 Clara cell protein CC16 (a marker for lung damage) with elevations in daily PM_{2.5} concentration, 7 but not ambient NO₂. In Helsinki, however, there was a significant association between a 8 $10-\mu g/m^3$ increase in NO₂ lagged by 3 days and a 9.2% increase (95% CI: 0.1, 18.3) in 9 ln(CC16). Interestingly, the correlation between NO₂ and PM_{2.5} was lower in Helsinki (r = 0.35) compared to this correlation in Amsterdam (r = 0.49) or Erfurt (r = 0.82). 10 11 Bernard et al. (1998) examined personal exposure to NO₂ and its effect on plasma 12 antioxidants in a group of 107 healthy adults in Montpellier, France. Subjects wore passive 13 monitors for 14 days. When subjects were divided into two exposure groups (above and below $40 \ \mu g/m^3$ [21.3 ppb]), those in the high-exposure group had significantly lower plasma 14 15 β -carotene levels. This difference was even greater when analysis was stratified by dietary β -carotene intake: exposure to >40-µg/m³ NO₂ had the largest effect on plasma β -carotene level 16 17 among subjects who ate <4 mg/day β -carotene (p < 0.005). No other pollutants were included in 18 this study.

19

20 Clinical Studies of Airways Inflammation

21

22 Healthy Adults

Helleday et al. (1994) performed BAL before and 24 h after exposure to 3.5-ppm NO₂ for 20 min, with 15 min of light exercise in 8 smokers and 8 nonsmokers. The recovery of PMNs in 25 the bronchial portion of BAL was slightly increased in the nonsmokers, while only the alveolar 26 portion showed increased PMN numbers in smokers. A significant weakness of this study was 27 the failure to include a true air exposure with a randomized, double-blind design.

The 1993 AQCD for Oxides of Nitrogen cited preliminary findings from two studies showing modest airways inflammation, as indicated by increased PMN numbers in BAL fluid after exposure to 2.0-ppm NO₂ for 4 to 6-h with intermittent exercise. Both of those studies have now been published in complete form Azadniv et al. (1998); Devlin et al. (1999), and additional studies summarized below provided a clearer picture of the airways inflammatory response to
 NO₂ exposure.

3 Healthy volunteers exposed to 2.0-ppm NO₂ for 6-h with intermittent exercise (Azadniv 4 et al., 1998) showed a slight increase in the percentage of PMNs obtained in BAL fluid 18-h 5 after exposure (air, $2.2 \pm 0.3\%$; NO₂, $3.1 \pm 0.4\%$). In a separate group of subjects exposed using 6 the same protocol but assessed immediately after exposure Gavras et al., (1994), no effects were 7 found in AM phenotype or expression of the cell adhesion molecule CD11b or receptors for IgG. 8 Blomberg et al. (1997) reported that 4-h exposures to 2.0-ppm NO₂ resulted in an increase in 9 IL-8 and PMNs in the proximal airways of healthy subjects, although no changes were seen in 10 bronchial biopsies. This group also studied the effects of repeated 4-h exposures to 2-ppm NO₂ 11 on 4 consecutive days, with BAL, bronchial biopsies, and BAL fluid antioxidant levels assessed 12 1.5-h after the last exposure Blomberg et al., (1999). The bronchial wash fraction of BAL fluid 13 showed a 2-fold increase in PMNs and a 1.5-fold increase in myeloperoxidase, indicating 14 persistent mild airways inflammation with repeated NO₂ exposure.

Devlin et al. (1999) exposed 8 healthy nonsmokers to 2.0-ppm NO₂ for 4-h with intermittent exercise. BAL performed the following morning showed a 3.1-fold increase in PMNs recovered in the bronchial fraction, indicating small airways inflammation. These investigators also observed a reduction in AM phagocytosis and superoxide production, indicating possible adverse effects on host defense.

20 Pathmanathan et al. (2003) conducted four repeated daily exposures of healthy subjects to 21 4-ppm NO₂ or air for 4 h, with intermittent exercise. Exposures were randomized and separated 22 by 3 weeks. Bronchoscopy and bronchial biopsies were performed 1-h after the last exposure. 23 Immunohistochemistry of the respiratory epithelium showed increased expression of IL-5, IL-10, 24 and IL-13, as well as intercellular adhesion molecule-1 (ICAM-1). These interleukins are 25 upregulated in Th2 inflammatory responses, which are characteristic of allergic inflammation. 26 The findings suggest repeated NO_2 exposures may drive the airways inflammatory response 27 toward a Th2 or allergic-type response. Unfortunately, the report provided no data on 28 inflammatory cell responses in the epithelium or on cells or cytokines in BAL fluid. Thus, the 29 findings cannot be considered conclusive regarding allergic inflammation. Furthermore, the 30 exposure concentrations of 4 ppm are considerably higher than ambient outdoor concentrations.

1 Recent studies provide evidence for airways inflammatory effects at concentrations 2 <2.0 ppm. Frampton et al. (2002) examined NO₂ concentration responses in 21 healthy 3 nonsmokers. Subjects were exposed to air or 0.6- or 1.5-ppm NO₂ for 3 h, with intermittent 4 exercise, with exposures separated by at least 3 weeks. BAL was performed 3.5-h after 5 exposure. PMN numbers in the bronchial lavage fraction increased slightly (<3-fold) but 6 significantly (p = 0.0003) after exposure to 1.5-ppm NO₂; no increase was evident at 0.6-ppm 7 NO₂. Lymphocyte numbers increased in the bronchial lavage fraction after 0.6-ppm NO₂, but 8 not 1.5 ppm. CD4⁺ T lymphocyte numbers increased in the alveolar lavage fraction, and 9 lymphocytes decreased in blood. These findings suggest a lymphocytic airways inflammatory 10 response to 0.6-ppm NO₂, which changes to a mild neutrophilic response at 1.5-ppm NO₂. 11 Jörres et al. (1995) found that 3-h exposures to 1-ppm NO₂ with intermittent exercise 12 altered levels of eicosanoids, but not inflammatory cells, in BAL fluid collected 1-h after 13 exposure. Eicosanoids are chemical mediators of the inflammatory response; their increase in 14 BAL fluid in this study suggests inflammation. The absence of an increase in PMN numbers 15 may reflect the timing of bronchoscopy (1 h after exposure). The peak influx of PMNs may 16 occur several hours after exposure, as it does following O₃ exposure.

The studies summarized in this section provide evidence for airways inflammation at NO₂ concentrations of <2.0 ppm; separately analyzing the bronchial fraction of BAL appears to increase the sensitivity for detecting airways inflammatory effects of NO₂ exposure. The onset of inflammatory responses in healthy subjects appears to be between 100 and 200 ppm-min, i.e., 1 ppm for 2 to 3 h.

22

23 Toxicological Studies of Airways Inflammation

24 Numerous studies demonstrate changes in protein and enzyme levels in the lung 25 following inhalation of NO₂ (see Annex Table AX4.2). These observations reflect the ability of 26 NO₂ to cause lung inflammation associated with concomitant infiltration of serum protein, 27 enzymes, and inflammatory cells. However, interpretation of the array of changes observed may 28 also reflect other factors. For example, NO_2 exposure may induce differentiation of some cell 29 populations in response to damage-induced tissue remodeling. Thus, some changes in lung 30 enzyme activity and protein content may reflect changes in cell types, rather than the direct 31 effects of NO₂ on protein infiltration. Furthermore, some direct effects of NO₂ on enzymes are

possible because NO₂ can oxidize certain reducible amino acids or side chains of proteins in
 aqueous solution (Freeman and Mudd, 1981).

3 Increased BAL fluid protein levels have been observed at low concentrations of NO₂. Exposure to 752- μ g/m³ (0.4 ppm) NO₂ continuously for 1 week resulted in increases in BAL 4 5 protein in vitamin c-deficient guinea pigs (Sherwin and Carlson, 1973). A slight increase in 6 albumin, indicating a mild degree of injury to the pulmonary capillary membrane, was observed in mice exposed to 9400-µg/m³ (5.0 ppm) NO₂, 6 h/day for 6 days Rose et al., (1989). Guinea 7 8 pigs demonstrated significantly increased lactate dehydrogenase (LDH) content of the lower lobes of the lung following exposure to $3760 - \mu g/m^3$ (2.0 ppm) NO₂ for 1, 2, or 3 weeks Sherwin 9 et al., (1972). However, in rats, increases in LDH in BAL fluid were noted at exposure to 1880 10 to 9400-µg/m³ (1.0 to 5.0 ppm) NO₂, 7-h/day, 5-days/week for 2.7 weeks, but values returned to 11 12 control levels after 15 weeks of exposure while histological changes persisted (Gregory et al., 13 1983).

14 Numerous studies in rats and mice published since the 1993 AQCD for Oxides of 15 Nitrogen have investigated the ability of NO₂ to induce protein level changes consistent with 16 inflammation. Muller et al. (1994) exposed rats to 0, 0.8-, 5-, or 10-ppm NO₂ continuously for 1 17 or 3 days and reported that BAL protein content significantly increased in a concentration- and 18 exposure duration-dependent manner, with the change becoming significant at 5 ppm for 3 days 19 and at 10 ppm for ≥ 1 day of exposure. Pagani et al. (1994) exposed rats to 0, 9-, or 18-mg/m³ (0, 20 5, or 10 ppm) NO₂, 24 h or 24-h/day for 7 days. In their study, protein content in BAL fluid 21 increased significantly only after 24 h of exposure to 10-ppm NO₂.

Overall, these newer studies suggest that markers of inflammation measured in BAL fluid such as total protein content and content of markers of cell membrane permeability (e.g., LDH) increase only at or above 5-ppm exposure. Based on the new studies, rats and mice appear to respond in a similar fashion.

It has also been reported that protein content changes in BAL fluid can be dependent on dietary antioxidant status, further clouding the interpretation of such effects. NO₂ exposure increases the protein content of BAL fluid in vitamin C-deficient guinea pigs at NO₂ levels as low as 1880 μ g/m³ (1.0 ppm) after a 72-h exposure, but a 1-week exposure to 752 μ g/m³ (0.4 ppm) did not increase protein levels (Selgrade et al., 1981). The results of this 1-week exposure apparently conflict with those of Sherwin and Carlson (1973), who found increased 1 protein content of BAL fluid from vitamin C-deficient guinea pigs exposed to $752-\mu g/m^3$

2 (0.4 ppm) NO₂ for 1 week. Differences in exposure techniques, protein measurement methods,

3 and/or degree of vitamin C deficiencies may explain the difference between the two studies.

4 Hatch et al. (1986) found that the NO₂-induced increase in BAL protein in vitamin C-deficient

5 guinea pigs was accompanied by an increase in lung content of nonprotein sulfhydryls and

6 ascorbic acid and a decrease in vitamin E content. The increased susceptibility to NO₂ was

7 observed when lung vitamin C was reduced (by diet) to levels <50% of normal.

8

9 Summary

10 Recent epidemiological studies provide some evidence that short-term exposure to NO_2 can result in inflammatory responses in the airways, but the findings are not consistently 11 12 positive. The controlled human exposure studies summarized in this section provide evidence 13 for airways inflammation at NO₂ concentrations of <2.0 ppm; separately analyzing the bronchial 14 fraction of BAL appears to increase the sensitivity for detecting airways inflammatory effects of 15 NO₂ exposure. The onset of inflammatory responses in healthy subjects appears to be between 16 100 and 200 ppm-min, i.e., 1 ppm for 2 to 3 h. Biological markers of inflammation are reported 17 in antioxidant-deficient laboratory animals with exposures to 0.4-ppm NO₂. Normal animals do 18 not respond until exposed to much higher levels, i.e., 5-ppm NO₂. Together, the available 19 evidence indicates that short-term exposure to NO₂ may result in airways inflammation 20 particularly among the more susceptible, such as those with antioxidant deficiencies.

21 22

3.3.1.5 Airways Hyperresponsiveness

23

24 Clinical Studies of Airways Responsiveness

Inhaled pollutants such as NO₂ may have direct effects on lung function, or they may enhance the inherent responsiveness of the airways to challenge with a bronchoconstricting agent. Several drugs and other stimuli that cause bronchoconstriction have been used in challenge testing, including the cholinergic drugs methacholine and carbachol, as well as histamine, hypertonic saline, cold air, and SO₂. Challenge with "specific" allergens is considered in asthmatics.

Asthmatics are generally much more sensitive to nonspecific bronchoconstricting agents than non-asthmatics, and airways challenge testing is used as a diagnostic test in asthma. There is a wide range of airways responsiveness in healthy people, and responsiveness is influenced by
 many factors, including medications, cigarette smoke, pollutants, respiratory infections,

3 occupational exposures, and respiratory irritants. Standards for airways challenge testing have

4 been developed for the clinical laboratory (American Thoracic Society, 2000a). However,

5 variations in methods for administering the bronchoconstricting agents may substantially affect

6 the results (Cockcroft et al., 2005).

Increases in nonspecific airways responsiveness in response to pollutant exposure mean
that the pollutant causes the airways to be more sensitive to other stimuli, and in asthmatics, is
one indicator of increased severity of disease. In addition, increases in airways responsiveness
are correlated with worsened asthma control, and effective treatment often reduces airways
responsiveness.

12

13 Nonspecific Responsiveness in Healthy Adults

14 Several observations indicate that NO₂ exposures in the range of 1.5 to 2.0 ppm cause 15 small but significant increases in airways responsiveness in healthy subjects. Mohsenin (1988) 16 found that a 1-h exposure to 2-ppm NO₂ increased responsiveness to methacholine, as measured 17 by changes in specific airways conductance, without directly affecting lung function. 18 Furthermore, pretreatment with ascorbic acid prevented the NO₂-induced increase in airways 19 responsiveness (Mohsenin, 1987a). A mild increase in responsiveness to carbachol was 20 observed following a 3-h exposure to 1.5-ppm NO_2 , but not to intermittent peaks of 2.0 ppm 21 (Frampton et al. 1991). Thus, the lower threshold concentration of NO₂ for causing increases 22 in nonspecific airways responsiveness in healthy subjects appears to be in the 1- to 2-ppm range. 23 24 Nonspecific Responsiveness in Asthmatic Individuals

The 1993 AQCD for Oxides of Nitrogen reported results from some early studies that suggested that NO₂ might enhance subsequent responsiveness to challenge by bronchoconstricting agents. This increase in airways responsiveness in asthmatics has been observed in some, but not all studies, at relatively low NO₂ concentrations within the range of 0.2 to 0.3 ppm. Appearing in Tables 15-9 and 15-10 of the 1993 AQCD (U.S. Environmental Protection Agency, 1993), the meta-analysis by Folinsbee (1992) also provided suggestive evidence of increased airways responsiveness in asthmatics exposed to NO₂ concentrations of as low as 0.1 ppm for 1 hour during rest. However, numerous studies had not reported independent
 effects of NO₂ on lung function in asthmatic individuals.

3 Roger et al. (1990), in a comprehensive, concentration-response experiment, were unable 4 to confirm the results of a pilot study suggesting airways responses occur in asthmatic subjects. 5 Twenty-one male asthmatics exposed to NO₂ at 0.15, 0.30, or 0.60 ppm for 75 min did not 6 experience significant effects on lung function or airways responsiveness compared with air 7 exposure. Bylin et al. (1985) found significantly increased bronchial responsiveness to histamine 8 challenge compared with sham exposure in 8 atopic asthmatics exposed to 0.30-ppm NO₂ for 9 20 min. Five of 8 asthmatics demonstrated increased reactivity, while 3 subjects showed no 10 change, as assessed by specific airways resistance. Mohsenin (1987b) reported enhanced 11 responsiveness to methacholine in 8 asthmatic subjects exposed to 0.50-ppm NO₂ at rest for 1 h; 12 airways responsiveness was measured by partial expiratory flow rates at 40% vital capacity, 13 which may have increased the sensitivity for detecting small changes in airways responsiveness. 14 Jörres and Magnussen (1991) found no effects on lung function or methacholine responsiveness 15 in 11 patients with mild asthma exposed to 0.25-ppm NO₂ for 30 min with 10 min of exercise. 16 Strand et al. (1996) performed a series of studies in mild asthmatics exposed to 0.26 ppm for 17 30 min and found increased responsiveness to histamine as well as to allergen challenge (see 18 below).

The effects of NO₂ exposure on SO₂-induced bronchoconstriction have been examined, but with inconsistent results. Jörres and Magnussen (1990) found an increase in airways responsiveness to SO₂ in asthmatic subjects following exposure to 0.25-ppm NO₂ for 30 min at rest, yet Rubinstein et al. (1990) found no change in responsiveness to SO₂ inhalation following exposure of asthmatics to 0.30-ppm NO₂ for 30 min with 20 min of exercise.

24 The inconsistent results of these studies have not been satisfactorily explained. It is 25 evident that a wide range of responses occurs among asthmatics exposed to NO₂. This variation 26 may in part reflect differences in subjects and exposure protocols: mouthpiece versus chamber, 27 obstructed versus non-obstructed asthmatics, sedentary versus exercise, and varying use of 28 medication(s) among subjects. Identification of factors that predispose to NO₂ responsiveness 29 requires further investigation. These studies have typically involved volunteers with mild 30 asthma; data are needed from more severely affected asthmatics who may be more susceptible. 31 Overall, there is only suggestive evidence that short-term exposures to NO_2 at outdoor ambient

concentrations (<0.25 ppm) significantly alter lung function or nonspecific airways</p>
responsiveness in most people with mild asthma. However, it remains possible that more severe
asthmatics, or individuals with particular sensitivity to NO₂ airways effects, would experience
reductions in lung function or increased airways responsiveness when exercising outdoors at
NO₂ concentrations of <0.25 ppm. Furthermore, outdoor levels influence indoor concentrations,</p>
which may reach peak levels that are clinically important for some adults and children with
asthma.

8

9 Allergen Responsiveness in Asthmatic Individuals

10 In asthmatics, inhalation of an allergen to which an individual is sensitized can cause 11 bronchoconstriction and increased allergic airways inflammation, and this an important cause of 12 asthma exacerbations. Aerosolized allergens can be used in controlled airways challenge testing 13 in the laboratory, either clinically to identify specific allergens to which the individual is 14 responsive or in research to investigate the pathogenesis of the airways allergic response or the 15 effectiveness of treatments. The degree of responsiveness is a function of the concentration of 16 inhaled allergen, the degree of sensitization as measured by the level of allergen-specific 17 immunoglobulin E, and the degree of nonspecific airways responsiveness (Cockcroft and Davis, 18 2006).

19 It is difficult to predict the level of responsiveness to an allergen, and rarely, severe 20 bronchoconstriction can occur with inhalation of very low concentrations of allergen. Allergen 21 challenge testing, therefore, involves greater risk than nonspecific airways challenge with drugs 22 such as methacholine. Asthmatics may experience both an "early" response, with declines in 23 lung function within minutes after the challenge, and a "late" response, with a decline in lung 24 function hours after the exposure. The early response primarily reflects release of histamine and 25 other mediators by airways mast cells; the late response reflects enhanced airways inflammation 26 and mucous production. Responses to allergen challenge are typically measured as changes in 27 pulmonary function, such as declines in FEV_1 . However, the airways inflammatory response can 28 also be assessed using BAL, induced sputum, or exhaled breath condensate.

The potential for NO₂ exposure to enhance responsiveness to allergen challenge in asthmatics deserves special mention. Several recent studies, summarized in Annex Table AX5.3, have reported that low-level exposures to NO₂, both at rest and with exercise, enhance the response to specific allergen challenge in mild asthmatics.

- Tunnicliffe et al. (1994) exposed 8 subjects with mild asthma to 0.1- or 0.4-ppm NO₂ for 1-h at rest and reported that 0.4-ppm NO₂ exposure slightly increased responsiveness to a fixed dose of allergen during both the early and late phases of the response. In two U.K. studies (Devalia et al., 1994; Rusznak et al., 1996), exposure to the combination of 0.4-ppm NO₂ and 0.2-ppm SO₂ increased responsiveness to subsequent allergen challenge in mild atopic asthmatics, whereas, neither pollutant alone altered allergen responsiveness.
- 7 A series of studies from the Karolinska Institute in Sweden have explored airways 8 responses to allergen challenge in asthmatics. Strand et al. (1997) demonstrated that single 9 30-min exposures to 0.26-ppm NO₂ increased the late phase response to allergen challenge 4-h 10 after exposure. In a separate study (Strand et al., 1998), 4 daily repeated exposures to 0.26-ppm 11 NO₂ for 30 min increased both the early and late-phase responses to allergen. Barck et al. (2002) 12 used the same exposure and challenge protocol in the earlier Strand studies (0.26 ppm for 30 13 min, with allergen challenge 4-h after exposure), and performed BAL 19-h after exposure to 14 determine NO₂ effects on the inflammatory response to allergen challenge. NO₂ (0.26 ppm for 15 30 min) followed by allergen caused increases in the BAL recovery of PMN and eosinophil 16 cationic protein (ECP), with reduced volume of BAL fluid and reduced cell viability, compared 17 with air followed by allergen. ECP is released by degranulating eosinophils, is toxic to 18 respiratory epithelial cells, and is thought to play a role in the pathogenesis of airways injury in 19 asthma. These findings indicate that NO₂ enhanced the airways inflammatory response to 20 allergen. Subsequently, Barck et al. (2005a) exposed 18 mild asthmatics to air or NO₂ for 15 21 min on day 1, followed by two 15-min exposures separated by 1-h on day 2, with allergen 22 challenge after exposures on both days 1 and 2. Sputum was induced before exposure on day 23 1 and after exposures (morning of day 3). NO_2 + allergen, compared to air + allergen, treatment 24 resulted in increased levels of ECP in both sputum and blood and increased myeloperoxidase 25 levels in blood. A separate study examined NO₂ effects on nasal responses to nasal allergen 26 challenge (Barck et al., 2005b). Single 30-min exposures to 0.26-ppm NO₂ did not enhance 27 nasal allergen responses. All exposures in the Karolinska Institute studies (Barck et al., 2002, 28 2005a; Strand et al., 1997, 1998) used subjects at rest. These studies utilized an adequate 29 number of subjects, included air control exposures, randomized exposure order, and separated 30 exposures by at least 2 weeks. Together, they appear to demonstrate convincingly effects of 31 quite brief exposures to 0.26 ppm on allergen responsiveness in asthmatics. The level of
1 confidence in the findings from the Karolinska Institute would be further increased with

2 confirmation from other laboratories. However, the findings may shed some light on the variable

3 results in earlier studies of NO₂ effects on nonspecific airways responsiveness. It is possible that

4 some prior studies may have been variably confounded by environmental allergen exposure,

5 increasing the variability in subject responses to NO_2 and perhaps explaining some of the

6 inconsistent findings.

7 Several studies have been conducted using longer NO₂ exposures. Wang et al. (1995a,b, 8 1999) found that more intense (0.4 ppm) and prolonged (6 h) NO₂ exposures enhanced allergen 9 responsiveness in the nasal mucosa in subjects with allergic rhinitis. Jenkins et al. (1999) 10 examined FEV_1 decrements and airways responsiveness to allergen in a group of mild, atopic 11 asthmatics. The subjects were exposed for 3-h to NO₂ (400 ppb), O₃ (200 ppb), and NO₂ 12 $(400 \text{ ppb}) + O_3$ (200 ppb). The subjects were also exposed for 6-h to produce exposure 13 concentrations that would provide identical doses to the 3-h protocols (i.e., equivalent $C \times T$). 14 Significant increases in airways responsiveness to allergen occurred following all the 3-h 15 exposures, but not following the 6-h exposures.

16 Lastly, one study examined the effects on allergen responsiveness of exposure to traffic 17 exhaust in a tunnel (Svartengren et al., 2000). Twenty mild asthmatics sat in a stationary vehicle 18 within a busy tunnel for 30 min. Allergen challenge was performed 4-h later. The control 19 exposure was in a hotel room in a suburban area with low air pollution levels. Exposures were 20 separated by 4 weeks and the order was randomized. Median NO₂ levels in the vehicle were 313 μ g/m³ or 0.166 ppm, PM₁₀ levels were 170 μ g/m³, and PM_{2.5} levels were 95 μ g/m³. Median 21 22 NO_2 levels outside the hotel were 11 µg/m³. Subjects in the tunnel experienced increased cough, 23 and also reported awareness of noise and odors. More importantly, there was a greater allergen-24 induced increase in specific airways resistance after the tunnel exposure than after the control 25 exposure (44% versus 31% respectively). Thoracic gas volume was also increased to a greater 26 degree after the tunnel exposure, suggesting increased gas trapping within the lung. These 27 findings were most pronounced in the subjects exposed to the highest levels of NO_2 . This study 28 suggests that exposure to traffic exhaust, and particularly the NO₂ component, increases allergen 29 responsiveness in asthmatics, and the results fit well with the findings in studies of clinical 30 exposures of NO₂ (Barck et al., 2002, 2005a). However, it was not possible to blind the 31 exposures, and the control exposure (hotel room, presumably quiet and relaxed) was not well

matched to the experimental exposure (vehicle, noisy, odorous). It remains possible that factors
other than NO₂ contributed to, or were responsible for, the observed differences in allergen
responsiveness.

4 These recent studies involving allergen challenge suggest that NO₂ may enhance the 5 sensitivity to allergen-induced decrements in lung function, and increase the allergen-induced 6 airways inflammatory response. Enhancement of allergic responses in asthmatics occurs at 7 exposure levels more than an order of magnitude lower than those associated with airways 8 inflammation in healthy subjects. The dosimetry difference is even greater when considering 9 that the allergen challenge studies were generally performed at rest, while the airways 10 inflammation studies in healthy subjects were performed with intermittent exercise. 11 Enhancement of allergen responses has been found at exposures as low as 8 ppm-min, i.e., 12 0.26 ppm for 30 min. Additional work is needed to understand more completely the exposure-13 response characteristics of NO₂ effects on allergen responses, as well as the effects of exercise, 14 relationship to the severity of asthma, the role of asthma medications, and other clinical factors. 15 Additional animal and in vitro studies are needed to establish the precise mechanisms involved.

16

17 Toxicological Studies of Airways Responsiveness

18 The 1993 AQCD found airways responsiveness to be a key health response to NO₂ 19 exposure. Although the mechanisms are not fully known, many studies have demonstrated the 20 ability of NO₂ exposure to increase bronchial sensitivity to various challenge agents.

21 Acute exposures of Brown-Norway rats to NO₂ at a concentration of 9400 μ g/m³ (5 ppm) 22 for 3-h resulted in increased specific immune response to house dust mite allergen and increased 23 immune-mediated pulmonary inflammation (Gilmour et al., 1996). Higher levels of antigen-24 specific serum IgE, local IgA, IgG, and IgE were observed when rats were exposed to NO₂ after 25 both the immunization and challenge phase, but not after either the immunization or challenge 26 phase alone. Increases in the number of inflammatory cells in the lungs and lymphocyte 27 responsiveness to house dust mite allergen in the spleen and mediastinal lymph node were 28 observed. The authors concluded that this increased immune responsiveness to house dust mite 29 allergen may be the result of the increased permeability of the lung caused by NO₂ exposure, 30 enhancing translocation of the antigen to local lymph nodes and circulation to other sites in the 31 body.

A delayed bronchial response, seen as increased respiration rate (tachypnea), occurred in
 NO₂-exposed, *Candida albicans*-sensitized guinea pigs 15 to 42-h after a challenge dose of
 C. albicans (Kitabatake et al., 1995). Guinea pigs were given an intraperitoneal injection of
 C. albicans, followed by a second injection 4 weeks later. Two weeks after the second injection,
 the animals were given an inhalation exposure of killed *C. albicans*. Animals were also exposed
 4 h/day to 8955-µg/m³ (4.76 ppm) NO₂ from the same day as the first injection of *C. albicans* for
 a total of 30 exposures (5 days/week).

Pulmonary function (lung resistance, dynamic compliance) was not affected in
NO₂-exposed rabbits immunized intraperitoneally within 24-h of birth until 3 months of age to
either *Alternaria tenuis* or house dust mite antigen. The rabbits were given intraperitoneal
injections once weekly for 1 month, and then every 2 weeks thereafter, and exposed to
7520-µg/m³ (4 ppm) NO₂ for 2-h daily (Douglas et al., 1994).

13 Kobayashi and Miura (1995) studied the concentration- and time-dependency of airways 14 hyperresponsiveness to inhaled histamine aerosol in guinea pigs exposed subchronically to NO₂. In one experiment, guinea pigs were exposed by inhalation to 0, 113, 940, or $7520-ug/m^3$ 15 (0, 0.06, 0.5, or 4.0 ppm) NO₂, 24 h/day for 6 or 12 weeks. Immediately following the last 16 17 exposure, airways hyperresponsiveness was assessed by measurement of specific airways 18 resistance as a function of increasing concentrations of histamine aerosol. Animals exposed to 19 $7520-\mu g/m^3$ (4 ppm) NO₂ for 6 weeks exhibited increased airways response to inhaled histamine 20 aerosol; airways response at 12 weeks was not determined. No effects were observed at the 21 lower exposure levels. In another experiment conducted in this study (Kobayashi and Miura, 1995), guinea pigs were exposed by inhalation to 0, 1880-, 3760-, or $7520-\mu g/m^3$ (0, 1.0, 2.0, or 22 4.0 ppm) NO₂, 24 h/day for 6 or 12 weeks, and the airways hyperresponsiveness was determined. 23 24 Increased hyperresponsiveness to inhaled histamine was observed in animals exposed to 7520 μ g/m³ (4 ppm) for 6 weeks; 3760 μ g/m³ (2 ppm) for 6 and 12 weeks; and 1880 μ g/m³ 25 (1 ppm) for 12 weeks only. The results also showed that at 1880- or $3760 \mu g/m^3$ (1 or 2 ppm) 26 27 NO₂, airways hyperresponsiveness developed to a higher degree with the passage of time. Therefore, a higher concentration of NO₂ induces airways hyperresponsiveness faster than a 28 29 lower concentration. When the specific airways resistance was compared to values determined 30 1 week prior to initiation of the NO₂ exposure, values were increased in the 3760- and

7520-μg/m³ (2.0 and 4.0 ppm) animals at 12 weeks only. Specific airways resistance was also
 increased to a higher degree with the passage of time.

3

4 Summary

5 Exposure to NO₂ enhances the inherent responsiveness of the airways to subsequent 6 specific and nonspecific challenges. Hyperresponsiveness to a challenge agent is typically 7 characterized by bronchoconstriction subsequent to NO₂ compared to clean air exposure. 8 Subchronic exposures (6 to 12 weeks) of animals to NO_2 (1 to 4 ppm) increases responsiveness 9 to nonspecific challenge. Healthy humans exposed to NO_2 in the range of 1.5 to 2.0 ppm for a 10 few hours also develop small but significant increases in nonspecific airways responsiveness. 11 There is limited evidence that asthmatics may experience increased airways responsiveness to 12 nonspecific challenge following exposure to between 0.2- and 0.3-ppm NO₂ for 30 min. A meta-13 analysis of four studies provided suggestive evidence of increased airways responsiveness in 14 asthmatics exposed to 0.1-ppm NO₂ for 1 h. Data supporting increased airways responsiveness 15 to specific allergen challenges following NO₂ exposure is more compelling. Bronchoconstriction 16 following an allergen challenge occurs in asthmatics exposed during rest to 0.26-ppm NO₂ for 30 17 min relative to clean air. However, inflammatory responses to allergen challenge in asthmatics 18 may be a more sensitive endpoint and have been reported subsequent to exposure at 0.26-ppm 19 NO₂ for 30 min. These inflammatory responses to the allergen challenge were not accompanied 20 by any changes in pulmonary function or subjective symptoms. Increased immune-mediated 21 pulmonary inflammation also occurs in rats exposed to house dust mite allergen following 22 exposure to 5-ppm NO₂ for 3 h. Overall, studies involving allergen challenge suggest that NO₂ 23 exposure increases the allergen-induced airways inflammatory response and may also enhance 24 the sensitivity to allergen-induced decrements in lung function.

25

3.2.1.6 Hospital Admissions and Emergency Department Visits for Respiratory Outcomes

Total respiratory causes for emergency department (ED) visits typically include asthma, COPD (including pneumonia, bronchitis, and emphysema), upper and lower respiratory infections such as influenza, and other minor categories. Morbidities that result in ED visits are closely related to, but are generally less severe than, those that result in unscheduled hospital admissions. In many cases, acute health problems are successfully treated in the ED; however, a subset of more severe cases that present initially to the ED may require hospital admission and
 are then classified as hospital admissions. ED visits represent an important acute outcome that
 may be affected by NO₂ exposures.

Many studies have been published in the past decade that examined temporal associations
between NO₂ exposures and ED visits and hospital admissions for respiratory diseases. Asthma
visits typically dominate the daily incidence counts. Chronic bronchitis and emphysema often
are combined to define COPD, which is a prominent diagnosis among older adults with lung
disease.

9

10 3.3.1.6.1 All Respiratory Outcomes (ICD9: 460-519)

11 Overall, the majority of studies that have examined all respiratory outcomes as a single 12 group have focused on hospital admission data. Those studies are summarized here, along with a 13 single study of ED visits and all respiratory outcomes.

Two multicity studies that combine the effects of ambient air pollution (including NO₂)
in several cities and describe similar response rates and respiratory health outcomes as measured
by increased hospital admissions are available (Barnett et al., 2005); (Simpson et al., 2005a).
These studies are summarized in Table 3.2-2.

18 Barnett et al. (2005) used a case-crossover method to study ambient air pollution effects 19 on respiratory hospital admissions of children (age groups 0, 1 to 4, and 5 to 14 years) in 20 multiple cities in both Australia and New Zealand during the study period 1998-2001. For NO_2 21 the interquartile ranges for 1-h and 24-h NO₂ were 9.0 and 5.1 ppb, respectively. No significant 22 associations were reported between NO2 and hospital admission for infants or children 1 to 4 23 years old in these cities. For all respiratory admissions among children 1 to 4 years, a 2.8% 24 (95% CI: 0.7, 4.9) increase was found for a 9-ppb increment in the daily maximum 1-h 25 concentration of NO₂, and for children aged 5 to14 years the same increase in NO₂ resulted in a 26 4.7% increase in admission for all respiratory disease (95% CI: 1.6, 7.9) both lagged 0 to 1 day 27 (Barnett et al., 2005). Multipollutant models in the study showed that the results for NO₂ were 28 often independent of the effects of other pollutants, although some impact caused by particles 29 and SO₂ could not be separated from those found for NO₂. For respiratory admissions in the 30 5- to 14-year age group, a significant association with PM_{10} disappeared after adjusting for NO₂, 31 indicating that this result could not be separated from that for NO₂. However, the association 32 with NO_2 remained after adjusting for PM_{10} .

August 2007

In a multicity study of all hospitalizations for respiratory disease (ICD9 460 to 519) for
people ages ≥65 years, Simpson et al. (2005a) examined the response to a change in the
maximum daily 1-h concentration equivalent to the average IQR of the four cities (54.5 ppb).
The calculated relative risk (RR, expressed per ppb) (1.0027 [95% CI: 1.0015, 1.0039] lag 0 to
1) was small, but statistically significant. The authors present results from three statistical
models that produced similar results overall for the four cities. Perth generally experienced
much lower 1-h maximum concentrations of NO₂ than the other Australian cities.

8 In their analysis of two-pollutant models, Simpson et al. (2005a) reported that 9 concentrations of NO_2 and particulate matter (PM_{10}) may be associated with similar outcomes or 10 effects. There was clear evidence of heterogeneity of response across different cities within 11 similar age groups to the same pollutant mixtures. For respiratory hospitalization the city that 12 provided the greatest source of heterogeneity, Perth, was the same in each of the three statistical 13 model approaches applied. Simpson et al. (2005a) suggest that a possible source of variation of 14 response could lie in the population characteristics (age, structure, etc.) that differentiate one 15 urban population from another. They concluded that it might not be reasonable to generalize 16 health outcomes in response to pollutants experienced in one urban location to another location. 17 Several North American studies have examined ED visits and hospital admissions for all

respiratory causes and ambient NO₂ concentrations (Linn et al., 2000; Peel et al., 2005; Luginaah
et al., 2005; Fung et al., 2006). These studies have generally focused on adults and the elderly.
(See Figure 3.2-8.)

Among adults (>30 years of age) living in a large area of Los Angeles, Linn et al. (2000) noted seasonal associations between NO₂ levels (mean 24-h average NO₂: 34 ppb) and the frequency of hospitalization for all pulmonary disease. Though associations were positive for each of the four seasons, the associations for autumn and winter were markedly higher. It was noted that these single-pollutant results could not be distinguished from effects related to copollutants PM_{10} and CO (Linn et al., 2000).

Peel et al. (2005) examined ED visits for all respiratory causes among all ages in relation
to ambient NO₂ concentrations in Atlanta, GA; they found a 1.6% (95% CI: 0.6, 2.7) increase in
respiratory ED visits associated with a 20-ppb increase in 1-h maximum NO₂ concentrations.

Figure 3.2-8 Relative risks (95% CI) for hospital admissions and ED visits for all respiratory causes with 24-h NO₂ concentrations (per 20 ppb).

1 In Vancouver, Fung et al. (2006) used time-series analysis, the method of Dewanji and 2 Moolgavkar (2000), and case-crossover analysis of all respiratory hospitalizations for adults aged 3 65 and older. All three methods showed positive associations between incremental changes in 4 NO₂ of 5.43 ppb (IQR) from a mean concentration of 16.83 ppb. Using a time-series analysis 5 Fung et al. (2006) reported a RR of 1.018 ([95% CI: 1.003, 1.034] lag 0) while the case-6 crossover analysis showed a significant change in the relative rate of 1.028 ([95% CI: 1.010, 7 1.04] lag 0). These represented percent changes of 1.8% and 2.8% respectively. The Dewanji 8 and Moolgavkar model did not produce a statistically significant association between NO₂ and 9 hospitalization for the IQR of 5.43 ppb (RR = 1.012 [95% CI: 0.997, 1.027] lag 0)]. Results of multipollutant models were not given, but there were strong correlations of NO₂ with CO 10 11 (r = 0.74), SO₂, PM₁₀, and PM_{10-2.5} (Fung et al., 2006). 12 In the Windsor/Detroit border area of Canada, Luginaah et al. (2005) noted a positive

13 trend between an incremental change in NO₂ of 16 ppb (mean 1-h maximum: 38.9 ppb) and

1 respiratory admissions. These authors used two approaches that included both time-series and 2 case-crossover analyses segregated by sex. Though associations for females in each of the age 3 groups examined were positive, the authors found only one statistically significant association in 4 females aged 0 to 14 years that identified an increased percent of hospitalization of 18.9% using 5 the case-crossover analysis (RR = 1.189 [95% CI: 1.002, 1.411] lag 2). In this study, CO and 6 NO₂ were correlated (r = 0.38) and thought to represent motor vehicle emissions.

7 Studies from Europe on associations with respiratory hospitalization were conducted in 8 London, Paris, and in Drammen, Norway. A detailed analysis of respiratory hospitalization by 9 age group and by seasonal temperature was carried out in London using the APHEA protocol 10 (Ponce de Leon et al., 1996). In this study, significant positive relative risks were reported for all 11 ages and for children (0 to 14 year olds), but the presence of O₃ during summer months may 12 have also contributed to a change in the rate of hospitalization. Respiratory hospitalizations for 13 adults (15 to 64 years) examined separately were not statistically significantly increased. The 14 increased hospitalization rates were based on an incremental change for NO₂ of 27 ppb (similar 15 to the difference of the 90th and 10th percentiles of the annual concentration) and an annual 16 mean 24-h concentration of 37.3 ppb in London.

In Paris, France (mean 24-h average NO₂ of 23.6 ppb), Dab et al. (1996) determined that
there was no statistically significant association between admissions for all respiratory causes
combined based on an incremental change of 52.35 ppb, though the estimates were positive.

20 In Drammen, Norway, Oftedal et al. (2003) reported associations between respiratory 21 hospitalizations and NO₂. Oftedal et al. (2003) reported that both NO₂ and benzene were 22 associated with an increase in hospital admission for all respiratory disease. In a single-pollutant 23 model, the relative rate of hospitalization for all respiratory disease increased based on an 24 increment of 11-ppb NO₂ (RR = 1.060 [95% CI: 1.017, 1.105] lag 3 days). This finding was 25 robust, since in two-pollutant models NO₂ remained associated with a significant increase in 26 admissions after adjusting for PM_{10} (RR = 1.063 [95% CI: 1.008, 1.120]) or for benzene 27 concentration (RR = 1.046 [95% CI: 1.002, 1.091]). Other studies outside the United States 28 found positive outcomes (Llorca et al., 2005; Braga et al., 2001; Wong et al., 1999).

29

30 3.2.1.6.2 Asthma (ICD9: 493)

In North America, the most recent studies to investigate for evidence of an association
 between ambient concentrations of NO₂ and hospitalizations or ED visits were conducted by

1 Linn et al. (2000); Lin et al. (2003, 2004); Jaffe et al. (2003); Peel et al. (2005); and Tolbert 2 et al. (2000). Mean concentrations of NO_2 in studies of hospitalizations and ED visits for asthma 3 in North America varied from city to city. The mean daily concentrations were relatively low in 4 Canada, recorded at 25.24 ppb (SD 9.04) in Toronto, ON from 1981 to 1993, and 18.65 ppb (SD 5 5.59) in Vancouver, BC from 1987 to 1991. In Atlanta, GA between 1993 and 1995, the mean 6 of the daily 1-h maximum concentration was 81.7 ppb (SD 53.8) (Tolbert et al., 2000) but 7 decreased between 1993 and 2000 to 45.9 ppb (SD 17.3) (Peel et al., 2005). During studies 8 carried out between 1991 and 1996, the mean of the 24-h average NO₂ concentration in 9 Cincinnati was 50 ppb (SD 15) and 48 ppb (SD 16) in Cleveland (Jaffe et al., 2003). 10 Surprisingly, the lowest concentrations were reported by Linn et al (2000), who calculated the 11 overall mean in Los Angeles, CA from 1992 to 1995 to be 3.4 ppb (SE 1.3). 12 Linn et al. (2000) found significant increases (1.14% [95% CI: 0.9, 1.9]) in hospital 13 admissions for asthma with a 10 ppb change in the 24-h average concentration of NO₂ in 14 Los Angeles (mean 24-h NO₂: 34 ppb). When seasonal differences in hospitalization frequency 15 were examined, higher rates of hospitalization for asthma in Los Angeles were found for the cooler months of autumn (1.9% [95% CI: 1.1, 2.7]), and winter (2.8% [95% CI: 2.7, 2.9]) based 16 17 on a 10 ppb change in the concentration of NO₂ (Linn et al., 2000). 18 Lin et al. examined the data for hospital admissions due to asthma in the Canadian cities 19 of Toronto (Linn et al., 2003) and Vancouver (Linn et al., 2004). Lin et al. (2004) studied 20 gaseous air pollutants and 3,822 asthma hospitalizations (2,368 boys, 1,454 girls) among 21 children 6 to 12 years of age with low household income in Vancouver, Canada between 1987 22 and 1998. NO₂ levels were derived from 30 monitoring stations. Exposures to NO₂ were found 23 to be significantly and positively associated with asthma hospitalization for males in the low 24 socioeconomic group but not in the high socioeconomic group. This effect did not persist among 25 females. Lin et al. (2003) conducted a case-crossover analysis of the effect of short-term 26 exposure to gaseous pollution on 7,319 asthma hospitalizations (4,629 boys, 2,690 girls) in 27 children in Toronto between 1980 and 1994. NO₂ concentrations measured from four 28 monitoring stations were positively associated with asthma admissions in both sexes. The effects 29 of NO₂ on asthma hospitalization remained after adjustment for PM. Differences in the results of 30 these two studies might be attributed to differences in the study designs.

A study in Paris showed an association for hospitalization for asthma based on both the
mean 24-h average concentration and the maximum daily 1-h concentration of NO₂ (mean
38.6 ppb) Dab et al., (1996). For the 24-h NO₂ concentration, the estimate was 17.5%
(RR = 1.175 [95% CI: 1.059, 1.304] lag 0 to 1); while for a similar incremental change in the
1-h maximum concentration of NO₂, the increase in admissions for asthma was 8.1%
(RR = 1.081 [95% CI: 1.019, 1.148] lag 0 to 1).

7 In Atlanta, GA, Peel et al. (2005) examined various respiratory ED visits in relation to 8 pollutant levels from 1 January 1993 to 31 August 2000. The pollutants and metrics for this 9 analysis were selected a priori based on current hypotheses regarding potentially causal 10 pollutants and components with a focus on PM aspects (Albritton and Greenbaum, 1998; 11 Schlesinger, 2000) as well as useful models for primary traffic related pollutants. The mean 12 daily count of asthma ED visits for asthma was 39.0 ± 20.5 over the entire study period. Results 13 for the a priori single-pollutant models examining a 3-day moving average (lag 0, 1, and 2) of 14 NO_2 showed a small but not statistically significant associations with asthma visits (RR = 1.014) 15 [95% CI: 0.997, 1.030) for all age groups. In secondary analysis of patients ages 2 to 18 years, a 16 20-ppb increase in the day 5 lag of the NO₂ concentration yielded an RR of 1.027 (95% CI: 17 1.005, 1.000).

18 Wade et al. (2006) examined the effects of instrument precision and spatial variability on 19 assessment of the temporal variation of ambient air pollution (including NO₂) in Atlanta. The 20 use of calculated instrument data yielded an estimate of instrument imprecision equal to 20% of 21 the temporal variation for NO_x and PM_{2.5} mass and 10% of O₃ and CO. The spatial variability 22 was approximately 80% of the temporal variation for NO_x. Population-weighted uncertainty in 23 primary pollutant levels because of instrument imprecision and spatial variation was found to be 24 60 to 70% of the temporal variation. Note that these ambient air pollutant error estimates have not been incorporated into the health risk models by Peel et al., (2005) and are expected to 25 26 appear in a later publication.

Jaffe et al. (2003) examined the effects of ambient pollutants during the summer months
(June through August) on the daily number of ED visits for asthma among Medicaid recipients
aged 5 to 34 years from 1 July 1991 to 30 June 1996 in Cincinnati and Cleveland. The percent
change in ED visits for asthma as the primary diagnosis per 10-ppb increase in 24-h average NO₂

1	concentration was 6% (95% CI: -1, 13) in Cincinnati and 4% (95% CI: -1, 8) in Cleveland,
2	with an overall percent increase in ED visits of 3% (95% CI: -1, 7).

3 A number of studies outside of North America have examined the association between 4 NO₂ and hospitalization or ED visits for asthma. Barnett et al., (2005) examined specific 5 respiratory disease outcomes and did not find associations between incremental changes in NO₂ 6 concentration and respiratory admissions for asthma among children 1 to 4 years old. The 7 largest association found in this study was a 6.0% increase in asthma admissions in the 5- to 8 14-year age group related to a 5.1-ppb increase in 24-h NO₂, with evidence of a seasonal impact that resulted in larger increases in admissions during the warm season. When the same groups 9 were examined for the effect of a 9.0-ppb change in the maximum 1-h concentration of NO₂. 10 11 there were no significant associations between NO₂ and hospitalization for asthma. 12 Tenias et al. (1998) used the APHEA design and analysis approach in Valencia, Spain, to 13 examine the association between hospital ED visits for asthma among patients over 14 years old 14 and air pollution for the period 1 January 1993 to 31 December 1995, yielding 734 cases. The mean 24-h NO₂ level was 57.7 μ g/m³ and the mean 1-h NO₂ level was 100.1 μ g/m³. There were 15 16 7.6% and 3.7% increases in ED visits associated with the 24-h average NO₂ concentration at lag 17 0 (1.076 [95% CI: 1.020, 1.134]) and the 1-h maximum NO₂ concentration (1.037 [95% CI: 18 1.008, 1.066]), respectively. Examination of single- and two-pollutant models shows that the 19 addition O₃, smoke, or SO₂ into the model results in little variation in the NO₂ effect estimates,

20 thus diminishing the effect of confounding on the NO₂ effect estimates.

21 Castellsague et al. (1995) examined the association between hospital emergency visits for 22 asthma and air pollutants during the winter and summer months from 1985 to 1989 in Barcelona, 23 Spain for the 14 to 65 year age group. Barcelona traffic density on working day shows little 24 variability during the year, suggesting a steady emission of vehicle exhaust, which is the main 25 source of NO₂ in the city. There were 460 summer asthma visits and 452 winter visits. Mean NO₂ levels averaged 104.0 μ g/m³ (95th percentile = 183 μ g/m³) during the summer, and 26 100.8 μ g/m³ (95th percentile = 153 μ g/m³) during the winter. The increase in asthma visits for a 27 28 25-µg/m³ increase of current day levels of NO₂ was 4.5% (95% CI: 0.9, 8.1) in summer and 5.6% (95% CI: 1.1, 10.4) in winter. A cumulative measure of NO₂ yielded a slightly stronger 29 30 association.

1 A time-series analysis in Sydney examined respiratory outcomes in children and adults, 2 but reported no association between changes in NO2 (24-h average) for asthma admissions 3 (Morgan et al., 1998a). For children aged 1 to 14, a 5.3% increase in hospital admissions for 4 asthma ([95% CI: 1.1, 9.7] lag 0) was associated with the daily 1-h maximum value based on 5 15-ppb incremental change. This association with the 1-h maximum daily concentration 6 remained robust in a multiple pollutant model (5.95% [95% CI: 1.11, 11.02] lag 0) which was 7 only marginally different from the single-pollutant model (Morgan et al., 1998a). The 8 association with adults also was positive, but not statistically significant.

9 Studies of ED visits for asthma have been reported from cities in Europe including London (Atkinson et al., 1999a,b; Hajat et al., 1999); Belfast (Thompson et al., 2001); Valencia, 10 11 Barcelona, and Madrid, Spain (Tenias et al., 1998; Galan et al., 2003; Castellsague et al., 1995); 12 Turin, Italy (Migliaretti et al., 2004, 2005); Marseille, France (Boutin-Forzano et al., 2004); and 13 Amsterdam and Rotterdam (Schouten et al., 1996). Sunver et al. (1997) have described a meta-14 analysis of several cities under the umbrella of the APHEA protocol (Katsouyanni et al., 1996). 15 Additional cities where associations between ED visits for asthma and ambient concentrations of NO₂ have been examined include Melbourne, Brisbane and Perth, Australia (Erbas et al., 2005; 16 17 Hinwood et al., 2006), and São Paulo, Brazil (Farhat et al., 2005). 18 Figures 3.2-9 and 3.2-10 show the percent increases (and 95% confidence limits) in visits 19 to the ED for asthma associated with daily NO₂ 1-h peaks and 24-h averages for each study, 20 respectively. Meta-analysis and meta-regression were used to summarize these results. The 21 results of meta-regression show that the percent increases did not vary significantly for adults

22 versus children, the sampling time of NO₂, or the daily NO₂ concentration for each sampling

time. The lags presented in the figures vary depending on reported results. Most studies

reported effect estimates from a short lag period (i.e., 0 to 2 days).

Figure 3.2-11 provides three examples of dose response relationships for the effect estimates of asthma visits to the ED and NO₂ concentrations. Jaffe et al. (2003) found a positive association between ambient NO₂ and asthma ED visits among Medicaid-enrolled asthmatics in two urban cities in Ohio. When a concentration-response relationship was examined by quintile of NO₂ concentration, risk decreased in the second quintile and increased monotonically in the third and fourth quintiles in Cleveland, but were less smooth in Cincinnati. The lack of

31 consistency in results may be due to the uncontrolled interaction effects of copollutants,

Figure 3.2-9. Relative Risks (95% CI) for ED visits for asthma per 30-ppb increase in 1-h peak NO₂.

Figure 3.2-10. Relative Risk (95% CI) in ED visits for asthma per 20-ppb increase in 24-h average NO₂.

Figure 3.2-11. Dose response presentation of data from three studies for asthma ED visits: (a) Relative risk for an ED visit for asthma in Cincinnati and Cleveland, OH by quintile of NO₂. (b) A monotonic increase in Valencia, Spain. (c) Increased risk in Barcelona, Spain, but no consistent linear trend evident.

Source: (a) Jaffe et al., 2003; (b) Tenias et al., 1998; (c) Castellsague et al., 1995.

- 1 uncontrolled confounding by variables such as pollen and influenza epidemics, and incomplete
- 2 data. Tenias et al. (1998) reported a positive and significant association between ambient NO₂
- and ED visits in Valencia's Hospital Clinic Universitari from 1994-1995. Castellsague et al.
- 4 (1995) found a small but significant association of NO₂ and ED visits due to asthma in
- 5 Barcelona. Specifically, the adjusted risk estimates of asthma visits for each quartile of NO₂
- 6 showed increased risks in each quartile, although the increase was not monotonic. Increased
- 7 trends were apparent in both summer and winter for the second quartile, suggesting that if any
- 8 threshold level exists, it may be quite low.
- 9

10 COPD (ICD9: 490-496)

Studies examining COPD outcomes have focused on hospital admission data, including
 multicity studies in the United States (Moolgavkar, 2000), Europe (Anderson et al., 1997) and

Australia (Simpson et al., 2005a), and single-city studies in Canada (Yang et al., 2005), Europe
 (Dab et al., 1996), and Australia (Morgan et al., 1998).

Moolgavkar (2003) reported statistically significant associations between NO₂ and COPD admissions in two U.S. counties, with approximately 2% increases in Cook County, IL and Los Angeles County, CA associated with a 10-ppm increase in NO₂. Multipollutant models adjusted for PM₁₀ and PM_{2.5} attenuated these estimates slightly, though they remained statistically significant.

8 Anderson et al. (1997) examined COPD admissions in six European cities with mean 9 24-h average and daily 1-h maximum NO₂ concentrations ranging from 22 to 35 ppb and 33.5 to 10 51.3 ppb, respectively. Admissions in Amsterdam, Barcelona, London, Paris, and Rotterdam 11 during different periods from 1977 to 1991 were analyzed for association with NO₂ by season 12 (warm or cool) or for the entire year and using an incremental change of 26 ppb for either the 13 daily 1-h maximum or the 24-h average concentration. The APHEA protocol (time series) was 14 employed in data analysis. The authors reported associations between hospital admissions for 15 COPD and 24-h average NO₂ during the warm season (RR = 1.03 [95% CI: 1.00, 1.06] lag 1) 16 and 1-h maximum NO₂ (RR = 1.02 [95% CI: 1.00, 1.05] lag 1). Significant risks for 17 hospitalization for obstructive respiratory diseases were found year round for both the 24-h 18 average and the daily 1-h maximum value for NO_2 (Anderson et al., 1997). No multipollutant 19 models were described for this meta-analysis, but black smoke, O₃, and SO₂ all appeared to be 20 responsible for an increased frequency of admissions. The authors reported some heterogeneity 21 of association between cities. When the authors investigated individual cities, only London, with 22 a 26-ppb increase in NO₂ was clearly significantly positive on its own for increased hospital 23 admissions for COPD. Amsterdam showed no association between NO₂ and COPD admissions. 24 Simpson et al. (2005a) report small but statistically significant associations between 25 incremental changes in NO₂ and COPD among patients ≥ 65 years using hospitalization data 26 from four Australian cities (0.3% increase [95% CI: 0.15, 0.39). The analysis of admissions in 27 Sydney, Melbourne, Brisbane, and Perth sought to compare three modeling approaches for 28 outcomes including generalized additive models (GAM), GLM and a penalized spline model. 29 The authors found significant heterogeneity of response among results in different cities. 30 In a time-series study in Vancouver, an area with low pollution concentrations (24-h 31 mean NO₂ of 17.03 ppb), Yang et al. (2005) reported associations between NO₂ and hospital

1 admissions for COPD in patients ≥ 65 years for both the lag 1 day (RR = 1.05; 95% CI: 1.01,

2 1.09) and 7-day extended lag period (RR = 1.11 [95% CI: 1.04, 1.20]). Yang et al. (2005)

3 reported that NO₂ was the strongest predictor of hospital admissions for COPD in single-

4 pollutant models; however, in two-pollutant models with either PM₁₀ or CO, the effect of NO₂

5 was attenuated and lost significance.

6 A time-series analysis in Sydney, Australia, examined respiratory outcomes in children 7 and adults, but generally failed to show an association between changes in NO₂ (24-h average)

8 for increased hospital admissions among COPD patients \geq 65 years (Morgan et al., 1998a).

9 Similarly, a study in Paris, France, of COPD and related obstructive respiratory disease found

10 that NO_2 was not statistically significantly associated with increased hospital admissions (Dab

11 et al., 1996).

12

13 Multipollutant Modeling Results

Several studies of the relationship between ambient NO₂ concentrations and ED visits
evaluated copollutant models (Sunyer et al., 1997; Atkinson et al., 1999b; Galan et al., 2003).
Individual models including NO₂ and black smoke (Sunyer et al., 1997; Atkinson et al., 1999b),
SO₂ (Sunyer et al., 1997; Atkinson et al., 1999b; Galan et al., 2003), CO (Atkinson et al., 1999b),
PM₁₀ (Atkinson et al., 1999b; Galan et al., 2003), or O₃ (Atkinson et al., 1999b) did not produce
effect estimates that were significantly different than those produced when using the singlepollutant model.

Respiratory ED visit and hospital admission studies observed consistent NO₂ risk estimates with the inclusion of SO₂, O₃, and PM constituents (Burnett et al., 1997b, 1999; Lee et al., 2006). In one of these studies (Burnett et al., 1997), the effect of NO₂ was adjusted for SO₄²⁻ and coefficient of haze (CoH). With the addition of SO₄²⁻ in the model, the risk estimate for NO₂ on respiratory hospitalizations remained relatively stable; however, the inclusion of the CoH term in the model yielded an attenuated risk estimate.

In field studies, power to assess independent NO₂ effects may be limited by small sample sizes and short follow-up times. Yet, the NO₂ effect was not as robust to the addition of copollutants in multipollutant models, with a few exceptions. For example, in Schwartz et al. (1994), the significant association between cough and 4-day mean NO₂ remained unchanged in models that included O₃ but was attenuated and lost significance in two-pollutant models

1 including PM_{10} or SO₂. In Mortimer et al. (2002), effects were attenuated in multipollutant 2 models that included O₃; O₃ and SO₂; or O₃, SO₂, and PM₁₀. In Schildcrout et al. (2006), each 3 20-ppb increase in NO2 increased risk of cough (OR 1.09 [95% CI: 1.03, 1.15). This result was 4 unchanged in two-pollutant models with CO, PM₁₀, or SO₂. 5 Multipollutant regression analyses indicated that NO₂ risk estimates, in general, were not 6 sensitive to the inclusion of copollutants, including CO and SO₂. There is limited evidence that 7 PM_{10} or other ambient particle constituents do have an effect on NO₂ risk estimates. These 8 results suggest that the effect of NO₂ on respiratory health outcomes appears to be robust and 9 independent of the effects of other gaseous copollutants but that ambient particles may confound

10 11

12 Summary

NO₂ effects on health.

13 Overall, there is strong evidence that increased ED visits and hospital admissions for 14 respiratory causes, including asthma and COPD, are associated with ambient concentrations of NO₂. Still, it is important to note that there uncertainty remains regarding the role of NO₂ as a 15 16 surrogate for other pollutants, which could confound results presented in this section. In nearly 17 all of these studies, there was evidence of correlations between NO₂ and CO and PM measures. 18 Some authors found statistically significant associations between asthma ED visits or hospital 19 admissions and NO₂ in single-pollutant models and subsequently examined these associations in 20 two- or multipollutant models. In São Paulo, asthma remained strongly associated with NO_2 21 after adjustment for PM₁₀ and SO₂, but not when CO was included in the model (Farhat et al., 22 2005). In Madrid, significant association with NO₂ remained after adjustment for SO₂ but not 23 PM₁₀ (Galan et al., 2003). Similarly, in Turin, adjustment for total suspended particulate (TSP)-24 attenuated effects of NO₂ (Migliaretti et al., 2004) demonstrating that the responses to individual 25 pollutant species were not independent. In a meta-analysis of four cities in the APHEA project, 26 NO₂ remained associated with asthma for adults after adjustment for the effects of black smoke 27 (Sunyer et al., 1997). In associations between ED visits to hospitals and NO₂, Atkinson et al. (1999a) found that effects of NO₂ remained after adjustment for SO₂, CO, PM₁₀, or black smoke. 28 29

1 2

3.2.1.8 Integration of Evidence and Biological Plausibility for Associations between NO₂ Exposure and Respiratory Health Effects

Taken together, recent studies provide strong evidence that NO₂ is associated with a range of respiratory effects, from biochemical effects or biological markers of inflammation to hospitalization for respiratory diseases. This conclusion is based on findings from numerous new epidemiological studies, including multipollutant studies that control for the effects of other pollutants, and is supported by evidence from toxicological and controlled human exposure studies.

9 The body of evidence from epidemiological studies has grown substantially since the 10 1993 AQCD. The strongest new epidemiological evidence is for associations with increased ED 11 visits and hospital admissions for respiratory causes, especially asthma and COPD, with ambient 12 concentrations of NO₂. In nearly all of these studies, there were high correlations between 13 ambient measures of NO₂ and CO and PM. The effect estimates for NO₂ were robust after the 14 inclusion of CO and PM in multipollutant models, as shown in Figure 3.2-12. Looking within 15 the new epidemiological findings, there is evidence of coherence for respiratory effects in the 16 associations between short-term NO₂ exposure and respiratory symptoms and ED visits or 17 hospital admissions for respiratory diseases, particularly asthma. Recent studies reporting 18 associations between indoor and personal exposure to NO₂ and respiratory symptoms or lung function provide key support for epidemiological findings of associations with ambient NO2 19 20 concentrations (e.g., Pilotto et al., 2004). In particular, an intervention study (Pilotto et al., 2004) 21 provides strong evidence of a detrimental effect of exposure to NO₂. 22 Evidence from experimental studies provides plausibility for effects on the respiratory

system with NO₂ exposure. Toxicological studies have shown that lung host defenses, including mucociliary clearance and AM and other immune cell functions, are sensitive to NO₂ exposure, with numerous measures of such effects observed at concentrations below 1 ppm. These are potential mechanisms underlying more frank effects observed in epidemiological studies, such as hospital admissions or ED visits for respiratory diseases, including asthma, COPD, or respiratory infections. A recent epidemiological study (Chauhan et al., 2003) provided evidence that increased personal exposures to NO₂ worsen virus-associated symptoms and lung function in

Figure 3.2-12. Relative risks and 95% confidence intervals for associations between ED visits and hospital admissions for respiratory diseases and 24-h average NO₂ concentrations (per 20 ppb).

1 children with asthma. The limited evidence from controlled human exposure studies indicates

2 that NO₂ may increase susceptibility to injury by subsequent viral challenge.

3 Controlled human exposure studies provide strong evidence for airways responsiveness

4 with short-term exposure to NO₂; however, they do not provide compelling evidence for other

5 respiratory effects, such as changes in lung function or subjective respiratory symptoms.

Biological markers of inflammation are reported in antioxidant-deficient laboratory animals with
exposures to 0.4-ppm NO₂. Normal animals do not respond until exposed to much higher levels,
i.e., 5-ppm NO₂. Recent epidemiological studies provide somewhat mixed evidence on shortterm exposure to NO₂ and inflammatory responses in the airways. The controlled human
exposure studies provide evidence for airways inflammation at NO₂ concentrations of <2.0 ppm;
the onset of inflammatory responses in healthy subjects appears to be between 100 and
200 ppm-min, i.e., 1 ppm for 2 to 3 h.

8 The biochemical effects observed in the respiratory tract following exposure to NO₂ 9 include chemical alteration of lipids, amino acids, proteins, enzymes, and changes in 10 oxidant/antioxidant homeostasis, with membrane polyunsaturated fatty acids and thiol groups as 11 the main biochemical targets for NO₂ exposure. However, the biological implications of such 12 alterations are unclear.

Asthma is the respiratory illness for which most evidence is available. The following
 section provides further integrative discussion with a particular focus on the epidemiological and
 experimental study findings relevant to asthmatics.

16

17 Integration with a Focus on Asthma

18

19 Asthmatic Children

20 There is strong evidence from epidemiological studies for an association between NO₂ 21 exposure and children's hospital admissions, ED visits, and calls to doctors for asthma. This 22 evidence came from large longitudinal studies, panel studies, and time-series studies. NO₂ 23 exposure is associated with aggravation of asthma effects that include symptoms, medication 24 use, and lung function. Effects of NO₂ on asthma were most evident with cumulative lag of 2 to 25 6 days, rather than same-day levels of NO₂. Time-series studies also demonstrated a relationship 26 in children between hospital admissions or ED visits for asthma and NO₂ exposure, even after 27 correcting for PM and CO concentrations.

As discussed in Section 3.2.1.3, large, longitudinal cohort studies in the United States, Canada and Europe have reported significant associations between level of NO₂ and risk of respiratory symptoms in children, particularly asthmatic children. A number of recent panel studies of asthmatic children have also generally reported significant associations between respiratory symptoms and NO₂ exposure. The effects were observed with lag periods ranging from 2 days to a 6-day moving average for NO₂, suggesting that NO₂ may not only be directly
 triggering asthma attaché, but may also be acting indirectly as a primer for subsequent antigen
 exposure.

Important evidence is also available from epidemiological studies of indoor NO₂
exposures. A number of recent studies show associations with wheeze, chest tightness, and
length of symptoms (Belanger et al., 2006); respiratory symptom rates (Nitschke et al., 2006);
school absences (Pilotto et al., 1997a); respiratory symptoms, likelihood of chest tightness, and
asthma attacks (Smith et al., 2000); and severity of virus-induced asthma (Chauhan et al., 2003).
However, several studies (Mukala et al., 1999, 2000; Farrow et al., 1997) evaluating younger
children found no association between indoor NO₂ and respiratory symptoms.

11 Human clinical studies of the health effects of NO₂ have not been conducted on children; 12 however, toxicological studies provide strong biological plausibility of the effects of NO_2 13 exposure on asthma exacerbation in children. Several endpoints in these studies point to 14 mechanisms by which NO_2 can produce these adverse health effects. These mechanisms include 15 reduced mucociliary clearance, AM function, such as depressed phagocytic activity and altered 16 humoral- and cell-mediated immunity. NO_2 effects on AMs at levels as low as 1.0 ppm are 17 especially relevant to effects seen with asthmatics. This exposure causes decreased bactericidal 18 activity, reduced cell viability, disruption of membrane integrity and reduced cell number. These 19 are all mechanisms that can provide biological plausibility for the NO₂ effects in asthmatic 20 children observed in epidemiological studies. Chauhan et al. (2003) have reviewed potential 21 mechanisms by which NO₂ exacerbates asthma in the presence of viral infections. They include 22 "direct effects on the upper and lower airways by ciliary dyskinesis, epithelial damage, increases 23 in pro-inflammatory mediators and cytokines, rises in IgE concentration, and interactions with 24 allergens, or indirectly through impairment of bronchial immunity."

As stated above, asthma is a chronic inflammatory disorder. Animal studies provide strong evidence that NO₂ can produce inflammation and lung permeability changes. One limitation of this work is that effects on markers of inflammation, such as BAL fluid levels of total protein and lactate dehydrogenase, and recruitment or proliferation of leukocytes, occur only at exposure levels of \geq 5 ppm. Studies conducted at these higher exposure concentrations may elicit mechanisms of action and effects that do not occur at near-ambient levels of NO₂.

1 Asthmatic Adults

2 One of the key health effects of concern at near-ambient concentrations of NO₂ is 3 increases in airways responsiveness of asthmatic individuals after short-term exposures. 4 Epidemiological studies show a strong association between NO₂ exposures and asthma 5 symptoms in adult asthmatics. Outdoor NO₂ studies in Europe found an increased risk of 6 shortness of breath (Hiltermann et al., 1998); prevalence for wheeze, phlegm, cough, and 7 breathing problems upon waking (Von Klot et al., 2002); and severe asthma symptoms (Forsberg 8 et al., 1998) associated with NO₂ levels. Several indoor NO₂ exposure studies have shown 9 associations, as well. Endpoints include likelihood of cough (Smith et al., 2000) and rescue 10 medication use (Ng et al., 2001).

11 Controlled human exposure studies are limited to acute, fully reversible functional and/or 12 symptomatic responses and are further limited to exposures of only mild asthmatics. Increased 13 airways responsiveness, the most sensitive indicator of response, occurred with resting exposures 14 of 0.2 to 0.5-ppm NO₂. Other studies showed an absence of effects on airways responsiveness at 15 much higher concentrations, up to 4 ppm. Lung function effects are variable and inconsistent; 16 however, there is little evidence for effects at < 0.25 ppm. There is no obvious explanation for 17 the apparent lack of concentration-response relationship; therefore, the findings do not provide 18 clear quantitative conclusions about the health effects of short-term exposures to NO₂. Effects at 19 lower levels are seen in the epidemiological studies described above.

20

21

22 23

3.2 CARDIOVASCULAR EFFECTS ASSOCIATED WITH SHORT-TERM NO₂ EXPOSURE

24

25 26

3.2.2.1 Studies of Hospital Admissions and Emergency Department Visits for Cardiovascular Disease (CVD)

Our current review includes approximately 40 studies published since 1992 that address the effect of NO_x exposure on hospitalizations or ED visits for CVD. No studies were reviewed that linked CVD hospital admissions or emergency visits with exposure to NO_x prior to the release of the document in 1993. Cases of CVD are typically identified using ICD codes recorded on hospital discharge records. However, counts of hospital or ED admissions are also used. Studies of ED visits include cases that are less severe than those that have been documented to require hospitalization via discharge records and these studies are clearly distinguished in the annex tables. All CVD diagnoses or selected diagnoses for diseases or
disease grouping such as myocardial infarction (MI), ischemic heart disease (IHD), congestive
heart failure (CHF), angina pectoris, cardiac arrhythmia, cerebrovascular diseases, or stroke are
outcomes considered in the analyses.

5 6

All CVD (ICD9 390-459)

7 All studies of the association of hospitalizations or ED visits are positive and most 8 confidence limits exclude the null value, with the exception of the lag 1 results for the elderly 9 reported by Jalaludin et al., 2006. Results from these studies are summarized in Figure 3.2-13. 10 However, findings from multicity studies conducted in Spain (Ballester et al., 2006) and 11 Australia (Barnett et al., 2006) indicate weak associations in single-pollutant models, which are 12 attenuated in multipollutant models. Analyses from a study conducted in Los Angeles and Cook 13 Counties (Moolgavkar et al., 2003), also show an increase in hospital admissions for CVD 14 associated with NO₂ that was diminished in multipollutant models. Associations were also 15 diminished with the use of increasingly stringent convergence criteria applied for subsequent 16 reanalyses (Moolgavkar, 2003). Another large multiyear study conducted in Los Angeles 17 County reports a small increase in CVD admissions, but authors could not distinguish 18 independent effects of specific pollutants (Linn et al., 2000).

Pekkanen et al. (2000) reports an association between plasma fibrinogen, a risk factor and
 possible biomarker for cardiovascular disease, and NO₂ (See Section 3.1.2.3). In addition,

21 findings from controlled human exposure and animal studies may provide limited biological

22 plausibility and mechanistic evidence for the epidemiology findings. These studies evaluated

23 cardiovascular endpoints such as blood pressure, cardiac output and hematological parameters

24 (Folinsbee et al., 1978; Linn et al., 1985b; Posin et al., 1978; Frampton et al., 2002; Suzuki et al.,

25 1981, 1984; Mersch et al., 1973; Kunimoto et al., 1984; Takano et al., 2004).

26

27 *Heart Disease (ICD9 390-429)*

Some investigators distinguish heart diseases from diseases of the cerebrovascular system, involving blood vessels supplying blood to the brain, in their research. Findings from studies conducted in Canada and the Detroit area report positive associations of heart disease with NO₂ that are diminished in two-pollutant models (Fung et al., 2005; Burnett et al., 1997a, 1999).

Figure 3.2-13. Relative risks (95% CI) for associations between 24-h NO₂ exposure (per 20 ppb) and hospitalizations or emergency department visits for all cardiovascular diseases (CVD). Primary author and year of publication, city, stratification variable(s), and lag are listed. Results for lags 0 or 1 are presented, as available.

However, findings from several European and Australian multicity studies indicate robust
associations between NO₂ and hospitalization for heart disease (Von Klot et al., 2005; Barnett
et al., 2006; Simpson et al., 2005a). Von Klot et al. analyzed prospective cohort data from five
European cities (Augsburg, Barcelona, Helsinki, Rome, and Stockholm) to determine if
readmissions for cardiac-related disorders were associated with ambient NO₂ level. The range in
24-h NO₂ level was 15.8 to 26 ppb in the five cities studied. Von Klot reports a 3.2% (95% CI:
1.4, 5.1) increase in re-admissions among cardiac patients, which was independent of the effect

1 of PM₁₀ and O₃ in two-pollutant models. A 20-ppb increase in 24-h average NO₂ level was 2 associated (RR = 1.14 (95% CI: 1.08, 1.21) with an increase in hospital admissions among the 3 elderly in five cities in Australia and New Zealand (Barnett et al., 2006). Daily maximum NO₂ 4 level was associated with a similar increase in hospitalizations (2.8% (95% CI: 1.38, 4.26) per 5 increase of 9.3-ppb NO₂) among the elderly of Sydney, Australia (Jalaludin et al., 2006). Daily 6 1-h maximum NO_2 level was associated with increases in hospitalizations among the elderly 7 (RR: 1.06 [95% CI: 1.03, 1.08] per 30-ppb increase in NO₂) (Simpson et al., 2005a). Increases 8 in admissions were also reported for all ages (Jalaludin et al., 2006; Simpson et al., 2005a). An 9 earlier study also yielded positive results with an increase of 20 ppb in the 24-h average NO_2 10 level associated with a RR of 1.09 (95% CI: 1.06, 1.14) increase in cardiac admissions among 11 all ages and similar increase among the elderly (Morgan et al., 1998a). Results were diminished 12 slightly when the 1-h maximum NO₂ level was used (Morgan et al., 1998a). 13 Some results remained robust in two-pollutant models (Simpson et al., 2005a; Morgan 14 et al., 1998a) while results reported in other studies were attenuated by the inclusion of CO in 15 multipollutant models (Jalaludin et al., 2006; Barnett et al., 2006). Two Asian case crossover 16 studies (Chang et al., 2005; Yang et al., 2004) report increases in cardiac disease that are robust in multipollutant models. However, the effects reported by Yang et al. were orders of magnitude 17 18 above results reported in other studies (Yang et al., 2006). A time-series analysis conducted in 19 Hong Kong reported small associations that were not robust in multipollutant models (Wong 20 et al., 1999).

21

22 Arrhythmia (ICD9 427)

Arrhythmia is variation from the normal heart rhythm. Ventricular arrhythmias cause most sudden cardiac deaths while atrial fibrillation or supraventricular arrhythmia, the most common type of arrhythmia, is not a direct threat to life (Dockery et al., 2005). However, risk factors for atrial fibrillation include hypertension, coronary artery disease and COPD and atrial fibrillation is associated with increased risk of stroke.

Hospital or ED admissions for arrhythmia were inconsistently associated with increases in ambient NO₂ level. Some studies report positive associations (Rich et al., 2006a; Mann et al., 2002; Barnett et al., 2006) while others report null associations (Metzger et al., 2004; Lippmann et al., 2000; reanalysis Ito, 2003, 2004). Studies of heart rate variability (HRV) and implanted cardioverter defibrillators provide limited evidence to support a possible association between
 arrhythmias and NO₂ or ambient pollution levels (See Section 3.1.2.3).

3

4 Ischemic Heart Disease (IHD) ICD9 410-414

5 Some studies further delineate cardiac disease by using groupings of specific conditions 6 such as IHD, which includes acute MI, previous MI, angina pectoris, and other chronic IHD. 7 Figure 3.2-14 summarizes studies that include hospitalization for IHD as an outcome. Two U.S. 8 studies report associations of IHD hospitalizations or ED visits with ambient NO₂ level (Mann 9 et al., 2002; Metzger et al., 2004), while another reports no association (Lippmann et al., 2000; 10 reanalysis Ito, 2003, 2004). The study by Mann et al. (2002) was novel, because exposures were 11 assigned based on proximity to the monitoring station and results were pooled across air basins. 12 Independent NO₂ effects were not distinguished in these studies, however (Mann et al., 2002;

13 Metzger et al., 2004).

Figure 3.2-14. Relative risks (95% CI) for associations between 24-h NO₂ exposure (per 20 ppb) and hospitalizations for Ischemic Heart Disease (IHD). Primary author and year of publication, city, stratification variable(s), and lag are listed. Results for lags 0 or 1 are presented, as available.

1 A European study conducted in Helsinki reports an association of NO with both 2 hospitalization and ED visits for IHD while no association with NO₂ was observed (Ponka and 3 Virtanen, 1996). In a multicity study in Europe, a 4.2-ppb increase NO₂ was associated with an 4 increase in readmission for angina pectoris (ICD9 411, 413) among cardiac patients (von Klot 5 et al., 2005). O₃ may have been contributed to this observed effect, however (von Klot et al., 6 2005). Small associations of IHD admissions with incremental increases in NO_2 have been 7 observed in Australian populations (Barnett et al., 2006; Jalaludin et al., 2006; Simpson et al., 8 2005a). In a study with populations from seven cities in Australia, Barnett et al., (2006) found 9 that there was no association between NO_2 and IHD admissions for the age group 25 to 64 years. 10 For persons 65 years and older an increase of 2.5% ([95% CI: 1.0, 4.1] lag 0 to 1) in IHD 11 hospital admissions per 5.1-ppb increase in NO₂ was reported. A study of four Australian cities 12 reported a 1-ppb change in the daily maximum 1-h concentration of NO_2 was associated with a 13 0.17% change in hospitalization for IHD ([95% CI: 0.07, 0.27] lag 0) among the elderly. In a 14 single-city study of Sydney, Jalaludin et al. (2006) reported a 2.11% ([95% CI: 0.34, 3.01] lag 0) 15 change in the rate of hospitalization of patients 65 years and older per 9.3-ppb increase in daily 16 maximum 1-h concentration of NO_2 . A seasonal effect of NO_2 on hospitalization for IHD was 17 observed (Jalaludin et al., 2006). However, the effect of NO₂ was diminished when it was 18 modeled with CO (Jalaludin et al., 2006).

Wong et al. (1999) reported no association between IHD admissions and 24-h average NO₂ concentration in Hong Kong (Wong et al., 1999). A Korean study reported an 8% increase in hospitalization for IHD during all seasons (RR = 1.08 [95% CI: 1.036, 1.14] lag 5) per 14.6-ppb increase in 24-h concentration of NO₂ (Lee et al., 2003a). The relative risk increased dramatically for those \geq 64 years of age in the summer months to 25% for the same incremental change (RR = 1.25 [95% CI: 1.11, 1.41] lag 5). The effect of NO₂ remained robust in two-pollutant models with PM₁₀ (RR = 1.09 [95% CI: 1.02, 1.16] lag 5) but not with CO.

26

27 Hospital Admissions for Myocardial Infarction (MI) (ICD9 410)

Key studies of hospital admissions for MI are summarized in Figure 3.2-15. Positive associations of emergency admissions for MI and increases in ambient NO₂ level were reported in Boston (Zanobetti and Schwartz, 2006) and Southern California (Linn et al., 2000; Mann et al., 2002). Zanobetti and Schwartz report an increase of 10.21% (3.82-15.61%, lag 0) in

Figure 3.2-15. Relative risks (95% CI) for associations between 24-h NO₂ exposure (per 20 ppb) and hospitalizations for myocardial infarction (MI). Primary author and year of publication, city, stratification variable(s), and lag are listed. Results for lags 0 or 1 are presented as available.

1 emergency MI admissions per 16.8-ppb incremental increase in 24-h average NO₂ among the 2 elderly. NO₂, black carbon (BC), and CO were correlated during the warm season making it 3 difficult to distinguish the effect of NO₂ (Zanobetti and Schwartz, 2006). Linn et al. reported a 1.1% ([95% CI: 0.6, 1.6%], lag 0) increase in admissions for MI per 10-ppb increase in NO₂ and 4 5 Mann et al. reported a 2.04% ([95% CI: 1.05, 3.02%], lag 0-1) increase per 10-ppb increase in 6 NO₂ in Southern California. Again, NO₂ and CO were highly correlated making it difficult to 7 distinguish an independent effect of NO₂. Pooled results from two European multicity studies 8 are not consistent. Von Klot et al. report a 2.8% RR of 1.10 (95% CI: 1.01, 1.21) increase in MI 9 admissions and Lanki et al. reports a null effect (lag 1). One single-city study in Italy 10 (D'Ippoliti et al., 2003) found positive significant associations between 24-h average NO₂ level

and admission for MI. D'Ippoliti observed a 2.6% (95% CI: 0.2, 5.2%) increase with a 20-ppb
 increase in NO₂.

3

4 Congestive Heart Failure (CHF) (ICD9 428)

5 Studies of hospital admissions and ED visits for CHF have produced mixed results

6 (Figure 3.2-16). A seven city study conducted in the US among the elderly found positive

- 7 associations in Los Angeles (RR: = 1.32 [1.21, 1.43]), Chicago (RR: = 1.37 [1.14, 1.61]) and
- 8 New York (RR: = 1.14 [1.04, 1.28]) per 20-ppb increase in NO₂ (Morris et al., 1995). Estimates
- 9 were close to the null value in Philadelphia, Detroit, Houston, and Milwaukee and only the
- 10 estimate for New York remained significant in multi-pollutant models (Morris et al., 1995).

Figure 3.2-16. Relative risks (95% CI) for associations between 24-h NO₂ exposure (per 20 ppb) and hospitalizations for congestive heart failure (CHF). Primary author and year of publication, city, stratification variable(s), and lag are listed. Results for lags 0 or 1 are presented as available.

A more recent study of an elderly population conducted in Pittsburgh and Allegheny County reported a OR = 1.08 increase in CHF admissions with a 20-ppb increase in NO₂ (Wellenius et al., 2005). The result for NO₂ was not affected by PM₁₀ but was diminished in a two-pollutant model containing CO. A 6.9% (OR = 1.3 [95% CI: 1.09, 1.55], lag 0) increase in CHF admissions was observed in a seven city Australian study (pooled results) per 20-ppb increase in 24-h average NO₂ concentration among the elderly (Barnett et al., 2006).

7 8

Hospital Admissions for Stroke and Cerebrovascular Disease (ICD9 430-448)

9 Cerebrovascular diseases include ICD9 codes 430-448 and may be more narrowly 10 defined to capture ischemic stroke (IS) (ICD9 433-435) and hemorrhagic stroke (HS) (ICD9 430). Studies that have evaluated the association between all cerebrovascular disease and 11 12 ambient NO₂ concentration are summarized in Figure 3.2-17. Results from these studies are 13 inconsistent. The largest study described in the figure, conducted by Linn et al. (2000), did not 14 find an effect for NO₂ on cerebrovascular disease admission (Linn et al., 2000). However, these authors report an increase in hospitalizations of 2.7% (95% CI: 2.6, 2.8) for occlusive stroke 15 16 during the winter months (year round effect also observed). Wellenius et al. (2005) found a 17 2.94% increase in IS admissions per 11.93% increase in 24-h average NO₂ level (multipollutant 18 models were not examined) (Wellenius et al., 2005). In a Canadian study, Villeneuve et al. 19 (2006) reported an association between NO₂ exposure and IS during the winter months, among 20 the elderly (OR = 1.26 [95% CI: 1.09, 1.46], lag 3).

21 Results from Europe are also inconsistent with Ponka and Virtanen (1996) reporting null 22 results and Ballester et al. (2001) reporting a 1.15 ([95% CI: 1.02, 1.29], lag 4) increase in 23 cerebrovascular admissions per 20-ppb increase in 24-h NO₂ level. No association was found in 24 Sydney between daily 1-h maximum NO₂ concentration and cerebrovascular disease (Jalaludin 25 et al., 2006). No associations between air pollutants and stroke were reported in a multicity 26 study conducted in Australia and New Zealand (Barnett et al., 2006). Investigations of NO₂ 27 cerebrovascular disease and stroke have been conducted in populations in Asia (Chan et al., 28 2006; Tsai et al., 2003). An increase in 24-h average concentration NO_2 of 20 ppb resulted in 29 increased risk of hospitalization (OR = 1.67 [95% CI: 1.48, 1.87] lag 0 to 2) in Taiwan (Tsai 30 et al., 2003). The associations were stronger on warm days. Using multipollutant models that 31 were adjusted for PM₁₀, CO, O₃, and SO₂, Tsai et al. (2003) found the association between NO₂ 32 and IS as well as PIH remained significant (p < 0.01). By contrast, a study by Chan et al. in

- Figure 3.2-17. Relative risks (95% CI) for associations between 24-h NO₂ exposure (per 20 ppb) and hospitalizations for cerebrovascular disease. Primary author and year of publication, city, stratification variable(s), and lag are listed. Results for lags 0 or 1 are presented as available.
- 1 Taiwan, failed to demonstrate statistically significant associations between NO₂ and rates of
- 2 hospital admissions for cerebrovascular disease, stroke (IS or HS) (Chan et al., 2006).
- 3 4

Vaso-occlusion in Sickle Cell

5 A recent study evaluated the association of pain in Sickle Cell patients, which is thought 6 to be caused by vaso-occlusion, with air pollution (Yallop et al., 2007). A time series analysis 7 was performed to link daily hospital admissions for acute pain among sickle cell patients with 8 daily air pollution levels in London using the cross correlation function. No association was 9 reported for NO₂. However, Yallop et al. observed an association (CCF = -0.063, lag 0) for NO, 10 CO, and O₃.

1 Multipollutant Modeling Results

2 The majority of studies of CVD hospital and ED admissions reported results from 3 multipollutant models. Since results from multipollutant models in single-city studies are 4 generally less stable because of smaller sample sizes, results for multicity studies are discussed 5 in this section. Burnett et al. (1997a) report robust estimates for cardiac disease hospital 6 admissions and NO₂, whereas the observed association for cardiac hospitalizations and PM were 7 explained by gaseous pollutants. In another multicity study conducted in the same area, 8 associations of NO₂ with cardiac disease were not attenuated when CO, SO₂, and PM variables 9 were included in the models (Burnett et al., 1999). Relative risks for NO₂ with CHF were 10 diminished in multipollutant models used in a multicity study including six U.S. cities (Morris 11 et al., 1995). Wellenius et al. (2005a) did not report multipollutant results for a study of 12 ischemic and HS. In this study, only ischemic stroke was associated with NO₂ exposure. 13 Investigators conducting a multicity study in Australia observed a different effect with 14 the NO₂ association, with CVD weakening after inclusion of CO in the model (Barnett et al., 15 2006). The authors hypothesized that NO_2 is a good surrogate for PM, which may explain the 16 observed effect of NO₂ on admissions for CVD (Barnett et al., 2006). Results from another 17 multicity study in Australia are similar with authors suggesting that NO₂ effects on cardiac 18 disease and IHD may be confounded by PM (Simpson et al., 2005b). Multicity studies from 19 Europe are inconsistent with regard to the results of multipollutant models. Von Klot et al. 20 reported that the effect of NO₂ on MI, angina, and cardiac disease was independent of PM₁₀ and 21 O₃ (von Klot et al., 2005), while Ballester et al. (2006) reported that the effect of NO₂ on cardiac 22 disease was diminished in two-pollutant models. Copollutant model results for NO₂ were not 23 reported for a third multicity study in Europe (Lanki et al., 2006). 24 Results from multipollutant models have been inconsistent in large multicenter studies that have evaluated the effect NO₂ on hospital and ED visits for CVD. In general, investigators 25

acknowledge the limitations of multipollutant models to tease out independent contributions of

27 individual and highly correlated pollutants. In addition, most researchers generally acknowledge

the possibility that observed effects on the cardiovascular system are related to traffic pollutants.

29 See Table 3.2-3 for the effects of including a copollutant with NO₂ in multipollutant models.

30

13.2.2.2Heart Rate Variability, Repolarization, Arrhythmia, and Other Measures2Cardiovascular Function Associated with Short-Term NO2 Exposure

Heart Rate Variability

5 HRV, a measure of the beat-to-beat change in heart rate (HR), is a reflection of the 6 overall autonomic control of the heart. It is hypothesized that increased air pollution levels may stimulate the autonomic nervous system and lead to an imbalance of cardiac autonomic control 7 8 characterized by sympathetic activation unopposed by parasympathetic control (Liao et al., 2004; 9 Brook et al., 2004). Such an imbalance of cardiac autonomic control may predispose susceptible 10 people to greater risk of ventricular arrhythmias and consequent cardiac deaths (Liao et al., 2004; 11 Brook et al., 2004). HRV has been studied most frequently in coronary artery disease 12 populations, particularly in the post-MI population. Lower time domain as well as frequency 13 domain variables (i.e., reduced HRV) are associated with an increase in cardiac and all-cause 14 mortality among this susceptible population. Those variables most closely correlated with 15 parasympathetic tone appear to have the strongest predictive value in heart disease populations. 16 Specifically, acute changes in RR-variability temporally precede and are predictive of increased 17 long-term risk for the occurrence of ischemic sudden death and/or precipitating ventricular 18 arrhythmias in individuals with established heart disease (for example, see La Rovere et al., 19 2003). However, acute changes in HRV parameters do not necessarily occur immediately prior 20 to sudden fatal ventricular arrhythmias (Waxman et al., 1994). HRV itself is not the causative 21 agent, nor has it been implied to be a causative agent in any of the studies performed to date. 22 Altered HRV, including changes in HRV associated with exposure to criteria pollutants, may be 23 a marker for enhanced risk.

24 The potentially adverse effects of air pollutants on cardiac autonomic control were 25 examined in a large population-based study, among the first in this field. Liao et al. (2004) 26 investigated short-term associations between ambient pollutants and cardiac autonomic control 27 from the fourth cohort examination (1996 to 1998) of the population-based Atherosclerosis Risk 28 in Communities (ARIC) Study. PM_{10} , NO₂, and other gaseous air pollutants were examined in 29 this study. PM₁₀ (24-h average) and NO₂ exposures (24-h average) 1 day prior to the randomly 30 allocated examination date were used. The mean (SD) NO₂ level was 21 (8) ppb. They 31 calculated 5-min HRV indices between 8:30 a.m. and 12:30 p.m. and used logarithmically-32 transformed data on high-frequency (0.15 to 0.40 Hz) and low-frequency (0.04 to 0.15 Hz)

3-73 DRAFT-DO NOT QUOTE OR CITE

1 power, standard deviation of normal R-R intervals (SDNN), and mean HR. The effective sample 2 sizes for NO₂ and PM₁₀ were 4,390 and 4,899, respectively, from three U.S. study centers in 3 North Carolina, Minnesota, and Mississippi. PM₁₀ concentrations measured 1 day prior to the 4 HRV measurements were inversely associated with both frequency- and time-domain HRV 5 indices. Ambient NO₂ concentrations were inversely associated with high-frequency power and SDNN. In single-pollutant models, a 20-ppb increase in ambient NO₂ was associated with a 6 7 5% reduction (95% CI: 0.7, 9.2), in mean SDNN. Consistently more pronounced associations 8 were suggested between PM_{10} and HRV among persons with a history of hypertension.

9 The Liao et al. (2004) findings were cross-sectionally derived from a population-based 10 sample and reflect the short-term effects of air pollution on HRV. When the regression 11 coefficients for each individual pollutant model were compared, the effects for PM_{10} were 12 considerably larger than the effects for gaseous pollutants such as NO₂. Because of the 13 population-based sample, this study is more generalizable than other smaller panel studies. The 14 findings are suggestive of short-term effects of air pollutants, including NO₂, on HRV at the 15 population level.

16 Various measures of HRV have been examined in relation to daily levels of ambient air pollution in other studies (Chan et al., 2005; Wheeler et al., 2006; Holguin et al., 2003; 17 18 Luttmann-Gibson et al., 2006; Schwartz et al., 2005). Chan et al. (2005) recruited 83 patients 19 from the cardiology section of a hospital in Taiwan. Patients included 39 with coronary heart 20 disease (CHD) and 44 with more than one risk factor for CHD. The authors reported finding 21 significant associations between increases in NO₂ and decline in SDNN (NO₂ lagged 4 to 8 h) 22 and LF (NO₂ lagged 5 or 7 h) (see Annex Table AX6.4.1 for quantitative results). There were no 23 significant associations for r-MSSD or HF and NO₂. None of the other pollutants tested (PM_{10} , 24 CO, SO₂, O₃) were significantly associated with any of the HRV measured. Wheeler et al. 25 (2006) examined HRV and ambient air pollution in Atlanta in 12 patients who had an MI from 26 3 to 12 months prior to enrollment and 18 COPD patients. The results in the two patient groups 27 were quite different: increasing concentration of NO₂ in the previous 4-h significantly reduced 28 SDNN in MI patients and significantly increased SDNN in COPD patients (see Annex Table 29 AX6.10). Similar significant associations were seen with increases in 4-h ambient $PM_{2.5}$. The 30 $PM_{2.5}$ concentrations were moderately correlated with NO₂ levels (r = 0.4).

1	In contrast, Holguin et al. (2003) $PM_{2.5}$ concentrations were moderately correlated with
2	NO_2 levels (v = 0.04) in 34 elderly adults in Mexico City and found no significant associations
3	with increases in NO ₂ , but did find significant effects of PM _{2.5} on HF, particularly among
4	hypertensive subjects. Similarly, Luttmann-Gibson et al. (2006) also found significant effects of
5	PM _{2.5} and SO4 on HRV measured in a panel of 32 senior adults in Steubenville, OH, but
6	observed no effect of increasing NO ₂ . Likewise, Schwartz et al. (2005) found significant effects
7	of increases in $PM_{2.5}$ on measures of HRV, while no associations with NO ₂ were observed. A
8	population-based study of air pollutants and HRV was conducted in Boston, MA on 497 men
9	from the VA Normative Aging Study (NAS) (Park et al., 2005b). The mean (SD) 24-h
10	average NO ₂ concentration was 22.7 (6.2) ppb. Associations with HRV outcomes were observed
11	with a 4-h moving average of O ₃ and PM _{2.5} concentrations, but not with NO ₂ .
12 13	Repolarization Changes
14	In addition to the role played by the autonomic nervous system in arrhythmogenic
15	conditions, myocardial vulnerability and repolarization abnormalities are believed to be key
16	factors contributing to the mechanism of such diseases. Measures of repolarization include QT
17	duration, T-wave complexity, variability of T-wave complexity, and T-wave amplitude. A
18	prospective panel study, conducted in East Germany, analyzed 12 repeat ECG recordings for
19	56 males with IHD (Henneberger et al., 2005). Ambient air pollutants measured at fixed
20	monitoring sites were used to assign individual exposures for 0 to 5, 5 to 11, 12 to 17, 18 to 23,
21	0 to 23 h and for 2 to 5 days prior to the EEG. Pollutants considered were ultrafine particles
22	(UFP), accumulation mode particle (ACP), PM _{2.5} , elemental carbon (EC), organic carbon (OC),
23	SO ₂ , NO ₂ , NO, and CO. Associations were observed between (1) QT duration and EC and OC;
24	(2) T-wave amplitude and UFP, ACP and $PM_{2.5}$; and (3) T-wave complexity and PM_{10} , EC, and
25	OC. NO ($r = 0.83$) and NO ₂ (0.76) were highly correlated with UFP but were not associated

26 with repolarization abnormalities.

27

Arrhythmias Recorded on Implanted Defibrillators 28

Implanted cardioverter defibrillators (ICDs) are often used in cardiac patients to detect 29 life-threatening arrhythmias. Among patients with ICDs in eastern Massachusetts, increases in 30 31 ambient NO₂ was significantly associated with defibrillator discharges (Peters et al., 2000) and ventricular arrhythmias (Dockery et al., 2005; Rich et al., 2005), but not with paroxysmal atrial 32

fibrillation (PAF) episodes (Rich et al., 2006a). In a pilot study, Peters et al. (2000) abstracted device records for 3 years for each of 100 patients with ICDs. Defibrillator discharge events were positively associated with the previous day and 5-day mean NO₂ concentrations: each 20-ppb increase in the previous day's NO₂ level was associated with an increased risk of a discharge event (OR = 1.55 [95% CI: 1.05, 2.29]) (see Annex Table AX6.4.2 for the increase associated with a 20-ppb increase in NO₂).

7 Two separate analyses of the same cohort of patients examined the association between 8 air pollution and the incidence of ventricular arrhythmias (Dockery et al., 2005; Rich et al., 9 2005). A total of 203 patients with ICDs who lived within 25 miles of the ambient monitoring 10 site in Boston were monitored. Data included a total of 635 person-years of follow-up or an 11 average of 3.1 years per subject. The median (IQR) 48-h average NO₂ concentration was 12 22.7 (7.7) ppb. In the analysis by Dockery et al. (2005), positive associations were observed 13 between ventricular arrhythmias within 3 days of a prior event and a 2-day mean of several air 14 pollutants including PM_{2.5}, BC, NO₂, CO, and SO₂. Rich et al. (2005, 2006a) examined 15 associations between ambient air pollution levels and two other cardiac endpoints recorded by 16 the ICDs, namely ventricular arrhythmias (Rich et al., 2005) and PAF episodes (Rich et al., 17 2006a). In single-pollutant models, each 20-ppb increase in the mean NO₂ level over the 18 previous 2 days was associated with an increased likelihood of ventricular arrhythmia, OR = 1.5419 (95% CI: 1.11, 2.18). The association with NO₂ was not significant in two pollutant models 20 with PM_{2.5}, but remained marginally significant in models with O₃ (2.0-ppb increase in 24-h 21 moving average NO₂ was associated with an OR = 1.36 [95% CI: 1.00, 1.80]). There was a 22 strong association between an increase of NO₂ (by 20 ppb) and ventricular arrhythmia in the 23 presence of ventricular arrhythmia within the previous 72 h (OR = 2.09 [95% CI: 1.26, 3.51]). 24 No association was found between NO₂ levels and PAF (Rich et al., 2006b).

25

26 Plasma Fibrinogen, Biomarker for Cardiovascular Disease

27

28 Epidemiological Studies

In a large cross-sectional study of 7,205 office workers in London, Pekkanen et al. (2000) collected blood samples and analyzed the association between plasma fibrinogen, a risk factor for CVD, and ambient levels of air pollution. In models adjusting for weather and demographic and socioeconomic factors, there was an increased likelihood of blood levels of fibrinogen
1 >3.19 g/l (90th percentile) for each 20-ppb increase in NO₂ lagged by 3 days (OR = 1.14 [95% 2 CI: 1.03, 1.25]). The correlation between daily NO₂ and other traffic-related pollutants were 3 high: daily levels of black smoke (r = 0.75), PM_{10} (r = 0.76), SO_2 (r = 0.62), CO (r = 0.81). The 4 authors suggest that the increased concentrations of fibrinogen, a mediator of cardiovascular 5 morbidity and mortality, may be an indicator of inflammatory reactions caused by air pollution. 6 Pekkanen et al. (2002) enrolled a panel of 45 adults with coronary heart disease in order 7 to examine associations between heart function as measured by risk of ST-segment depression 8 and particulate pollution. Level of particulate and gaseous pollutants, including NO_2 , lagged by 9 2 days was found to have the strongest effect on risk of ST-segment depression during mild 10 exercise tests (OR = 14.1 [95% CI: 3.0, 65.4] for ST-segment depression of >0.1mV with a 11 20-ppb increase in NO₂ lagged by 2 days). A large (n = 863) cross-sectional study of resting 12 heart rate (HR) of adults in France found significant associations between elevated levels of NO₂ 13 within 8-h of measurement and resting HR of \geq 75 beats per minute (bpm) (OR = 2.7 [95% CI: 14 1.2, 5.4] for resting HR >75 bpm for each 20-ppb increase in NO₂) (Ruidivets et al., 2005). 15 16 Controlled Human Exposure and Animal Studies 17 Folinsbee et al. (1978) studied three groups of 5 healthy males exposed to 0.62-ppm NO₂ 18 for 2 h. The groups differed by duration of exercise during exposure: 15, 30, or 60 min. In 19 addition to pulmonary function, outcome measures included indirect calorimetry, cardiac output 20 using the CO₂ rebreathing technique, blood pressure, HR, and diffusing capacity of the lung for 21 carbon monoxide (DLCO). There were no significant effects for the individual groups, or for the 22 15 subjects analyzed together. However, the small number of subjects in each group limited 23 statistical power. 24 Drechsler-Parks (1995) assessed changes in cardiac output using noninvasive impedance 25 cardiography. Eight older adults (56 to 85 years of age) were exposed to 0.60-ppm NO₂, 26 0.45-ppm O_3 , and the combination of 0.60-ppm $NO_2 + 0.45$ -ppm O_3 for 2-h with intermittent 27 exercise. The exercise-induced increase in cardiac output was smaller with the $NO_2 + O_3$ 28 exposures than with the filtered air or O₃ exposures alone. There were no significant differences 29 in minute ventilation, HR, or cardiac stroke volume, although the mean stroke volume was lower 30 for $NO_2 + O_3$ than for air. The author speculated that chemical interactions between O_3 and NO_2

at the level of the epithelial lining fluid led to the production of nitrite, leading to vasodilatation,
 with reduced cardiac preload and cardiac output. This study has not been repeated.

One previous study (Linn et al., 1985a) reported small but statistically significant reductions in blood pressure after exposure to 4-ppm NO₂ for 75 min, a finding consistent with systemic vasodilatation in response to the exposure. However, many subsequent studies at concentrations generally less than 4 ppm have not reported changes in blood pressure in response to NO₂ exposure.

8 There is also evidence that NO₂ exposure may affect circulating red blood cells. Posin 9 et al. (1978) exposed 10 healthy males to 1- or 2-ppm NO₂ for 2.5 to 3.0-h daily for 2 days. 10 Blood obtained immediately after the second exposure showed a reduced hemoglobin and 11 hematocrit (NO₂: 41.96 ± 2.75 ; sham exposure: 43.18 ± 2.83 , p = 0.001) and reduced red blood 12 cell acetyl cholinesterase levels. However, the control air exposures were not identical to and 13 concurrent with the NO₂ exposures, a potential flaw in the study design.

14 In the study by Frampton et al. (2002), healthy subjects were exposed to air or 0.6- or 15 1.5-ppm NO₂ for 3-h with intermittent exercise, and blood was obtained 3.5-h after exposure. 16 There was a significant, concentration-related reduction in hematocrit and hemoglobin in both 17 males and females, confirming the findings of Posin et al. (1978). These studies suggest that 18 NO₂ exposure in the range of 1- to 2-ppm for a few hours is sufficient to alter the red blood cell 19 membrane. The reductions in blood hemoglobin were not sufficiently large to result in health 20 effects for these healthy subjects. However, in the Frampton study, the reduction in hemoglobin 21 represented the equivalent of about 200 mL of blood loss for a 70-kg male. This could 22 conceivably have adverse cardiovascular consequences for someone with significant underlying 23 lung disease, heart disease, or anemia.

24 These few studies suggest systemic effects of NO₂ exposure at concentrations below 25 2.0 ppm, but the observations require confirmation. The results on the effect of NO_2 on various 26 hematological parameters in animals are inconsistent and thus, provide little biological 27 plausibility for the epidemiology findings. There have also been reported changes in the red 28 blood cell membranes of experimental animals following NO₂ exposure. Red blood cell 29 D-2,3-diphosphoglycerate was reportedly increased in guinea pigs following exposure to 30 0.36-ppm NO₂ for 1 week (Mersch et al., 1973). An increase in red blood cell sialic acid, 31 indicative of a younger population of red blood cells, was reported in rats exposed to 4.0-ppm

NO₂ continuously for 1 to 10 days (Kunimoto et al., 1984). However, in another study, exposure
 to the same concentration of NO₂ resulted in a decrease in red blood cells (Mochitate and Miura,
 1984). A more recent study (Takano et al., 2004) using an obese rat strain found changes in
 blood triglycerides, high-density lipoprotein cholesterol (HDL), and HDL/total cholesterol ratios
 with a 24-week exposure to 0.16-ppm NO₂.
 In the only study conducted below 5-ppm NO₂ that evaluated methemoglobin formation,

Nakajima and Kusumoto (1968) reported that, in mice exposed to 0.8-ppm NO₂ for 5 days, the amount of methemoglobin was not increased. This is in contrast to some (but not all) in vitro and high concentrations of NO₂ in vivo studies, which have found methemoglobin effects (U.S. Environmental Protection Agency, 1993).

11 12

3.2.2.3 Integration for Effects of Short-Term NO₂ Exposure on Cardiovascular Outcomes

13 Cardiac rhythm disorders are the leading cause of hospital admissions for CVD in the 14 United States (Henneberger et al., 2005). Results from a Boston area study of ventricular 15 arrhythmias indicate an association of arrhythmia with short-term exposure to ambient (Peters 16 et al., 2000; Dockery et al., 2005; Rich et al., 2005; see also Annex Table AX2.6.4-1). However, 17 arrhythmias were also associated with PM exposure and high correlations among ambient 18 pollutants were reported. A study of repolarization changes and air pollution also points to PM 19 as a possible causative agent (Henneberger et al., 2005). Results from studies of HRV are also 20 inconclusive with regard to the effect of NO_2 on the cardiovascular system (Liao et al., 2004; 21 Chan et al., 2005; Wheeler et al., 2006; Holguin et al., 2003; Luttmann-Gibson et al., 2006; 22 Schwartz et al., 2005).

23 Numerous studies have shown an association between NO₂ exposure and hospital or ED 24 admissions for CVD including IHD, MI, CFH, cardiac disease not involving the peripheral 25 circulation, and cerebrovascular disease. Both incremental changes in daily 1-h maximum 26 concentrations and 24-h averages of NO₂ are associated with IHD admissions worldwide. 27 Associations between hospital admissions for MI and ambient NO₂ are reported in both the 28 United States and Europe. Associations between ambient NO₂ and CHF were found in several 29 U.S. cities and in an Australian multicity meta-analysis. Studies of ambient NO₂ and other 30 cardiac disease or cerebrovascular disease are fewer and provide less consistent results. 31 However, evidence from multipollutant models is inconsistent and does not suggest that the 32 effects of NO₂ are robust when adjusted for other traffic-related pollutants.

1 A small number of controlled human exposure studies have evaluated cardiovascular 2 responses to NO₂ exposure. Typically, the studies utilize short exposure durations and small 3 numbers of subjects, resulting in poor characterization of NO₂ concentration-response and, thus, 4 are of limited value in providing corroborating evidence for the epidemiological findings. Early 5 work (Folinsbee et al., 1978) using exposures of 0.62 ppm for 2-h found no changes in HR and 6 cardiac output in healthy males. Another early study (Linn et al., 1985a) demonstrated 7 reductions in blood pressure (BP) following an exposure of 4-ppm NO₂ for 75 min. A more 8 recent study (Gong et al., 2005) demonstrated reductions in diastolic BP following a 2-h 9 exposure to 0.4-ppm NO₂. Another cardiovascular endpoint affected by NO₂ is circulating red 10 blood cells. Posin et al. (1978) found reduced hemoglobin, hematocrit, and RBC 11 acetylcholinesterase levels following exposures to 1- or 2-ppm NO₂ for 2.5 to 3-h daily for 2 12 days. This was confirmed in a study (Frampton et al., 2002) exposing healthy subjects to 0.6 and 13 1.5 ppm for 3-h with intermittent exercise. These alterations in hemoglobin and hematocrit do 14 not pose a risk to healthy individuals, but could account for the observed cardiovascular 15 morbidity and mortality in individuals with underlying IHD, CHF, and other heart and lung 16 disease.

17 There are limited experimental data on the effects of ambient NO_2 on the heart. Two 18 early studies (Suzuki et al., 1981, 1984) showed reductions in PaO₂ at 4 ppm for 3 months and 19 reduced HR at 1.2 and 4 ppm for 1 month. Data on the effects of NO₂ on hematological 20 endpoints are inconsistent; however, two early studies (Mersch et al., 1973; Kunimoto et al., 21 1984) found changes in RBC membranes and sialic acid. A more recent study (Takano et al., 22 2004) using an obese rat strain found changes in blood triglycerides, HDL, and HDL/total 23 cholesterol ratios with a 24-week exposure to 0.16-ppm NO₂. These studies may provide limited 24 biological plausibility and mechanistic evidence for an effect on the cardiovascular system.

25 26

27

3.3 MORTALITY WITH SHORT-TERM EXPOSURE TO NO₂

Since the 1993 AQCD, a number of studies, mostly using time-series analyses, reported short-term mortality risk estimates for NO_x , in most cases, (see Annex Table AX6.7). There was no epidemiological study reviewed in the 1993 AQCD that examined the mortality effects of ambient NO_x . However, since most of these studies' original focus or hypothesis was on PM, a quantitative interpretation of the NO_x mortality risk estimates requires caution.

1 3.3.1 Multicity Studies and Meta-Analyses

2 In reviewing the range of mortality risk estimates, multicity studies provide the most 3 useful information because they analyze multiple cities data in a consistent method, avoiding 4 potential publication bias. Risk estimates from multicity studies are also usually reported for 5 consistent lag days, further reducing potential bias caused by choosing the "best" lag in 6 individual studies. There have been several multicity studies from the United States, Canada, 7 and Europe. Meta-analysis studies also provide useful information on describing heterogeneity 8 of risk estimates across studies, but unlike multicity studies, the heterogeneity of risk estimates 9 seen in meta-analysis may also reflect the variation in analytical approaches across studies. 10 Multicity studies and meta-analyses are reviewed in the following section, and effect estimates 11 from these studies are summarized. Discussion will focus on the studies that were not affected 12 by GAM with convergence issues (Dominici et al., 2002; Ramsay et al., 2003) unless otherwise 13 noted when the studies raise relevant issues.

- 14
- 15

3.3.1.1 United States Largest 90 Cities Study

16 The time-series analysis of the largest 90 U.S. cities (Samet et al., 2000; reanalysis 17 Dominici et al., 2003) in the National Morbidity, Mortality, and Air Pollution Study (NMMAPS) 18 is by far the largest multicity study conducted to date to investigate the mortality effects of air 19 pollution, but its primary interest was PM (i.e., PM₁₀). It should also be noted that, according to 20 the table of mean pollution levels in the original report (Samet et al., 2000), NO_2 was not 21 measured in 32 of the 90 cities. The analysis in the original report used GAMs with default 22 convergence criteria and Dominici et al. (2003) reanalyzed the data using GAM with stringent 23 convergence criteria as well as using GLM. It should be noted that this model's adjustment for 24 weather effects employs more terms than other time-series studies in the literature, suggesting 25 that the model adjusts for potential confounders more aggressively than the models in other 26 studies. PM_{10} and O_3 (in summer) appeared to be more strongly associated with mortality than 27 the other gaseous pollutants. Regarding NO₂, SO₂, and CO, the authors stated, "The results did 28 not indicate associations of these pollutants with total mortality." However, it should be noted 29 that, as with PM₁₀, NO₂, SO₂, and CO, each showed the strongest association at lag 1 day (for 30 O_3 , it was lag 0 day), and as with PM_{10} , addition of other copollutants in the model at lag 1 day 31 hardly affected the mortality risk estimates of these gaseous pollutants. Figure 3.3-1 shows the

Figure 3.3-1. Posterior means and 95% posterior intervals of national average estimates for NO₂ effects on total mortality from nonexternal causes at lags 0, 1, and 2 within sets of the 90 cities with pollutant data available. Models $A = NO_2$ alone; $B = NO_2 + PM_{10}$; $C = NO_2 + PM_{10} + O_3$; $D = NO_2$ $+ PM_{10} + SO_2$; $E = SO_2 + PM_{10} + CO$.

Source: Dominici et al. (2003).

1 total mortality risk estimates for NO_2 from Dominici et al. (2003). The NO_2 risk estimates in the

2 multipollutant models were about the same or larger. Thus, these results do not indicate that the

- 3 NO₂-mortality association was confounded by PM₁₀ or other pollutants (and vice versa).
- 4 3.3.1.2 Canadian Multicity Studies

5 There have been four Canadian multicity studies: (1) analysis of gaseous pollutants in

6 11 cities from 1980 to 1991 (Burnett et al., 1998); (2) analysis of PM_{2.5}, PM_{10-2.5}, and gaseous

7 pollutants in 8 cities from 1986 to 1996 (Burnett et al., 2000); (3) analysis of PM_{2.5}, PM_{10-2.5}, and

8 gaseous pollutants in 12 cities from 1981 to 1999 (Burnett et al., 2004); and, (4) analysis of NO₂,

9 NO, PM_{2.5} and its selected components, PM_{10-2.5}, PM₁₀, as well as an examination of correlation

between these pollutants and selected traffic-related species including VOCs and PAHs with
 between 1984 and 2000 (Brook et al., 2007). Since the first two studies were affected by the
 GAM issue (only the PM indices were reanalyzed for the second study in Burnett and Goldberg,
 2003), and the third study is most extensive both in terms of the length and coverage of cities, the
 discussion will focus on the third study.

6 Total (nonaccidental), cardiovascular, and respiratory mortality were analyzed in the 7 Burnett et al. (2004) study. Daily 24-h average as well as 1-h max values were analyzed for all 8 the gaseous pollutants and CoH. For PM_{2.5}, PM_{10-2.5}, PM₁₀, CoH, SO₂, and CO, the strongest 9 mortality association was found at lag 1, whereas for NO_2 , it was the 3-day moving average 10 (i.e., average of 0-, 1-, and 2-day lags), and for O₃, it was the 2-day moving average. Of the 11 single- day lag estimates for NO₂, lag 1-day showed the strongest associations, which is consistent with the NMMAPS result. The 24-h average values showed stronger associations than 12 13 the 1-h max values for all the gaseous pollutants and CoH except for O₃. The pooled NO₂ 14 mortality risk estimate in a single-pollutant model (for all available days) was 2.0% (95% CI: 15 1.1, 2.9) per 20-ppb increase in the 3-day moving average of NO₂. NO₂ was most strongly 16 correlated with CoH (r = 0.60), followed by PM_{2.5} (r = 0.48). However, the NO₂-mortality 17 association was insensitive to adjustment for these or any of other pollutants in the two-pollutant 18 models. For example, the NO₂ mortality risk estimate with CoH in the model was 2.6% (95%) 19 CI: 1.3, 3.9) per 20-ppb increase in the 3-day moving average of NO₂. The model with O₃ 20 resulted in the largest reduction in the NO₂ risk estimate, 1.8% (95% CI: 0.9, 2.7). For the data 21 subset for days when PM_{2.5} data were available (every 6th day), the NO₂ risk estimate was 2.4% 22 (95% CI: 0.7, 4.1) and 3.1% (95% CI: 1.2, 5.1) per 20-ppb increase in 1-day lag NO₂, without 23 and with $PM_{2.5}$ in the model, respectively. The risk estimates for cardiovascular (2.0% [95% CI: 24 0.5, 3.5]) and respiratory deaths (2.1% [95% CI: -0.2, 4.4] per 20-ppb increase in the 3-day 25 moving average) were similar to that for total mortality. In their sensitivity analysis, larger risk 26 estimates were observed for warmer months. Older age groups also showed larger risk 27 estimates.

The results from the above 12-city study appear to be similar to those from the 8-city study (Burnett et al., 2000) in that NO₂-mortality associations were stronger than those for the associations between the size-fractionated PM indices and mortality, and simultaneous inclusion of NO₂ and the size-fractionated PM indices in the regression model resulted in reductions in the

1 PM risk estimates. However, Burnett et al. (2004) mentioned, in their discussion section, results 2 from additional data collection and analysis in which daily PM_{2.5} was collected in 11 of the 3 12 cities between 1998 and 2000. In that analysis, simultaneous inclusion of the PM_{2.5} and NO₂ 4 in the model resulted in a considerable reduction of the NO₂ risk estimates. Thus, while the NO₂ 5 risk estimates were not sensitive to adjustment for the PM indices collected every-6th-day, it was 6 sensitive to adjustment for the daily $PM_{2.5}$. Burnett et al. (2004) discussed that reducing 7 combustion would result in public health benefits because NO₂ or its products originate from 8 combustion sources but cautioned that they could not implicate NO_2 as a specific causal 9 pollutant.

10 Brook et al. (2007) further examined data from ten Canadian cities with a special focus 11 on the NO₂ and the role of other traffic-related air pollutants. Again, NO₂ showed the strongest 12 associations with mortality among the pollutants examined including NO, and none of the other pollutants substantially reduced NO₂ risk estimates in multi-pollutant models. The analysis also 13 14 confirmed the 2004 Burnett et al. study result that NO_2 risk estimate was larger in the warm 15 season. Generally, NO showed stronger correlation with the primary VOCs (e.g., benzene, 16 toluene, xylenes, etc.) than NO₂ or PM_{2.5}. NO₂ was more strongly correlated with the organic compounds than it is with the PM mass indices or trace metals in PM2.5. Brook et al. concluded 17 18 that the strong NO₂ effects seen in Canadian cities could be a result of it being the best indicator, 19 among the pollutants monitored, of fresh combustion as well as photochemically processed 20 urban air.

In summarizing the Canadian multicity studies, NO₂ was most consistently associated with mortality among the air pollutants examined, especially in warm season. Adjustments for PM indices and its components did not reduce NO₂ risk estimates. NO₂ was also shown to be associated with organic compounds that are indicative of combustion products (traffic-related air pollution) and photochemical reactions

26

27

3.3.1.3 Air Pollution and Health: A European Approach (APHEA) Studies

The first report (Touloumi et al., 1997) on NO₂ and O₃ effects on mortality from the Air Pollution and Health: a European Approach (APHEA1) project included six cities (Athens, Barcelona, Paris, Lyon, Koln, and London). The data were analyzed by each center separately following a standardized methodology, but the lag for the "best" model was allowed to vary in these cities from 0 to 3 days. A 30-ppb increase in 1-h max NO₂ was associated with a 1.5%

1 (95% CI: 1.0, 2.0) increased risk in nonaccidental mortality. There was a tendency for larger 2 effects of NO₂ in cities with higher levels of black smoke. The pooled estimate for NO₂ was 3 almost halved when black smoke was included in the model. The author suggested that the NO₂ 4 effects on mortality could have been confounded by other "vehicle-derived pollutants." Zmirou 5 et al. (1998) analyzed (broad) cause-specific mortality (cardiovascular and respiratory causes) in 6 ten European cities including the four cities (Barcelona, Paris, Lyon, and London) for which NO₂ 7 was available, but they reported that "NO₂ did not show consistent relationships" with these 8 mortality categories.

9 One of the extended APHEA2 project studies (Katsouyanni et al., 2001; reanalysis, 2003) 10 analyzed data from 29 European cities and reported risk estimates for PM₁₀ and not for NO₂, but 11 found that the cities with higher NO_2 levels tended to have larger PM_{10} risk estimates. 12 Furthermore, simultaneous inclusion of PM₁₀ and NO₂ reduced the PM₁₀ risk estimate by half. 13 An analysis of the elderly mortality in the same 28 cities (Aga et al., 2003) also found a similar 14 effect modification of PM by NO₂. Thus, combined with the Touloumi et al. study result 15 described above, PM and NO₂ risk estimates in these European cities may be reflecting the 16 health effects of the same air pollution source and/or effect modifiers of each other.

17 Samoli et al. (2005) investigated the concentration-response relationship between NO₂ 18 and total nonaccidental mortality in nine of the APHEA2 cities where medians were >110 μ g/m³ 19 (57 ppb) and the third quartiles were >130 μ g/m³ (68 ppb). Two methods, the nonparametric 20 meta-smooth method and the parametric cubic spline method, were applied to estimate the shape 21 of the concentration-response relationship. Both methods suggested a monotonic increase in the 22 relationship, and the investigators concluded that the linear model was adequate to describe the 23 NO₂-mortality relationship.

24 In another APHEA2 study, Samoli et al. (2006) analyzed 29 APHEA2 cities to estimate 25 NO₂ associations for total, cardiovascular, and respiratory deaths. Unlike the APHEA1 method, 26 the average of lags 0 and 1 days were chosen a priori to avoid potential bias with the "best" lag 27 approach. In addition, to estimate multiday effects, a cubic polynomial distributed lag with lags 28 up to 5 days before deaths was used. The figure for the total mortality risk estimates in the fitted 29 distributed lag model is shown in Figure 3.3-2, which suggests multiday effects. The strongest 30 association shown at lag 1 day is also consistent with the results from NMMAPS and Canadian 31 multicity studies. The estimated increase in total deaths was 1.7% (95% CI: 1.3, 2.2) per 30-ppb

Figure 3.3-2. Shape of the association of total mortality with NO₂ over 6 days (lags 0 through 5) summarized over all cities using a cubic polynomial distributed lag model. The percent increase is for 10-μg/m³ increase in the 1-h maxima of NO₂.

Source: Samoli et al. (2006).

1 increase in 1-h max NO₂. The risk estimates for cardiovascular and respiratory deaths were

2 2.3% (95% CI: 1.7, 3.0) and 2.2% (95% CI: 1.0, 3.4) per 30-ppb increase, respectively. The

3 estimates using the distributed lag models were higher than those for the average of 0- and 1-day

4 lags by 23%, 22%, and 45% for total, cardiovascular, and respiratory mortality, respectively.

- 5 However, such a pattern was not consistently clear on the city-to-city basis (in 17 out of
- 6 29 cities, this was the case). Samoli et al. presented the shape of the association of total and
- 7 respiratory mortality (they mentioned that the shape for the cardiovascular mortality was similar
- 8 to that for total mortality) using the cubic polynomial distributed lag model. In the two-pollutant
- 9 models with black smoke, PM₁₀, SO₂, and O₃, the risk estimates for total and cardiovascular
- 10 mortality were not affected. The largest reduction in the NO₂ risk estimate for total mortality

1 was for the model with SO₂, reducing the estimate to 1.5% (95% CI: 1.0, 2.0). For respiratory 2 mortality, only the risk estimate with SO₂ was substantially reduced (by \sim 50%). In a second-3 stage analysis, the city-specific effect estimates were regressed on potential effect modifiers by 4 weighted regression, with weights inversely proportional to their city-specific variances. For 5 total and cardiovascular mortality, the geographical area (defined as western, southern, and 6 central eastern European cities) was the most important effect modifier (estimates were lower in 7 eastern cities), followed by the smoking prevalence (NO₂ risk estimates were higher in cities 8 with a lower prevalence of smoking). For cardiovascular mortality, the cities with higher natural 9 gas consumption had higher NO₂ risk estimates. The authors concluded that the results showed 10 effects of NO₂ on mortality, but that the role of NO₂ as a surrogate of other unmeasured 11 pollutants could not be completely ruled out.

In summarizing the series of APHEA studies, the NO₂ risk estimates were somewhat sensitive to the inclusion of PM in the model in the APHEA1 (six cities), but not in the analysis of a larger set in the APHEA2 (29 cities). The fact that PM risk estimates tend to be higher in the cities with higher NO₂, and vice-versa, appears to suggest that the mortality risk estimates for NO₂ and PM share the same source type(s) in these European cities. An examination of the concentration-response function in nine cities suggested no evidence of threshold. Multiday lagged effects were suggested.

19 20

3.3.1.4 The Netherlands Study

21 While the Netherlands studies for the 1986 to 1994 data (Hoek et al. 2000 and 2001; 22 reanalysis in Hoek, 2003) are not multicity studies and the Netherlands data were also analyzed 23 as part of APHEA2 (Samoli et al., 2006), the results from the reanalysis (Hoek, 2003) are 24 discussed here, because the database comes from a large population (14.8 million for the entire 25 country) and a more extensive analysis was conducted than in the multicity studies. PM_{10} , black smoke, O_3 , NO_2 , SO_2 , CO, sulfate ($SO_4^{2^-}$), and nitrate (NO_3^-) were analyzed at lags 0, 1, and 26 2 days and the average of lags 0-6 days. PM_{10} , SO_4^{2-} , and NO_3^{-} had less than 1/3 of the 27 28 available days for other pollutants. All the pollutants were associated with total mortality, and 29 for single-day models, lag 1 day showed strongest associations for all the pollutants. The NO_2 30 risk estimate in a single-pollutant model was 1.9% (95% CI: 1.2, 2.7) per 20-ppb increase in 1-day lag 24-h average NO₂, and 1.5% (95% CI: 0.7, 2.4) per 20-ppb increase in the average of 31

1 0-6 day 24-h average NO₂. NO₂ was most highly correlated with black smoke (r = 0.87), and the 2 simultaneous inclusion of NO₂ and black smoke reduced both pollutants' risk estimates (NO₂ 3 risk estimate = 0.8% [95% CI: -0.5, 2.1] per 20-ppb increase in the average of 0-6 day NO₂). 4 PM_{10} was less correlated with NO₂ (r = 0.62), and the simultaneous inclusion of these pollutants 5 resulted in an increase in the NO₂ risk estimate. Cause-specific analysis showed larger risk 6 estimates for COPD (6.1% [95% CI: 2.7, 9.7] per 20-ppb increase in the average of 0-6 day 7 daily average NO₂) and pneumonia (11.5% [95% CI: 6.7, 16.5]) deaths, but because essentially 8 all of the pollutants showed larger risk estimates for these subcategories, it is difficult to interpret 9 these estimates as effects of NO_2 alone. Likewise, the analysis of more specific cardiovascular 10 mortality categories (Hoek et al., 2001; reanalysis in Hoek, 2003) showed larger NO₂ risk 11 estimates than that for the overall cardiovascular mortality, but again, since the same pattern was 12 seen for other pollutants as well, it is difficult to interpret these cause-specific risk estimates as 13 due to NO₂ alone.

- 14
- 15

3.3.1.5 Other European Multicity Studies

There are also other European multicity studies, conducted in eight Italian cities (Biggeri et al., 2005), nine French cities (Le Tertre et al., 2002) and seven Spanish cities (Saez et al., 2002). The studies by Le Tertre et al. (2002) and Saez et al. (2002) were conducted using GAM methods with the default convergence setting.

20 Biggeri et al. (2005) analyzed eight Italian cities (Turin, Milan, Verona, Ravenna, 21 Bologna, Florence, Rome, and Palermo) from 1990 to 1999. Only single-pollutant models were 22 examined in this study. The NO₂ risk estimates were 3.6% (95% CI: 2.3, 5.0), 5.1% (95% CI: 23 3.0, 7.3), and 5.6% (95% CI: 0.2, 11.2) per 20-ppb increase in the average of 0- and 1-day lag 24 24-h average NO₂, for total, cardiovascular, and respiratory deaths, respectively. Since all the 25 pollutants showed positive associations with these mortality categories, and the correlation 26 among the pollutants were not presented, it is not clear how much of the observed associations 27 are shared or confounded. The mortality risk estimates were not heterogeneous across cities for 28 all the gaseous pollutants. 29

The French nine cities study examined black smoke, SO₂, NO₂, and O₃ by generally following the APHEA protocol but using GAM and the average of lags 0 and 1 day for

31 combined estimates. All four pollutants were positively associated with mortality outcomes,

with a 50- μ g/m³ (26 ppb) increase in pollutants being associated with an increase of 2.7 to 3.8% in total mortality. The study did not report description of correlation among the pollutants or conduct multipollutant models; therefore, it is difficult to assess the potential extent of confounding among these pollutants. The NO₂ risk estimates were reported to be homogeneous across cities.

6 The Spanish Multi-center Study on Air Pollution and Mortality (whose Spanish acronym 7 is EMECAM) published a study with a focus on PM indices (PM₁₀, TSP, and black smoke) and 8 SO_2 in 12 cities (Ballester et al., 2002) and a study that focused on O_3 and NO_2 in seven cities 9 (Saez et al., 2002). These studies followed the APHEA protocol but using the GAM approach. 10 The Ballester et al. study did not consider NO₂, and, while the Saez et al. study did consider 11 SO₂ and CO in the multipollutant model, they did not consider PM indices. Thus, the extent of 12 correlation between NO₂ and PM indices, or the extent of possible confounding between these 13 pollutants is not known. The Saez et al. (2002) study reported that NO₂ was positively 14 associated with total and cardiovascular mortality in the model with all the gaseous pollutants 15 included simultaneously. The NO₂ risk estimates were reported to be heterogeneous across the 16 cities.

17

18

3.3.1.6 Australian Four Cities Study

19 Simpson et al. (2005b) analyzed data from four Australian cities (Brisbane, Melbourne, 20 Perth, and Sydney) using methods similar to the APHEA2 approach. They also examined 21 sensitivity of results to three statistical models: (1) GAM with a single nonparametric smoother 22 (to adjust for temporal trends) and parametric smoothers to adjust for other covariates and using 23 stringent convergence criteria as implemented in the statistical package, Splus; (2) GLM with 24 natural splines; and (3) GAM with a penalized spline algorithm in conjunction with multiple 25 smoothing parameter estimation by generalized cross-validation, which avoids the back-fitting 26 issues, as implemented in the statistical package, R. Associations between mortality and NO₂, 27 O₃, and nephelometer readings were examined at single day lag 0, 1, 2, and 3 days and using the 28 average of 0- and 1-day lags. Among the three pollutants, correlation was strongest between 29 NO_2 and nephelometer readings, ranging from (r ~ up to 0.62 among the four cities). Of the 30 three pollutants, NO₂ showed the largest mortality risk estimates per inter-quartile-range. The 31 authors state that the results using the three statistical methods "yield similar results," although 32 the figure of the results for the three methods appear to show some 20% difference in risk

1 estimates between the smallest (the GLM approach) and the largest (the GAM with R). The

2 authors presented numerical results from the GAM/Splus approach. The estimated risk for

3 30-ppb increase in 1-h maximum increase of the average of 0- and 1-day lag NO₂ was 3.4%

4 (95% CI: 1.1, 5.7), 4.3% (95% CI: 0.9, 7.8), and 11.4% (95% CI: 3.5, 19.9) for total,

5 cardiovascular, and respiratory deaths, respectively. The NO₂ risk estimates were not sensitive

6 to the addition of nephelometer readings (3.1% [95% CI: 0.3, 5.9]) or O₃ (3.67% [95% CI: 1.2,

7 6.2]) in the two-pollutant models for total mortality, but the nephelometer risk estimate was

8 greatly reduced in the model with NO₂.

9

10 Multipollutant Modeling Results

11 The results from multipollutant models in the multicity studies (i.e., NMMAPS, Canadian 12 12 cities, APHEA2, and Australian 4 cities studies) suggest that NO₂ mortality risk estimates 13 were generally not sensitive to the inclusion of copollutant(s) (mostly PM indices) in the models. 14 The Netherlands study (Hoek et al., 2003), with a large population database, showed a reduction 15 in NO₂ mortality risk estimates when black smoke was included in the model. Examining this 16 issue in single-city studies is more difficult because of generally wider confidence intervals 17 owing to smaller sample size. Also, many of the available single-city studies that presented 18 multipollutant model results were those that used GAM analyses with default convergence 19 criteria. Furthermore, because a large majority of these single-city studies focused on PM (and 20 less frequently, O_3), very few studies examined multipollutant models with NO₂ and other 21 gaseous pollutants and the combinations of copollutants examined were not usually consistent 22 across studies. Thus, a systematic evaluation of the multipollutant results from single-city 23 studies is limited, and we only briefly summarize these results qualitatively, with focus on larger 24 cities below.

The single-city analyses that examined NO₂ and PM indices together and did not find major reductions (i.e., more than 50% reduction in excess risk estimates) in NO₂ risk estimates include analyses of data from Cook County, IL, with PM₁₀ (Moolgavkar, 2003; GAM analysis); Los Angeles, CA, with PM_{2.5} (Moolgavkar, 2003; GAM analysis); Maricopa County, AZ, with PM₁₀ (Moolgavkar, 2000; GAM analysis); and, Vancouver, Canada, with PM₁₀ (Vedal et al., 2003). The single-city studies that analyzed NO₂ and PM indices together and did find major reductions in NO₂ risk estimates include analyses of data from Philadelphia, PA, with TSP (Kelsall et al., 1997; GAM analysis); Santa Clara County, CA, with PM_{2.5} and NO₃⁻ (Fairley,
1999 with GAM; reanalysis, 2003); Mexico City with PM_{2.5} (Borja-Aburto et al., 1998); Sydney,
Australia, with bsp (Morgan et al., 1998). Thus, it is difficult to find a consistent pattern of
evidence of confounding with PM from these single-city results. It is also possible that the
constituents of PM (e.g., relative contribution of traffic-related pollution to PM mass) vary from
city to city and hence correlations of PM with NO₂ vary, contributing to apparently inconsistent
results.

8 A fewer single-city studies examined multipollutant models with NO₂ and other gaseous 9 pollutants. Those that examined NO₂ and O₃ simultaneously and did not find major reductions in 10 NO₂ risk estimates include analyses of data from Los Angeles, CA (Kinney and Özkaynak, 11 1991); Philadelphia, PA (Kelsall et al., 1997; GAM analysis); Philadelphia, PA (Lipfert et al., 12 2000b); London, England (Bremner et al., 1999). The studies in which adding O₃ did reduce 13 NO₂ risk estimates include analyses of data from Barcelona, Spain (Saez et al., 2002, asthma 14 mortality); and Sydney, Australia (Morgan et al., 1998). In Toronto data (Burnett et al., 1998), 15 including both CO and NO₂ reduced the NO₂ risk estimate; however, in the Canadian 12-cities 16 study, the combined NO₂ risk estimate was not sensitive to inclusions of CO. In the analyses of 17 data from Philadelphia, PA (Kelsall et al., 1997; GAM analysis); Vancouver, Canada (Vedal 18 et al., 2003); and London, England (Bremner et al., 1999), two-pollutant models with SO₂ did 19 not reduce NO₂ risk estimates, whereas in the analyses of Seoul, Korea (Kwon et al., 2001) and 20 Hong Kong, China (Wong et al., 2001), adding SO₂ in the model did reduce NO₂ risk estimates. 21 Again, the results from these single-city studies are too limited to allow a consistent pattern to 22 emerge.

23 In summary, because of the lack of consistency in the way multipollutants were examined 24 (e.g., lags examined, combination of pollutants examined, model specification) and because of 25 the limited statistical power in individual cities, it is difficult to extract information that help 26 elucidate a pattern of confounding between NO_2 and other pollutants from these single-city 27 studies. Therefore, the multipollutant results from multicity studies provide more useful 28 information on this issue. As noted before, the results from the multicity studies from the United 29 States, Canada, and Europe generally suggest that NO₂ mortality risk estimates are not very 30 sensitive to the addition of copollutants. However, this does not resolve the issue of surrogacy

and its interpretation is also complicated by the possible influence of varying extent of exposure
 characterization error across multiple pollutants.

- 3
- 4

3.3.1.7 Meta-analyses of NO₂ Mortality Studies

5 Stieb et al. (2002) reviewed time-series mortality studies published between 1985 and 2000, and conducted meta-analysis to estimate combined effects for each of PM₁₀, CO, NO₂, O₃, 6 7 and SO₂. Since many of the studies reviewed in that analysis were affected by the GAM 8 convergence issue, Stieb et al. (2003) updated the estimates by separating the GAM versus non-9 GAM studies and by single- versus multipollutant models. There were more GAM estimates 10 than non-GAM estimates for all the pollutants except SO₂. For NO₂, there were 11 estimates 11 from single-pollutant models and only 3 estimates from multipollutant models. The lags and 12 multiday averaging used in these estimates varied. The combined estimate for total mortality 13 was 0.8% (95% CI: 0.2, 1.5) per 20-ppb increase in the daily average NO₂ from the single-14 pollutant models, and 0.4% (95% CI: -0.2, 1.1). Note that, although the estimate from the 15 multipollutant models was smaller than that from the single-pollutant models, the number of the 16 studies for the multipollutant models was small (three), also, the data extraction procedure of this 17 meta-analysis for the multipollutant models was to extract from each study the multipollutant 18 model that resulted in the greatest reduction in risk estimate compared with that observed in 19 single-pollutant models. It should also be noted that all the multicity studies whose combined 20 estimates have been discussed above were published after this meta-analysis.

- 21
- 22 23

3.3.1.8 Summary of Risk Estimates for Mortality from Short-Term NO₂ Exposure Studies

24 Figure 3.3-3 shows combined estimates for total mortality per the standardized 25 increments (20 ppb for 24-h average or 30 ppb for daily 1-h maximum) from the multicity 26 studies and meta-analysis discussed above. The estimates from single-pollutant models range 27 from 0.5 (the NMMAPS study) to 3.6 (the Italian 8 cities study) percent. The heterogeneity of 28 estimates in these studies may be due to several factors including the differences in: (1) model 29 specification, (2) averaging/lag time, (3) NO₂ levels, and (4) effect modifying factors. 30 Interestingly, the Canadian 12-city study showed combined risk estimates (average of 0-1 day or single 1-day lag) about 4 times larger than that for the U.S. estimate, despite the fact that the 31

32 range of Canadian NO₂ (10 to 26 ppb) was somewhat lower than that for the U.S. data (9 to

- Figure 3.3-3. Combined NO₂ mortality risk estimates from multicity and meta-analysis studies. Risk estimates are computed per 20-ppb increase for 24-h average or 30-ppb increase for 1-h daily maximum NO₂ concentrations. For multipollutant models, results from the models that resulted in the greatest reduction in NO₂ risk estimates are shown.
- 1 39 ppb for the 10%-trimmed data). In fact, the NMMAPS estimate is the smallest among the
- 2 multicities studies. Since a similar pattern (i.e., the NMMAPS estimate being the smallest

among multicities study) was seen for PM₁₀ mortality risk estimates (U.S. Environmental
Protection Agency, 2004), it is possible that this may be due to the difference in model
specifications. The NMMAPS study used more smoothing terms (two terms for temperature
[same-day and average of lag 1 to 3] and two terms for dewpoint [same-day and average of lag
1 to 3]) and more degrees of freedom for the smoothing terms (up to 6) than other studies, which
usually include up to two smoothing terms for weather variables.

7 The multipollutant models in these studies generally did not alter NO₂ risk estimates. 8 except for the Netherlands study. The meta-analysis by Stieb et al. (2003) shows a smaller 9 combined risk estimate for the multipollutant models than that for single-pollutant models, but 10 since these are not from the same set of studies (11 studies for single-pollutant models and 11 3 studies for multipollutant models), it is not clear how much of the difference was due to the 12 addition of copollutants. Thus, the evidence of confounding, in the sense of instability of risk 13 estimates in multipollutant models, is not clear from these studies. The difference in risk 14 estimates due to lag/averaging time also was not clear from these studies.

15 In the Canadian study, the estimate for the 3-day average (2.0%) and that for 1-day lag 16 (2.4%, though this was based on every-6th-day data, to match with PM_{2.5} data) were similar in 17 magnitude. In the Netherlands study, the estimate for the 1-day lag (1.9%) and that for the 18 average of 0 to 6 days (1.5%) were not very different. In the Samoli et al. (2006) study, they 19 examined a polynomial distributed lag, and reported that the combined risk estimate for total 20 mortality was 23% larger (45% larger for respiratory mortality) than that for the average of 21 0- and 1-day lags. However, such a pattern was not consistently clear on the city-to-city basis. 22 Thus, while the risk estimates for multiday effects may be larger than the single-day or 1- to 23 2-day average risk estimates, the evidence so far indicates that the magnitude of such multiday 24 risk estimates are not much bigger than the 1-or 2-day average estimates. Among the 1-day risk 25 estimates, the association at 1-day lag was generally the strongest in these multicity studies. 26 In summary, the range of NO_2 total mortality risk estimates is 0.5 to 3.6% per 20-ppb 27 increase in the 24-h average NO₂ (or 30-ppb increase in the daily 1-h maximum). The risk

estimates are generally insensitive to the inclusion of copollutants. Multiday effects have been
suggested, but their magnitude, when expressed per the same increment, is not very different
from those for 1-or 2-day average exposure indices. A few studies examined association

between cause-specific mortality and NO₂. While NO₂ risk estimates for some specific causes
 were found to be larger than for all-cause mortality, such a pattern was not unique to NO₂.

- 3
- 4

3.3.1.9 Cause-Specific Mortality from Short-Term Exposure to NO₂

5 Risk estimates for specific causes of death would be useful in evaluating consistency of 6 the association with causal inference. However, comparing relative size of risk estimates across 7 categories of different mean daily counts (e.g., all-cause versus respiratory) requires caution 8 when the "best lag" estimates are chosen from several lags. This is because the range of risk 9 estimates for the smaller daily mean counts are expected to be larger due to larger standard error 10 of estimates, and the "best lag" choice would result in a larger bias for the category with smaller 11 mean counts. Thus, it would be more appropriate to compare risk estimates across different 12 cause-specific categories using the same lag (unless there is a strong indication that lag structure 13 of associations would be different among the different causes).

14 Several multicity studies provided risk estimates for broad cause-specific categories 15 (typically all-cause, cardiovascular, and respiratory) using consistent lags/averaging for broad 16 specific causes. In the Canadian 12-city study (Burnett et al., 2004), the NO₂ excess risk 17 estimates for all-cause, cardiopulmonary, and respiratory mortality were 2.0% (95% CI: 1.1, 18 2.9), 2.0% (95% CI: 0.5, 3.53), and 2.1% (95% CI: -0.2, 4.4) per 20-ppb increase in the 19 average of 0 to 2 day lags of 24-h average NO₂, respectively, suggesting no difference in risk 20 estimates among these categories. In the Samoli et al. (2006) APHEA2 analysis of 30 European 21 cities, estimated increases in all-cause, cardiovascular, and respiratory deaths were 1.7% 22 (95% CI: 1.3, 2.2), 2.3% (95% CI: 0.7, 3.0), and 2.2% (95% CI: 1.0, 3.4) per 30-ppb increase 23 in the average of 0- and 1-day lag daily 1-h max NO₂, respectively. In Biggeri et al. (2005) 24 analysis of eight Italian cities, the NO₂ risk estimates for all-cause, cardiovascular, and 25 respiratory mortality were 3.6% (95% CI: 2.3, 5.0), 5.1% (95% CI: 3.0, 7.3), and 5.6% (95% 26 CI: 0.2, 11.2), respectively, per 20-ppb increase in the average of 0- and 1-day lags of 24-h 27 average NO₂. In the Australian four-city study (Simpson et al., 2005b), the risk estimates for all-28 cause, cardiovascular, and respiratory mortality were 3.4% (95% CI: 1.1, 5.7), 4.3% (95% CI: 29 0.9, 7.8), and 11.4% (95% CI: 3.5, 19.9), respectively, per 20-ppb increase in the average of 30 0- and 1-day lags of 24-h average NO₂. In the Netherlands study, the risk estimates for all-cause 31 (2.6% [95% CI: 1.2, 4.0] per 20-ppb increase in the average of 0 through 6 day lags of daily

1 24-h average NO₂) and cardiovascular (2.7% [95% CI: 0.7, 4.7]) deaths were similar, but those 2 for COPD (10.4% [95% CI: 4.5, 16.7]) and pneumonia (19.9% [95% CI: 11.5, 29.0]) were 3 much larger. These results suggest that, with some exceptions, the risk estimates for 4 cardiovascular and respiratory causes are larger than that for all-cause mortality. However, it 5 should be noted that this pattern was not unique to NO₂—other pollutants often showed similar 6 patterns. There are numerous single-city studies (see the annex table) that also examined broad 7 specific causes (cardiovascular and respiratory), but the patterns are not always consistent, likely 8 due to smaller sample size, or the lags reported were not consistent across the specific causes 9 examined.

10 Some of the single-city studies examined more specific causes within cardiovascular or 11 respiratory causes. In the Netherlands study (Hoek et al., 2001; reanalysis Hoek, 2003), the risk 12 estimates for heart failure (7.6% [95% CI: 1.4, 14.2] per the average of 0- through 6-day lags of 13 24-h average NO₂) and cerebrovascular disease were larger than those for total cardiovascular 14 (2.7% [95% CI: 0.7, 4.7]) causes. However, such a pattern was seen for PM₁₀, CO, and SO₂ as 15 well. In the Goldberg et al. (2003) analysis of Montreal data, the risk estimates for the death 16 with underlying cause of CHF and those deaths classified as having CHF 1 year before death 17 (through the universal insurance plan) were compared. They did not find associations between 18 air pollution and those with underlying cause of CHF, but they found associations between some 19 of the air pollutants examined (i.e., CoH, SO₂, NO₂) and the deaths that were classified as having 20 CHF 1 year before death. Again, the association with the specific cause of death was not unique 21 to NO₂. This pattern of association between multiple pollutants, including but not specific to NO₂, and specific causes of deaths were seen for asthma mortality (Saez et al., 1999), mortality 22 23 in a cohort with COPD (Garcia-Aymerich et al., 2000; Sunyer and Basagana, 2001), mortality in 24 a cohort with severe asthma (Sunyer et al., 2002), infant mortality (Loomis et al., 1999), 25 intrauterine mortality (Pereira et al., 1998), and mortality in a cohort of patients with CHF 26 (Kwon et al., 2001). While NO_2 may have contributed to these associations as part of the 27 mixture of pollutants or as a surrogate index, these studies cannot be used to evaluate specificity 28 of NO₂ effects on these specific causes of death.

In summary, both broad specific (cardiovascular and respiratory) and more specific
 causes/categories of death have been shown to be associated with NO₂. However, since other

pollutants also showed similar associations with these causes or categories, it is difficult to
 discuss consistency with causal inference that is specific to NO₂.

- 3
- 4

3.3.3 Summary of Effects of Short-Term Exposure to NO_x on Mortality

Range of mortality risk estimates: In the short-term studies, the range of NO₂ total
mortality risk estimates is 0.5 to 3.6% per 20-ppb increase in the 24-h average NO₂ (or 30-ppb
increase in the daily 1-h maximum). Various lag/averaging days and distributed lags do not
appear to alter the estimates substantially.

9 Confounding: In the large multicity time-series studies, the NO₂ risk estimates were 10 generally insensitive to the inclusion of copollutants in the models. In that sense, strong 11 evidence of confounding is not indicated in the short-term studies' results.

12 NO_2 (or NO_x) as a surrogate marker: The issue of NO_2 being a surrogate marker of 13 another pollutant or for a pollution type is probably the most important one in interpreting NO_2 14 risk estimates, but currently available information is not sufficient to establish quantitative 15 characterization of such surrogacy. NO_2 has been suggested to be a surrogate marker of traffic-16 related air pollution, ultrafine particles, fine particles, and weather conditions. The fact that NO_2 17 plays a critical role in the photochemical reactions that produce other potentially harmful 18 pollutants make it difficult to treat NO₂ simply as a surrogate marker or confounder. More 19 characterization of the surrogate marker is needed from different geographic locations. 20 Increasingly available PM speciation data may help this effort.

Concentration-response function: One multicity time-series study (Samoli et al., 2006)
 examined this issue. There was no indication of a threshold, and the concentration-response
 curves were consistent with linear hypothesis.

Effect modification: Only few studies in the short-term effects studies examined possible effect modifiers. The APHEA2 time-series analysis found that the most important effect modifier was the geographical area (eastern cities had lower NO₂ risk estimates than western or southern cities). For respiratory mortality, cities with high median PM₁₀ showed higher risk estimates. The Canadian 12 cities study reported that the risk estimate was higher in summer than in winter. Older age groups also showed larger risk estimates.

30 Sensitivity of risk estimates to model specification: Most time-series studies examined 31 the sensitivity of risk estimates to alternative model specifications by changing the degrees of freedom for smoothing terms to adjust for temporal trends and weather effects, and the changes in risk estimates were typically not substantial (i.e., <30%). However, these studies did not apply qualitatively different alternative models (i.e., different number of smoothing terms) that are found across studies. One study using the NMMAPS data did find that varying degrees of freedom for temporal adjustment made a 2-fold change in the PM mortality risk estimate. Similar attempts should be made to examine sensitivity of risk estimates to qualitatively different weather model specifications.

- 8
- 9 10

3.3.4 Integration of Evidence Related to Mortality and Short-Term Exposure to NO₂

11 In evaluating the risk estimates for mortality, the main focus is on multicity studies and 12 meta-analyses. These studies of short-term mortality effects include the NMMAPS, Canadian 13 multi-cities studies, APHEA, Italian 8 cities study, the Netherlands study, the Australian 4 cities 14 study, and the Stieb et al. (2002, 2003) meta-analyses. The largest U.S. study of 90 cities 15 showed a NO₂-mortality association with a total mortality risk estimate at lag 1 of 0.25% per 16 10 ppb or 0.50% per 20 ppb. A Canadian 12-city study (Burnett et al., 2004) showed an NO₂ 17 mortality risk estimate of 2.0% per 20-ppb increase in the 3-day moving average of NO_2 . These 18 acute mortality studies are described in detail in Annex Table AX6.7 and summarized in Figure 19 3.3-3. The range of NO₂ total mortality risk estimates is 0.5 to 3.6% per 20-ppb increase in the 20 24-h average of NO₂ (or 30-ppb increase in the daily 1-h maximum).

21 As stated above, controlled human exposure studies, by necessity, are limited to acute, 22 fully reversible functional and/or symptomatic responses in healthy or mildly asthmatic subjects. 23 Animal studies have not used mortality as an endpoint in acute exposure studies. However, a 24 number of animal studies (described in Section 2.3) have shown biochemical, lung host defense, 25 permeability, and inflammation effects with acute exposures that may provide limited biological 26 plausibility for mortality in susceptible individuals. A 5-ppm NO₂ exposure for 24 h in rats 27 caused increases in blood and lung total GSH and a similar exposure resulted in impairment of 28 alveolar surface tension of surfactant phospholipids due to altered fatty acid content. A fairly 29 large body of literature describes the effects of NO₂ on lung host defenses at low exposures. 30 However, most of these effects are seen only with subchronic or chronic exposure, and therefore, 31 do not correlate well with the short lag times evidenced in the epidemiological studies. Acute 32 exposures to \leq 5ppm NO₂ show increased BAL protein, increased epithelial cell proliferation,

increased neutrophils, and decreased pulmonary eosinophils; however, these effects, similarly,
 do not correlate well with the short lag times in mortality studies.

3 4

4

6 7 3.4

3.4.1 **Respiratory Effects Associated with Long-Term NO₂ Exposure**

MORBIDITY ASSOCIATED WITH LONG-TERM NO₂ EXPOSURE

8 9

10

3.4.1.1 Lung Function Growth

11 Epidemiologic Studies

12 Studies of lung function demonstrate some of the strongest effects of chronic exposure to 13 NO₂. Six studies are listed in Annex Table AX6.6-1, three from the United States and three from 14 Europe. Three of the studies involved lung function in children and three report lung function 15 studies in adults.

16 The Children's Health Study (CHS) in California is a longitudinal cohort study designed 17 to investigate the effect of chronic exposure to several air contaminates (including NO₂) on 18 respiratory health in children. Twelve California communities were selected based on historical 19 data indicating different levels of specific pollutants. In each community, monitoring sites were 20 set up to measure NO₂, O₃, and PM₁₀ hourly and average PM_{2.5} and acid vapor every 2 weeks. 21 Children were recruited though local schools in grades 4, 7, and 10. Questionnaires were 22 distributed though the schools and answered with parental help. Lung function was measured for 23 each child using portable equipment at the school. The study followed children for 10 years, 24 with annual questionnaires and lung function measurement.

25 In 2004, Gauderman reported results for 8-year follow up of the children enrolled in 26 grade 4 (n = 1759). Exposure to NO₂ was significantly associated with deficits in lung growth 27 over the 8-year period. The difference in FVC for children exposed to the lowest versus the 28 highest levels of NO₂ (34.6 ppb) was -95.0 mL. (95% CI: -189.4 to -0.6). For FEV₁ the 29 difference was 101.4 mL (95% CI: -165.5 to -38.4) and for MMEF the difference was 30 -221.0 mL/s (95% CI: -377.6, -44.4). Results were similar for boys and girls and among 31 children who did not have a history of asthma. These deficits in growth of lung function resulted 32 in clinically significant differences in FEV₁ at age 18. The study had the following important 33 characteristics: it was prospective; exposure and outcome data were collected in a consistent

1 manner over the duration of the study; and confounding by SES was controlled in the models and 2 by selecting communities similar in demographic characteristics at the outset. In addition, the 3 NO₂ concentration associated with deficits in lung growth was 34.6 ppb (39.0 ppb highest mean 4 -4.4 ppb lowest mean), a level below the current standard. Similar results were reported for acid 5 vapor (resulting primarily from photochemical conversions of NO_x to HNO_3), with a difference 6 in FVC of 105.2 mL (95% CI: -105.2, -15.9); FEV₁ 105.8 (95% CI: -168.8, -42.7); and 7 MMEF -165.0 (95% CI: -344.8, -14.7). These results are depicted in Figure 3.4-1. The 8 authors concluded that the effects of NO₂ could not be distinguished from the effects of particles 9 $(PM_{2.5} \text{ and } PM_{10})$. NO₂ was strongly correlated with these other contaminants (0.79, and 0.67, 10 respectively). For example, exposure to the highest versus the lowest PM_{2.5} concentrations was 11 associated with a difference in FEV₁ of -79.7 mL (95% CI: -153.0, -6.4). The effects on 12 growth in lung function in this study cannot be attributed to O_3 . O_3 was not correlated with NO₂ 13 (-0.11), and no significant effects of O₃ were detected (difference in FEV₁ -22.8 (95% CI: -122.3, 76.6). 14

15 Gauderman et al. (2007) has reported results of an 8-year follow-up on 3,677 children 16 who participated in the CHS in California. Briefly, this study recruited schoolchildren in 17 12 California communities with differing levels of air pollution. Each child had lung function 18 measurements taken at school each year for 8 years. Children living <500 m from a freeway 19 (n = 440) had significant deficits in lung growth over the 8-year follow-up compared to children 20 who lived at least 1500 m from a freeway. The difference in FVC was -63 mL (-131 to 5); the difference in FEV₁ -81 mL (-143 to -18); and the difference in MMEF -127 mL/s (-243 to 21 22 -11). This study did not attempt to measure specific pollutants near freeways or to estimate 23 exposure to specific pollutants for study subjects. Thus, while the study presents important 24 findings with respect to traffic pollution and respiratory health in children, it does not provide 25 evidence that NO₂ is responsible for these deficits in lung growth.

Avol et al. (2001) studied the effect of relocating to areas of differing air pollution levels in 110 10-year-old children who were participating in the CHS. As a group, subjects who had moved to areas of lower PM_{10} showed increased growth in lung function and the same relationship was observed for NO₂. In general, the authors focused on associations with PM, where larger and significant effects were observed; associations were reported with NO₂, but they did not reach statistical significance.

Figure 3.4-1. Proportion of 18-year olds with a FEV₁ below 80% of the predicted value plotted against the average levels of pollutants from 1994 through 2000 in the 12 southern California communities of the Children's Health Study.

AL = Alpine; AT = Atascadero; LA = Lake Arrowhead; LB = Long Beach; LE = Lake Elsinore; LM = Lompoc; LN = Lancaster; ML = Mira Loma; RV = Riverside; SD = San Dimas; SM = Santa Maria; UP = Upland

Source: Derived from Gauderman et al. (2004).

Overall, the studies discussed above are substantiated by cross sectional studies that
 examined effects of exposure to NO₂ on lung function. Peters (1999) reported the initial results
 from the CHS. This was a cross-sectional analysis of lung function tests conducted on
 3,293 children in the first year of the study. Both NO₂ and PM₁₀ were associated with decreases
 in FVC, FEV₁, and MMEF. O₃ was associated with decreases in MMEF and PEFR. For all
 pollutants, the decreases were only significant for girls.

In the United States, a study was conducted of students attending the University of
California (Berkeley) who had been lifelong residents of the Los Angeles or San Francisco areas
(Tager, 2005). Using geocoded address histories, a lifetime exposure to air pollution was
constructed for each student. Increasing lifetime exposure to NO₂ was associated with decreased
FEF₇₅ and FEF₂₅₋₇₅. Controlling for O₃ in the models, however, substantially reduced the effect
of NO₂.

In Germany, Moseler (1994) measured NO₂ outside the homes of 467 children, including 14 106 who had physician-diagnosed asthma. Five of six lung function parameters were reduced 15 among asthmatic children exposed to NO₂ at concentrations >21 ppb. No significant reductions 16 in lung function were detected among children without asthma.

17 The SAPALDIA (Study of Air Pollution and Lung Diseases in Adults) study 18 (Ackermann-Liebrich, 1997) compared 9,651 adults (age 18 to 60) in eight different regions in 19 Switzerland. Significant associations of NO₂, SO₂, and PM₁₀ with FEV₁ and FVC were found with a $10-\mu g/m^3$ increase in annual average exposure. Due to the high correlations between NO₂ 20 21 and the other pollutants (SO₂ = 0.86, PM_{10} = 0.91), it was difficult to assess the effect of a 22 specific pollutant. A random subsample of 560 adults from SAPALDIA recorded personal 23 measurements of NO₂ and measurements of NO₂ outside their homes (Schindler, 1998). Using 24 the personal and home measurements of NO₂, similar associations were reported between NO₂ 25 with FEV₁ and FVC.

Goss et al. (2004) examined the relationship of ambient pollutants on individuals with cystic fibrosis using the Cystic Fibrosis Foundation National Patient Registry in 1999 and 2000. Exposure was assessed by linking air pollution values from the Aerometric Information Retrieval System with the patient's home zip code. Associations were reported between PM and exacerbations or lung function changes, but no clear associations were found for NO₂, SO₂, O₃, and CO. The odds of patients with cystic fibrosis having two or more pulmonary exacerbations
 during 2000 per 10 ppb NO₂ is 0.98 (95% CI: 0.91, 1.01).

3

4 Toxicology Studies

5 A limited number of animal studies, especially those using spikes of NO₂, have shown 6 decrements in vital capacity and lung distensibility, which may provide biological plausibility for 7 these lung function findings. NO₂ concentrations in many urban areas of the United States and 8 elsewhere consist of spikes superimposed on a relatively constant background level. Miller et al. 9 (1987) evaluated this urban pattern of NO₂ exposure in mice using continuous 7 days/week, 10 23 h/day exposures to 0.2-ppm NO₂ with twice daily (5 days/week) 1-h spike exposures to 11 0.8-ppm NO₂ for 32 and 52 weeks. Mice exposed to clean air and to the constant background 12 concentration of 0.2-ppm NO₂ served as controls. Vital capacity tended to be lower (p = 0.054) 13 in mice exposed to NO₂ with diurnal spikes than in mice exposed to air. Lung distensibility, 14 measured as respiratory system compliance, also tended to be lower in mice exposed to diurnal 15 spikes of NO₂ compared with constant NO₂ exposure or air exposure. These changes suggest 16 that \leq 52 weeks of low-level NO₂ exposure with diurnal spikes may produce a subtle decrease in 17 lung distensibility, although part of this loss in compliance may be a reflection of the reduced 18 vital capacity. Vital capacity appeared to remain suppressed for at least 30 days after exposure. 19 Lung morphology in these mice was evaluated only by light microscopy (a relatively insensitive 20 method) and showed no exposure-related lesions. The decrease in lung distensibility suggested 21 by this study is consistent with the thickening of collagen fibrils in monkeys (Bils, 1976) and the 22 increase in lung collagen synthesis rates of rats (Last et al., 1983) after exposure to higher levels 23 of NO₂.

Tepper et al. (1993) exposed rats to 0.5-ppm NO₂, 22 h/day, 7 days/week, with a 2-h spike of 1.5-ppm NO₂, 5 days/week for up to 78 weeks. No effects on pulmonary function were observed between 1 and 52 weeks of exposure. However, after 78 weeks of exposure, flow at 25% forced vital capacity was decreased, perhaps indicating airways obstruction. A significant decrease in the frequency of breathing was also observed at 78 weeks that was paralleled by a trend toward increased expiratory resistance and expiratory time. Taken together, these results suggest that few, if any, significant effects were seen that suggest incipient lung degeneration.

1 The age sensitivity to exposure to diurnal spikes of NO_2 was studied by Stevens et al. 2 (1988), who exposed 1-day- and 7-week-old rats to continuous baselines of 0.5-, 1.0-, and 3 2.0-ppm NO₂ with twice daily 1-h spikes at three times these baseline concentrations for 1, 3, or 4 7 weeks. In neonatal rats, vital capacity and respiratory system compliance increased following 5 3 weeks, but not 6 weeks, of exposure to the 1.0- and 2.0-ppm NO₂ baselines with spikes. In 6 young adult rats, respiratory system compliance decreased following 6 weeks of exposure, and 7 body weight decreased following 3 and 6 weeks of exposure to the 2-ppm baseline with spike. 8 In the young adult rats, pulmonary function changes returned to normal values 3 weeks after 9 exposure ceased. A correlated morphometric study (Chang et al., 1986) is summarized in Section 3.4.1.2 below. 10

Lafuma et al. (1987) exposed 12-week-old hamsters with and without laboratory-induced (elastase) emphysema to 2.0-ppm NO₂, 8 h/day, 5 days/week for 8 weeks. Vital capacity and pulmonary compliance were not affected by NO₂ exposure.

There were no effects on pulmonary function (lung resistance, dynamic compliance) in NO₂-exposed rabbits that were immunized intraperitoneally within 24-h of birth until 3 months of age to either *Alternaria tenuis* or house dust mite antigen. The rabbits were given intraperitoneal injections once weekly for 1 month, and then every 2 weeks thereafter and exposed to 4-ppm NO₂ for 2-h daily (Douglas et al., 1994).

19 20

3.4.1.2 Morphological Effects

21 Animal toxicology studies demonstrate morphological changes to the respiratory tract 22 from exposure to NO₂ that may provide further biological plausibility for the decrements in lung 23 function growth observed in epidemiological studies discussed above. The centriacinar region is 24 most sensitive to NO₂ and is where injury is first noted. This region includes the terminal 25 conducting airways (terminal bronchioles), respiratory bronchioles, and adjacent alveolar ducts 26 and alveoli. The upper respiratory tract (i.e., nasal cavity) does not appear to be much affected 27 by NO_2 exposure. Within the centriacinar region, cell injury occurs in the ciliated cells of the 28 bronchiolar epithelium and the type 1 cells of the alveolar epithelium, which are then replaced 29 with nonciliated bronchiolar (Clara) cells and type II cells, respectively. Permanent alterations 30 resembling emphysema-like disease may result from chronic exposure. 31 There is a large degree of interspecies variability in responsiveness to NO₂; this is clearly

32 evident from those few early studies where different species were exposed under identical

1 conditions (Wagner et al., 1965; Furiosi et al., 1973; Azoulay-Dupuis et al., 1983). This

2 variability may be due to dosimetric differences in effective dose of NO₂ reaching target sites,

3 but other species differences may play a role. Guinea pigs, hamsters, and monkeys all appear to

4 be more severely affected morphologically by equivalent exposure to NO₂ than are rats, the most

5 commonly used experimental animal. However, in most cases, similar types of histological

6 lesions are produced when similar effective concentrations are used.

7

8 Time Course

9 Several investigators have studied the temporal progression of early events due to NO_2 10 exposure in the rat (e.g., Freeman et al., 1966, 1968, 1972; Stephens et al., 1971, 1972; Evans et al., 1972, 1973a,b, 1974, 1975, 1976, 1977; Cabral-Anderson et al., 1977; Rombout et al., 11 12 1986) and guinea-pig (Sherwin et al., 1973). These studies observed increased AM aggregation, 13 desquamation of type I cells and ciliated bronchiolar cells, and accumulation of fibrin in small 14 airways as the earliest alterations resulting from exposure to NO₂. These alterations were seen 15 within 24 to 72-h of exposure to NO₂ concentrations of \geq 2.0 ppm. However, repair of injured 16 tissue and replacement of destroyed cells begins within 24 to 48-h of continuous exposure. The 17 new cells in the bronchiolar are derived from nonciliated bronchiolar (Clara) cells, whereas in 18 the alveoli, the damaged type I cells are replaced with type II cells. One feature of the new cells 19 is that they are relatively resistant to effects of continued NO₂ exposure.

20 The time course of alveolar lesions was also investigated by Kubota et al. (1987) in rats 21 continuously exposed to 0.04- to 4.0-ppm NO₂, 24 h/day for up to 27 months. One phase, which 22 lasted for 9 to 18 months of exposure, consisted of a decrease in number and an increase in cell 23 volume of type 1 epithelium, an increase in the number and volume of type II cells, and an 24 increase in the relative ratio of type II to type I cells. A second phase, between 18 to 27 months 25 of exposure, showed some recovery of the alveolar epithelium, but the total volume of interstitial 26 tissue decreased, while collagen fibers in the interstitium increased. These findings indicate that 27 some lesions, i.e., epithelial changes, tend to resolve, at least partially, with continued chronic 28 exposure to low concentrations and to resolve rapidly during postexposure periods. At 0.4 ppm, 29 the authors reported that the lesion typically was milder and its initiation delayed, compared to 30 the higher concentration. At 0.4 and 4.0 ppm, morphometric increases in the mean alveolar 31 thickness of the air-blood tissue barrier in the rats were also observed. According to the authors,

these interstitial changes were considered to be progressive and leading to fibrosis, rather than
 resolving as do epithelial changes.

3 In a more recent study, Barth et al., (1994a) evaluated cell proliferation at three different 4 levels (bronchial, bronchiolar epithelium, and type II cells) in the lungs of rats exposed to 0, 0.8-, 5 5-, or 10-ppm NO₂, 24 h/day for 1 or 3 days. The highest rate of cell proliferation occurred in 6 the bronchiolar epithelium. Cell proliferation was increased in type II cells after exposure to 7 5-ppm NO₂ for 3 days and 10-ppm NO₂ for 1 or 3 days. In the bronchiolar epithelium, cell 8 proliferation was increased at 0.8 ppm and above for both 1 and 3 days. Increased cell 9 proliferation (AgNOR-number only) in the bronchial epithelium was observed in animals 10 exposed to 10 ppm for 3 days.

11 Rats were also exposed continuously to NO_2 at 0, 5, 10, or 20 ppm continuously for 3 or 25 days (Barth et al., 1994b, 1995; Barth and Muller, 1999). The highest proliferative activity 12 13 was in the respiratory bronchiolar epithelium (Barth et al., 1994b; Barth and Muller, 1999). 14 After 3 days of exposure, cell proliferation in the bronchiolar epithelium was increased 3-fold in 15 the 5-ppm exposure group and remained elevated at the same level in the next two higher-16 concentration groups. The bronchial epithelium showed a different pattern, with a dose-17 dependent increase in the 10- and 20-ppm exposure groups. After 25 days, cell proliferation 18 levels were increased in both the bronchiolar and bronchial epithelium in the 10- and 20-ppm 19 groups. The increase was dose-dependent and there was no significant difference in the levels 20 between the two tissues.

21 Pulmonary tissue damage, vascular alterations, Clara cell proliferation, and tissue-22 specific localization of NO₂ effects were all found to be both exposure duration- and 23 concentration-dependent (Barth et al., 1995; Barth and Muller, 1999). After 3 days of exposure, 24 there were histopathological changes extending from slight interstitial edema after exposure to 25 5 ppm, to epithelial necrosis and interstitial inflammatory infiltration after exposure to 10 ppm, 26 and an additional intra-alveolar edema after 20 ppm. Clara cells from the lungs of all 27 NO₂-exposed groups lost the apical intraluminal projections, and the damaged epithelium was 28 covered by a layer of CC10 reactive material. These changes in Clara cells were not observed 29 after 25 days of exposure. Exposure for 25 days to 10- and 20-ppm NO₂ resulted in a dose-linear 30 increase of cell proliferation in the bronchial and bronchiolar epithelium. Double labeling of

CC10 and BrdU showed that cell proliferation was restricted to Clara cells, an indication of the
 progenitor role of Clara cells in oxidative stress injury in the lung tissue.

3 Morphometry studies showed that alveolar circumference was increased and alveolar 4 surface density was decreased after an exposure to 20 ppm after 3 days and to 10 and 20 ppm 5 after 25 days (Barth et al., 1994b, 1995). No significant alveolar changes were observed in the 6 5-ppm exposure groups. The average medial thickness (AMT) of the pulmonary arteries was 7 decreased in the 5-ppm group at both 3 and 25 days; AMT was increased in the 10-ppm group after 25 days and in the 37,600- μ g/m³ (20 ppm) group after 3 and 25 days (Barth et al., 1994b, 8 9 1995). The AMT and alveolar density were negatively correlated (coefficient of correlation: 10 -0.56), suggesting that pulmonary tissue damage and vascular alterations are closely related 11 (Barth et al., 1995). These high exposure studies undoubtedly initiate mechanisms of injury that 12 do not occur at more relevant near-ambient exposures, so little insight can be gained with these 13 histopathology and morphometry studies in animals regarding these epidemiological findings.

14 15

Effects of NO₂ as a Function of Exposure Pattern

Few morphological studies have been designed to evaluate modifying factors to NO₂ exposures, such as the exposure duration and concentration relationship, short-term peaks in concentration, or cycles of exposure and postexposure.

The relative roles of concentration and time in response to subchronic exposure have been investigated by Rombout et al. (1986). Rats were exposed from 0.53 to 10.6 ppm for up to 28 days; or to 10.2 ppm for either a single 6-h exposure, 6 h/day for 28 days, or 24 h/day for 28 days. Exposure concentration played a more important role in inducing lung epithelial cell lesions than did exposure duration provided C \times T was constant. The effect of concentration was stronger with intermittent exposure than with continuous exposure.

Few studies have examined ambient NO_2 patterns consisting of a low baseline level with transient spikes of NO_2 , as exists in the environment. However, in some cases, there was no group at the baseline exposure, preventing evaluation of the contribution of peaks to the responses. Gregory et al. (1983) exposed rats (14 to 16 weeks old) for 7 h/day, 5 days/week for up to 15 weeks to NO_2 at 1.0 or 5.0 or 1.0 ppm with two 1.5-h spikes of 5.0 ppm per day. After 15 weeks of exposure, histopathologic changes were minimal, with focal hyperinflation and areas of subpleural accumulation of macrophages found in some of the animals exposed either to
 the baseline of 5.0 ppm or to 1.0 ppm with the 5.0-ppm spikes.

Port et al. (1977) observed dilated respiratory bronchioles and alveolar ducts in mice
exposed to 0.1-ppm NO₂ with daily 2-h peaks to 1.0 ppm for 6 months. Miller et al. (1987)
found no morphological effects in mice exposed for 1 year, although host defense functional
changes were noted (see Section 4.3.2).

7 Changes in the proximal alveolar and terminal bronchiolar regions in response to 8 exposure to baseline NO₂ concentration plus NO₂ spikes were also investigated in the rat. Crapo 9 et al. (1984) and Chang et al. (1986) exposed rats for 6 weeks to a baseline concentration of 10 0.5- or 2.0-ppm NO₂, 23 h/day for 7 days/week, onto which were superimposed two daily 30-11 min spikes of three times the baseline concentration for 5 days/week. Morphometric analyses 12 showed increases in the volumes of the type 2 epithelium, surface area of type II cells, interstitial 13 matrix, and AMs; no changes were seen in the volume of fibroblasts at the lower concentration. 14 Most of the changes were also noted at the higher exposure level, and in some cases, the change 15 was greater than that at the lower level (i.e., increase in type 1 and type 2 epithelial volume). At 16 both levels of exposure, the increase in the volume of type II cells and interstitial fibroblasts 17 were not accompanied by significant changes in their numbers, but the number of AMs 18 decreased. At the highest exposure, the number of type I cells decreased and their average 19 surface area increased. Generally, there was a spreading and hypertrophy of type II cells. A 20 correlation between decreased compliance (Stevens et al., 1988) and thickening of the alveolar 21 interstitium was found (see Section 3.3.1.1 for details of the pulmonary function portion of the 22 study). Examination of the terminal bronchiolar region revealed no effects at the lower exposure 23 level. At the higher level, there was a 19% decrease in ciliated cells per unit area of the 24 epithelial basement membrane and a reduction in the mean ciliated surface area. The size of the 25 dome protrusions of nonciliated bronchiolar (Clara) cells was decreased, giving the bronchial 26 epithelium a flattened appearance, but there was no change in the number of cells.

27

28 Factors Affecting Susceptibility to Morphological Changes

Susceptibility to morphological effects may be influenced by many factors, such as age,
compromised lung function, and acute infections. Age of the animal at the time of exposure may
be responsible for some of the variability in morphological response seen in the same species
exposed to comparable concentrations.

1 It appears that neonates, prior to weaning, are relatively resistant to NO_2 , and that 2 responsiveness then increases (Stevens et al., 1978). Furthermore, the responsiveness of mature 3 animals appears to decline somewhat with age, until an increase in responsiveness occurs at 4 some point in senescence. However, the morphological response to NO_2 in animals of different 5 ages involves similarities in the cell types affected and in the nature of the damage incurred. 6 Age-related differences occur in the extent of damage and in the time required for repair, the 7 latter taking longer in older animals. The reasons for age differences in susceptibility are not 8 known but may involve toxicokinetic and toxicodynamic differences during different growth 9 phases.

10 Kyono and Kawai (1982) exposed rats at 1, 3, 12, and 21 months of age continuously for 11 1 month to 0.11-, 0.46-, 2.8-, or 8.8-ppm NO₂. Light and electron microscopic analyses were 12 used, and various morphometric parameters were assessed, including arithmetic mean thickness 13 of the air-blood barrier and the volume density of various alveolar wall components. Because 14 these investigators were interested in the effect of the overall gas-exchange area, they 15 deliberately excluded the centriacinar alveolar region, site of main damage. Analysis of 16 individual results was complex, but depending upon the animal's age and the specified endpoint, 17 exposure levels as low as 0.11 ppm changed specific morphometric parameters. There was a 18 trend towards a concentration-dependent increase in air-blood barrier thickness in all age groups, 19 with evidence of age-related differences in response. At any concentration, the response of this 20 endpoint decreased in rats from 1 to 12 months old, but increased again in 21-month-old animals. 21 Type I and II cells showed various degrees of response, depending on both age at onset of 22 exposure and exposure concentration. The response of each lung component did not always 23 show a simple concentration-dependent increase or decrease, but suggested a multiphasic 24 reaction pattern.

Kyono and Kawai (1982) may not have used the most susceptible animal model. Azoulay-Dupuis et al. (1983) investigated the species and age-related susceptibility to morphological changes by exposing both rats and guinea pigs aged 5 to >60 days old to 2.0 and 10 ppm for 3 days. There was no mortality in the rats; however, mortality increased with increasing age in guinea pigs exposed to 10 ppm. In both species, older animals showed greater effects of exposure than did neonates. Rats at all ages and guinea pigs less than 45 days old were not affected. The 45-day-old guinea pigs showed thickening of alveolar walls, alveolar edema, and inflammation; animals older than 45 days showed similar, but more frequent, alterations that
 seemed to increase with age. Adults also had focal loss of cilia in bronchioli.

3 Age-related responsiveness to an urban pattern of NO₂ was evaluated by Chang et al. 4 (1986, 1988) using 1-day- or 6-week-old rats exposed for 6 weeks to a baseline of 0.5-ppm NO₂ 5 for 23 h/day, 7 days/week, with two 1-h spikes (given in the morning and afternoon) of 1.5 ppm 6 5 days/week. Electron microscopic morphometric analysis of the proximal alveolar regions 7 showed an increase in the surface density of the alveolar basement membrane in the older 8 animals that was not seen in the younger animals. Although both age groups responded in a 9 generally similar manner, the 6-week-old rats seemed to be generally more susceptible to injury 10 than were the 1-day-olds, as the 6-week old animals had more variables that were significantly 11 different from their control group. There was no qualitative evidence of morphological injury in 12 the terminal bronchioles of the younger rats, but there was a 19% increase in the average ciliated 13 cell surface that was not evident in the older rats. In addition, there was a 13% increase in the 14 mean luminal surface area of Clara cells in the younger versus control animals of the same age. 15 Pulmonary function was also altered in similarly exposed rats (Stevens et al., 1988) (see Section 16 3.3.1.1). Interpretation of the neonatal effects is difficult. Assuming that rats prior to weaning 17 are more resistant to NO₂ (Stevens et al., 1978) (see below), effects observed after a 6-week 18 exposure from birth may have resulted from the last 3 weeks of exposure, as the first 3 weeks 19 may constitute a more resistant period. In contrast, effects observed in young adults probably 20 reflect the impact of the entire 6-week exposure. These findings may parallel the effects 21 observed in the CHS studies reviewed above, identifying school-age children as vulnerable to the 22 effects of NO₂.

23 Few studies have been conducted on effects in individuals with preexisting respiratory 24 disease with exposure to environmental levels of NO2. These studies include animals with 25 laboratory-induced emphysema or infections. Morphometric analyses of lungs from normal and 26 elastase-induced emphysematous hamsters (2 months old) that had been exposed to 2.0-ppm 27 NO₂ for 8 h/day, 5 days/week, for 8 weeks, indicated that emphysematous lesions were 28 exacerbated by NO₂ (i.e., NO₂ increased pulmonary volume and decreased internal alveolar 29 surface area) (Lafuma et al. (1987). The investigators suggested that these results may imply a 30 role for NO₂ in enhancing pre-existing emphysema. A study by Fenters et al. (1973) also 31 reported that acute infectious (influenza) lung disease enhanced the morphological effects of

NO₂ in squirrel monkeys when these animals were exposed continuously to 1.0-ppm NO₂ for 16
months.

3

4

3.4.1.3 Asthma Prevalence and Incidence—Children

5 Among the studies reporting results from the United States in regard to asthma 6 prevalence incidence associated with NO_2 exposure, several publications from the CHS in 7 California report results. Gauderman et al., 2005 conducted a study of children randomly 8 selected from the CHS with exposure measured at children's homes. Although only 208 were 9 enrolled, exposure to NO₂ was strongly associated with both lifetime history of asthma, and 10 asthma medications use. Gauderman et al. (2005) measured ambient NO₂ with Palmes tubes attached at the subjects' homes at the roofline eaves, signposts, or rain gutters at an approximate 11 12 height of 2 m above the ground. Samples were deployed for 2-week periods in both summer and 13 fall. Traffic-related pollutants were characterized by 3 metrics: (1) proximity of home to 14 freeway, (2) average number of vehicles within 150 meters, and (3) model-based estimates. 15 Yearly average NO_2 levels within the 10 communities ranged from 12.9 to 51.5 ppb. The 16 average NO₂ concentration measured at home was associated with asthma prevalence (OR = 8.3317 [95% CI: 1.15, 59.87] per 20 ppb) with similar results by season and when taking into account 18 several potential confounders. Tables 3.4-1 and 3.4-2 show associations with several indicators 19 of traffic-related air pollution and asthma. In each community measured, NO₂ was more strongly 20 correlated with estimates of freeway-related pollution than with non-freeway-related pollution. 21 In a related CHS study, McConnell et al. (2006) studied the relationship of proximity to major 22 roads and asthma and found a positive relationship. 23 Further evaluation of exposure estimation was done in this cohort of schoolchildren

(Molitor et al., 2007). Several models of interurban air pollution exposure were used to classify
and predict FVC in an integrated Bayesian modeling framework, using three interurban
predictors: distance to a freeway; traffic density; and predicted average NO₂ exposure from the
California line source dispersion (CALINE4) model. Results suggested that the inclusion of
residual spatial terms can reduce uncertainty in the prediction of exposures and associated health
effects (Molitor et al., 2007).

Islam et al. (2007) studied whether lung function is associated with new onset asthma and
 whether this relationship varies by exposure to ambient air pollutants by examining a cohort of
 2,057 fourth-grade children who were asthma- and wheeze-free at the start of the CHS and

1 followed them for 8 years. A hierarchal model was used to evaluate the effect of individual air 2 pollutants (NO₂, PM₁₀, PM_{2.5}, and acid vapor, O₃, EC, and OC) on the association of lung 3 function with asthma as shown in Figure 3.4-2. The loss of the protective effect from better lung 4 function can be appreciated from these graphs. PM indicators were significantly related, and 5 NO_2 was marginally significant (p = 0.06). This study shows that better airflow, characterized 6 by higher FEF₂₅₋₇₅ and FEV₁ during childhood was associated with decreased risk of new onset 7 asthma during adolescence. However, exposure to high levels of ambient pollutants (NO₂ and 8 others) attenuated this protective association of lung function on asthma occurrence. 9 Brauer et al. (2007) assessed the development of asthmatic/allergic symptoms and respiratory 10 infections during the first 4 years of life in a birth cohort study (n = 4.000, but the number of 11 participants decreased over the study to \sim 3500) in the Netherlands. The mean NO₂ concentration 12 was 13.1 ppb. Air pollution concentrations at the home address at birth were calculated by a

13 model combining air pollution measurements with a Geographic Information System (GIS).

14 This exposure model was validated. The association between exposure and health outcomes was

15 analyzed by multiple logistic regression in the adjustment for confounding variables. The

16 interquartile range in increase in NO₂ was 10.6 μ g/m³.

17 Wheeze, doctor-diagnosed asthma, and flu and serious colds were associated with air 18 pollutants (considered traffic-related: NO₂, PM_{2.5}, soot); for example, NO₂ was associated with 19 doctor-diagnosed asthma (OR = 1.28 [95% CI: 1.04, 1.56) for a cumulative lifetime indicator. 20 Jerrett (2007) comments on this study that (1) the effects are larger and more consistent than in 21 participants of the same study at age 2; (2) these effects suggest that onset and persistence of 22 respiratory disease formation begins at an early age and continues; and (3) the more sophisticated 23 method for exposure assessment used based on spatially and temporally representative field 24 measurements and land use regression is capable of capturing small area variations in traffic 25 pollutants. Importantly, this study is one of the few assessing disease incidence in the same 26 manner as the CHS discussed above.

Kim et al. (2004a) reported positive associations for girls to both NO₂ and NO_x in the San
Francisco bay area. They studied 1,109 students (grades 3 to 5) at 10 school sites for bronchitis
symptoms and asthma in relation to ambient pollutant levels to include NO, NO₂, and NO_x
measured at the school site. Mean levels ranged for schools from 33 to 69 ppb for NO_x; 19 to 31

Figure 3.4-2. Effect of individual pollutants on the association of lung function with asthma.

Source: Islam et al. (2007).

1 for NO₂; and 11 to 38 ppb for NO. NO_x and NO₂ measurements at school sites away from traffic 2 were similar to levels measured at the regional site. They found associations between traffic-3 related pollutants and asthma and bronchitis symptoms, which is consistent with previous reports 4 of traffic and respiratory outcomes. Some U.S. studies had previously shown inconsistent 5 results, possibly due to exposure misclassification as the studies used only a single fixed site. 6 The higher effect estimates with black carbon, NO_x, and NO compared with NO₂ and PM_{2.5} 7 suggest that primary or fresh traffic emissions may play an etiologic role in these relationships 8 and that while NO_x and NO may serve as indicators of traffic exposures, they may also act as 9 etiologic agents themselves.

10 Millstein et al. (2004) studied the effects of ambient air pollutants on asthma medication 11 use and wheezing among 2,034 fourth-grade schoolchildren from the CHS. Included in the 12 pollutants examined were NO₂ and HNO₃. They observed that monthly average pollutant levels 13 produced primarily by photochemistry (i.e., O₃, HNO₃, and acetic acid) were associated with 14 asthma medication use among children with asthma—especially among children who spent more 15 than the calculated median time outdoors. The March-August OR for HNO₃ (IQR 1.64 ppb) was 16 1.62 (95% CI: 0.94, 2.80) and for NO₂ (IQR 5.74 ppb) was 0.96 (95% CI: 0.68, 1.37).

Other studies (see Annex Table AX6.2) have investigated asthma prevalence in children associated with NO₂ exposure. Although several of these studies have reported positive associations, the large number of comparisons made and the limited number of positive results do not suggest a strong relationship between chronic NO₂ exposure and asthma. Exposure in these studies varied, but medians were often greater than 20 ppb. Most of the studies did not report correlations of NO₂ exposure with other air pollutants; therefore, it is not possible to determine whether some of these associations were related to other air contaminants.

Annex Table AX6.6-2 lists several studies from Europe where the International Study of Asthma and Allergies in Children (ISAAC) protocol was used. Children were interviewed in school and results of the questionnaire were compared with air pollution measurements in their communities. These studies included thousands of children in several European countries and Taiwan, and all but one were negative. In Austria (Studnicka, 1997) the highest level of exposure (14.7- to 17.0-ppb NO₂) was associated with increased risk of asthma.

30 Two studies (Shima and Adachi, 2000; Kim et al., 2004a) reported positive associations
31 for girls, but negative associations for boys. It is difficult to interpret these studies since the level

of exposure did not vary by gender. The children surveyed were 9 to 11 years old. In this age
 range, asthma is more common among girls, perhaps due to hormonal influences, while asthma
 is more common in boys at younger ages.

4 5

3.4.1.4 **Respiratory Symptoms**

Although a large number of studies have investigated effects of chronic exposure to NO₂
on respiratory symptoms, the validity of these studies is uncertain. More appropriately,
symptoms should be compared to acute exposures. In some of these studies, a symptom (e.g.
wheeze) may be used as a surrogate for disease that is difficult to define or diagnose, (e.g.
asthma). This confusion between acute and chronic symptoms or acute and chronic exposure
may explain some of the inconsistency in results of these studies.

Annex Table AX6.6-3 lists nine studies, most of which report some positive associations with NO₂ exposure and symptoms, but all report a large number of negative results. Only one of these studies (Peters et al., 1999) reported an association of NO₂ exposure with wheeze, and in boys. This was despite the fact that wheeze was investigated in a large number of studies, including several studies that included thousands of children.

McConnell et al. (2003) studied the relationship between bronchitis symptoms and pollutants in the CHS. Symptoms assessed yearly by questionnaire from 1996 to 1999 were associated with the yearly variability for the pollutants for NO₂ (OR = 1.071 ppb [95% CI: 1.02, 1.13). In two-pollutant models, the effects of yearly variation in NO₂ were only modestly reduced by adjusting for other pollutants except for OC and NO₂. (See Figure 3.4-3).

McConnell et al. (2006) evaluated whether the association of exposure to air pollution with annual prevalence of chronic cough, phlegm production, or bronchitis was modified by dog or cat ownership indicators or allergen and endotoxin exposure. Subjects consisted of 475 children from the CHS. Among children owning a dog, there was strong association between bronchitis symptoms and all pollutants studied. Odds ratio for NO₂ were 1.49 (95% CI: 1.14, 1.95), indicating that dog ownership may worsen the relationship between air pollution and respiratory symptoms in asthmatic children.

Cough and difficulty breathing were more commonly reported in association with NO₂
exposure. Interestingly, both Garrett et al., 1999 and Hirsch et al., 1999 report positive
associations between NO₂ exposure and symptoms when symptoms are less common. Garrett

Figure 3.4-3. Odds ratios for within-community bronchitis symptoms associations with NO₂, adjusted for other pollutants in two-pollutant models.

Source: McConnell et al. (2003).

indicates a positive associations only during the summer months and Hirsch reports a significant
 association with cough, particularly cough among non-atopic children.

3 Three studies (Mukala et al., 1999; van Strien et al., 2004; Nitschke et al., 2006) 4 compared exposure to NO₂ measured by personal monitors, or monitors in the home, with 5 respiratory symptoms. Mukala et al. (1999) reported a significant association of the highest level 6 of weekly NO₂ exposure and cough. Both cough and shortness of breath were reported by 7 van Strien et al. (2004) associated with measured home exposure to NO₂ among infants. This 8 relationship appeared to be dose dependent. Nitschke et al. (2006) reported difficulty breathing 9 and chest tightness in asthmatic children that was associated with 10-ppb increases in NO₂ 10 measured in school classrooms. Further discussion of these studies was provided earlier in 11 Section 6.2. 12 Two studies of infants were conducted in Germany and the Netherlands using the same

exposure protocol (Gehring et al., 2002; Brauer et al., 2002). In Munich, 1,756 infants were
enrolled and followed for 2 years. Outcomes of interest were asthma, bronchitis, and respiratory

1 symptoms including wheeze, cough, and nasal symptoms. To determine exposure, 40 measuring 2 sites were selected in Munich, including sites along main roads, side streets and background 3 sites. At each site, NO₂ was measured four times (once in each season) for 14 days using Palmes 4 tubes. Regression modeling was used to relate annual average pollutant concentrations to a set 5 of predictor variables (i.e., traffic density, heavy vehicle density, household density, population 6 density) obtained from GIS. The percentage of variability explained by the model (R2) was 7 0.62 for NO₂. Using geocoded birth addresses, values for the predictor variables were obtained 8 for each child, and the model was used to assign an estimate of NO₂ exposure. At 1 year of age, an increase of 8.5 μ g/m³ of NO₂ was associated with cough (OR = 1.40 [95% CI: 1.12, 1.75]) 9 10 and dry cough at night (OR = 1.36 [95% CI: 1.07, 1.74]). NO₂ exposure was not associated 11 with wheeze, bronchitis, or respiratory infections. Estimated PM_{2.5} exposure was also associated 12 with cough and dry cough at night, with nearly identical odds ratios. 13 In the Netherlands (Brauer et al., 2002), the same protocol was used to estimate NO₂ 14 exposure in a birth cohort of 3,730 infants. However, these study subjects lived in many 15 different communities from rural areas to large cities in northern, central and western parts of the 16 Netherlands. Forty sites were selected to represent different exposures and measurements were 17 taken as in the Gehring et al. (2002) study. In this study, ear, nose, and throat infections 18 (OR = 1.16 [95% CI: 1.00, 1.34]) and physician-diagnosed flu (OR = 1.11 [95% CI: 1.00, 1.34])19 1.23]) were marginally significant. The association of NO₂ of with dry cough at night could not 20 be replicated, nor was NO₂ associated with asthma, wheeze, bronchitis, or eczema. 21 In both of these studies, the 40 monitoring sites set up to measure NO₂ also measured 22 PM_{2.5} with Harvard Impactors. Estimates of NO₂ and PM_{2.5} were highly correlated in Braurer 23 et al., correlation = 0.97). The correlation was not reported in Gehring et al.; however, the

similarity of odds ratios for each pollutant suggests that the estimated exposures were also highly
correlated. Thus, a major limitation of these studies is the inability to distinguish the effects of
different pollutants.

In a study of 3,946 Munich schoolchildren, Nicolai et al. (2003) assessed traffic exposure using two different methods. First, all street segments within 50 m of each child's home were identified and the average daily traffic counts were totaled. Second, a model was constructed based on measurement of NO₂ at 34 sites throughout the city using traffic counts and street characteristics ($R^2 = 0.77$). The model was then used to estimate NO₂ exposure at each child's

1 home address. When traffic counts of ≤ 50 m were used as an exposure variable, a significant 2 association was found with current asthma (OR = 1.79 [95% CI: 1.05, 3.05]), wheeze 3 (OR = 1.66 [95% CI: 1.07, 2.57]), and cough (OR = 1.62 [95% CI: 1.16, 2.27]). Similar results 4 were found when modeled NO₂ exposure was substituted as the exposure variable (current 5 asthma OR = 1.65 [95% CI: 0.94, 2.90], wheeze OR = 1.58 [95% CI: 1.05, 2.48], cough 6 OR = 1.60 [95% CI: 1.14, 2.23]). Asthma, wheeze, and cough were also associated with 7 estimated exposures to soot and benzene derived from models, suggesting that some component 8 of traffic pollution is increasing risk of respiratory conditions in children, but making it difficult 9 to determine whether NO_2 is the cause of these conditions.

- 10
- 11 12

3.4.1.5 Integration of Evidence on Long-Term NO₂ Exposure and Respiratory Illness and Lung Function Decrements

13 There is strong evidence for the increased occurrence of respiratory illness in children 14 associated with long-term exposures to NO₂. An earlier U.S. Environmental Protection Agency 15 meta-analysis of indoor NO₂ studies supported an effect of estimated exposure to NO₂ on 16 respiratory symptoms and disease in children ages 5 to 12. A similar relationship was not seen 17 with infants and younger children ages 0 to 2. Recent evidence from cohort studies from 18 California, examining NO₂ exposure in children over an 8-year period, demonstrated deficits in 19 lung function growth. Deficits in lung function growth is a known risk factor for chronic 20 respiratory disease and possibly for premature mortality in later life stages. Lung growth 21 continues from early development through early adulthood, reaches a plateau, and then 22 eventually declines with advancing age. Dockery and Brunekreef (1996) have hypothesized that 23 the risk for chronic respiratory disease is associated with maximum lung size, the length of time 24 the lung size has been at the plateau, and the rate of decline of lung function. Therefore, 25 exposures to NO₂ in childhood may reduce maximum lung size by limiting lung growth and 26 subsequently increase the risk in adulthood for chronic respiratory disease. 27 Animal toxicological studies provide biological plausibility for the observed increased 28 incidence of respiratory illness among children. A number of defense system components such 29

as AMs and the humoral and cell-mediated immune system have been demonstrated to be targets

30 for inhaled NO₂. The animal studies described above show that NO_2 exposure impairs the host

31 defense system, causing animals to be more susceptible to respiratory infections. Morphological

32 changes are elicited in ciliated epithelial cells at NO₂ concentrations as low as 0.5 ppm for

7 months; however, early studies showed that mucociliary clearance is not affected by exposures
<5 ppm. A more recent study in guinea pigs showed a concentration-dependent decrease in
ciliary activity at 3-ppm NO₂.

A second line of defense in the lung, the AMs, are affected by NO₂ in a concentrationand species-dependent manner with both acute and chronic exposures. Mechanisms whereby NO₂ affects AM function include membrane lipid peroxidation, decreased ability to produce superoxide anion, inhibition of migration, and decreased phagocytic activity. Decreases in bactericidal and phagocytic activities are likely related to increased susceptibility to pulmonary infections. More recent studies have confirmed that AMs are a primary target for NO₂ at exposure levels <1 ppm.

Humoral and cell-mediated immune systems comprise a third line of defense that has been shown to be suppressed by NO₂ exposure. The use of animal infectivity studies provides key biological plausibility evidence for the effects of NO₂ on respiratory morbidity and mortality. For these studies, the animals are exposed to NO₂, followed by exposure to an aerosol containing the infectious agent. This body of work shows that NO₂ decreases intrapulmonary bactericidal activity in mice in a concentration-dependent manner, with no concurrent changes to mucociliary clearance.

18 Thus, strong evidence indicates that the reduced efficacy of lung defense systems is an 19 important mechanism for the observed increase in incidence and severity of respiratory 20 infections. Overall, the NO₂ toxicological literature suggests a linear concentration-response 21 relationship that exists in an exposure range of 0.5 to >5 ppm and mortality resulting from 22 pulmonary infection. NO_2 exposure reduces the efficiency of defense against infections at 23 concentrations as low as 0.5 ppm. The exposure protocol is important, with concentration being 24 more important than duration of exposure and with peak exposures being important in the overall 25 response. The effect of concentration is stronger with intermittent exposure than with continuous 26 exposure. Repeated exposures of low levels of NO_2 are necessary for many respiratory effects. The animal toxicological studies also demonstrate differences in species sensitivity to NO2 and 27 28 differences in responses to the microbes used for the infectivity tests. Animal to human 29 extrapolation is limited by a poor understanding of the quantitative relationship between NO_2 30 concentrations and effective doses between animals and humans. However, animals and humans

share many host defense components, making the infectivity model useful for understanding the
 mechanisms whereby NO₂ elicits adverse respiratory health effects.

The 1993 AQCD for Oxides of Nitrogen stated that an increase of reported respiratory symptoms in some epidemiology studies may be an indication of the ability of the respiratory host-defense mechanism to either overcome an infection or to limit its severity. NO₂ may affect the immune system in such a way that one or several aspects of the immune system do not function at a level sufficient to limit the extent or occurrence of infection.

8 Toxicological and human clinical studies demonstrating altered host defenses provide 9 plausibility for the observed increase in frequency and severity of respiratory symptoms and/or 10 infections in humans. Increased severity or rate of respiratory illness may result from altered 11 host defenses in an NO₂ exposed lung subsequently infected with an infectious microorganism. 12 Although the host defense system reacts both very specifically and generally to the challenge, the 13 overall response in humans is expressed as a generalized demonstration of signs and symptoms 14 that may be associated with a site such as the lower respiratory tract and also may be reported or 15 objectively discerned as a general outcome such as a chest cold, cough, or an incident of asthma 16 or bronchitis (U.S. Environmental Protection Agency, 1993).

17 Other important biochemical mechanisms examined in animals may provide biological 18 plausibility for chronic effects of NO₂ observed in epidemiology studies. The main biochemical 19 targets of NO₂ exposure appear to be antioxidants, membrane polyunsaturated fatty acids, and 20 thiol groups. NO₂ effects include changes in oxidant/antioxidant homeostasis and chemical 21 alterations of lipids and proteins. Lipid peroxidation has been observed at NO_2 exposures as low 22 as 0.04 ppm (for 9-months) and at exposures of 1.2 ppm for 1 week, suggesting lower effect 23 thresholds with longer durations of exposure. Other studies show decreases in the formation of 24 key arachidonic acid metabolites in AMs following NO₂ exposures of 0.5 ppm. NO₂ has also 25 been shown to increase collagen synthesis rates at concentrations as low as 0.5 ppm. This could 26 indicate increases in total lung collagen, which are associated with pulmonary fibrosis. 27 Morphological effects following chronic NO₂ exposures have been identified in animal studies 28 that link to these increases in collagen synthesis and may provide plausibility for the deficits in 29 lung function growth described in epidemiological studies.

1 3.4.2 Cardiovascular Effects Associated with Long-Term NO₂ Exposure

2 Limited toxicology data exist on the effect of NO₂ on the heart. Alterations in vagal 3 responses have been shown to occur in rats exposed to 10-ppm NO₂ for 24 h; however, exposure 4 to 0.4-ppm NO₂ for 4 weeks revealed no change (Tsubone and Suzuki, 1984). NO₂-induced 5 effects on cardiac performance are suggested by a significant reduction in PaO₂ in rats exposed 6 to 4.0-ppm NO_2 for 3 months. When exposure was decreased to 0.4-ppm NO_2 over the same exposure period, PaO₂ was not affected (Suzuki et al., 1981). In addition, a reduction in HR has 7 8 been shown in mice exposed to both 1.2 and 4.0-ppm NO₂ for 1 month (Suzuki et al., 1984). 9 Whether these effects are the direct result of NO_2 exposure or secondary responses to lung 10 edema and changes in blood hemoglobin content is not known (U.S. Environmental Protection 11 Agency, 1993). A more recent study (Takano et al., 2004) using an obese rat strain found 12 changes in blood triglycerides, HDL, and HDL/total cholesterol ratios with a 24-week exposure 13 to 0.16-ppm NO₂. 14 No effect on hematocrit and hemoglobin have been reported in squirrel monkeys exposed

to 1.0-ppm NO₂ for 16 months (Fenters et al., 1973) or in dogs exposed to \leq 5.0-ppm NO₂ for 18 months (Wagner et al., 1965). There was, however, polycythemia and an increased ratio of 17 PMNs to lymphocytes in rats exposed to 2.0 + 1.0 ppm NO₂ for 14 months (Furiosi et al., 1973). 18 No additional studies were found in the literature since the 1993 AQCD for Oxides of Nitrogen.

19 20

3.4.3 Adverse Birth Outcomes Associated with Long-Term NO₂ Exposure

The effects of maternal exposure during pregnancy to air pollution have been examined by several investigators in recent years (2000 through 2006). The most common endpoints studied are low birth weight, preterm delivery, and measures of intrauterine growth (e.g., small for gestational age [SGA]). Generally, these studies have used routinely collected air pollution data and birth certificates from a given area for their analysis.

The reliability and validity of birth certificate data has been recently reviewed (DiGiuseppe et al., 2002). The authors found that specific variables had different degrees of reliability. Variables rated the most reliable included birth weight, maternal age, race, and insurance status. Gestational age, parity, and delivery type (vaginal versus cesarean) were reasonably reliable, while obstetrical complications and personal exposures, e.g., smoking and alcohol consumption, were not.

1 Mothers who have a low birth weight or preterm infant are at high risk to have an adverse 2 outcome in a subsequent pregnancy. Similarly, mothers who have a normal infant are at low risk 3 for an adverse outcome in the next pregnancy. Statistically, births to the same mother are not 4 independent observations. As most women in the United States have two or more births and 5 these births often occur within a few years, birth certificate data, which include several years of 6 observations, have a very large number of non-independent observations. None of the studies 7 reviewed considered this problem, and all analyzed births as independent events. For studies 8 using only 1 (or at most 2) years of birth certificates, the effects are small; for studies using 9 several years of birth certificates, the variance estimates would be reduced.

10 While most studies analyzed average NO_2 exposure for the whole pregnancy, many also 11 considered exposure during specific trimesters or other time periods. Fetal growth, for example, 12 is much more variable during the third trimester. Thus, studies of fetal growth might anticipate 13 that exposure during the third trimester would have the greatest likelihood of an association, as is 14 true for the effect of maternal smoking during pregnancy. However, growth can also be affected 15 through placentation, which occurs in the first trimester. Similarly, preterm delivery might be 16 expected to be related to exposure early in pregnancy affecting placentation, or through acute 17 effects occurring just before delivery.

18 Of the three studies conducted in the United States, one (Bell et al., 2007) reported a 19 significant decrease in birthweight associated with exposure to NO₂ among mothers in 20 Connecticut and Massachusetts. The two studies conducted in California did not find 21 associations between NO₂ exposure with any adverse birth outcome (Ritz et al., 2000; Salam 22 et al., 2005). Differences in these studies that may have contributed to the differences in results 23 include the following: sample size; average NO₂ concentration; and different pollution mixtures. 24 The results reported by Bell et al. (2007) had the largest sample size and therefore greater power 25 to assess small increases in risk. The two California studies reported higher mean concentrations 26 of NO, but also strong correlations of NO₂ exposure with PM mass and CO.

Annex Table AX6.5-1 lists seven studies that investigated the relationship of ambient NO₂ exposure with birth weight. Since low birth weight may result from either inadequate growth in utero or delivery before the usual 40 weeks of gestation, three of the authors only considered low birth weight (<2500 g) in full-term deliveries (>37 weeks), the other four controlled for gestational age in the analysis. When correlations with other pollutants were reported in these studies, they ranged from 0.5 to 0.8. All of these studies reported strong effects
 for other pollutants.

3 Lee et al. (2003) reported a significant association between NO₂ and low birth weight, 4 and the association was only for exposure in the second trimester. It is difficult to hypothesize 5 any biological mechanism relating NO₂ exposure and fetal growth specifically in the second 6 trimester. Bell et al. (2007) reported an increased risk of low birth weight with NO₂ exposure 7 averaged over pregnancy (OR = 1.027 [95% CI: 1.002, 1.051]) and a deficit in birthweight 8 specific to the first trimester. In addition, the deficit in birthweight appeared to be greater among 9 black mothers (-12.7 g per IQR increase in NO₂ [95% CI: -18.0, -7.5]) than for white mothers 10 (-8.3 g per IQR increase in NO₂ [95% CI: -10.4, -6.3]). 11 Six studies investigated NO₂ exposure related to preterm delivery (Annex Table 12 AX6.5.2). Three reported positive associations (Bobak, 2000; Maroziene et al., 2002; Leem 13 et al., 2006) and three reported no association (Liu et al., 2003; Ritz et al., 2000; Hansen et al., 14 2006). Among the studies reporting an association, two (Bobak, 2000; Leem et al., 2006) reported significant associations for both the first trimester and the third trimester of pregnancy. 15 16 The third (Maroziene et al., 2002) reported significant increases in risk for exposure in the first 17 trimester and averaged over all of pregnancy. In two (Bobak, 2000; Leem et al., 2006) of the

18 positive studies, NO₂ exposure was correlated with SO₂ exposure (r = 0.54, 0.61 for the two

19 studies); the third study did not report correlations.

Three studies (see details in Annex Table AX6.5-3) specifically investigated fetal growth by comparing birth weight for gestational age with national standards. Two of these studies reported associations of small for gestational age with NO₂ exposure. Mannes et al. (2004) determined increased risk for exposure in trimesters 2 and 3, while Liu et al. (2003) reported risks associated only with NO₂ exposure in the first month of pregnancy. In all three studies, NO₂ exposure was correlated with CO exposure (r = 0.69, 0.57, 0.72 in the three studies).

26

27 Reproductive and Developmental Effects of NO₂ Exposure in Animal Studies

Only a few studies have investigated the effects of NO₂ on reproduction and development of NO₂. Exposure to 1.0-ppm NO₂ for 7 h/day, 5 days/week for 21 days, resulted in no alterations in spermatogenesis, germinal cells, or interstitial cells of the testes of 6 rats (Kripke and Sherwin, 1984). Similarly, breeding studies by Shalamberidze and Tsereteli (1971) found that long-term NO₂ exposure had no effect on fertility. However, there was a statistically significant decrease in litter size and neonatal weight when male and female rats exposed to 1.3-ppm NO₂, 12 h/day for 3 months were bred. In utero death due to NO₂ exposure resulted in smaller litter sizes, but no direct teratogenic effects were observed in the offspring. In fact, after several weeks, NO₂-exposed litters approached weights similar to those of controls.

6 Following inhalation exposure of pregnant Wistar rats to 0.5- and 5.3-ppm NO₂ for 7 6 h/day throughout gestation (21 days), maternal toxic effects and developmental disturbances in 8 the progeny were reported (Tabacova et al., 1984; Balabaeva and Tabacova, 1985; Tabacova and 9 Balabaeva, 1988). Maternal weight gain during gestation was significantly reduced at 5.3 ppm, 10 with findings of pathological changes, e.g., desquamative bronchitis and bronchiolitis in the 11 lung, mild parenchymal dystrophy and reduction of glycogen in the liver, and blood stasis and 12 inflammatory reaction in the placenta. At gross examination, the placentas of the high-dose 13 dams were smaller in size than those of control rats. A marked increase of lipid peroxides was 14 found in maternal lungs and particularly in the placenta at both exposure levels by the end of 15 gestation (Balabaeva and Tabacova, 1985). Disturbances in the prenatal development of the 16 progeny were registered, such as 2- to 4-fold increase in late post-implantation lethality at 0.5 17 and 5.3 ppm, respectively, as well as reduced fetal weight at term and stunted growth at 5.3 ppm. 18 These effects were significantly related to the content of lipid peroxides in the placenta, which 19 was suggestive of a pathogenetic role of placental damage. Teratogenic effects were not 20 observed, but dose-dependent morphological signs of embryotoxicity and retarded intrauterine 21 development, such as generalized edema, subcutaneous hematoma, retarded ossification, and 22 skeletal aberrations, were found at both exposure levels.

23 In a developmental neurotoxicity study, Wistar rats were exposed by inhalation to 0-, 24 0.025-, 0.05-, 0.5-, or 5.3-ppm NO₂ during gestational days 0 through 21. It is unclear whether 25 the study was conducted at two separate times. Maternal toxicity was not reported. Viability 26 and physical development (i.e., incisor eruption and eye opening) were significantly affected in 27 the group exposed only to 5.3 ppm. There was a concentration-dependent change in 28 neurobehavioral endpoints, including disturbances in early neuromotor development, including 29 coordination deficits, retarded locomotor development, and decreased activity and reactivity. 30 Statistical significance was observed in some or all of the endpoints at the time point(s)

1 Di Giovanni et al. (1994) investigated whether in utero exposure of rats to NO_2 changed 2 ultrasonic vocalization, a behavioral response indicator of the development of emotionality. 3 Pregnant Wistar female rats were exposed by inhalation to 0, 1.5-, and 3-ppm NO₂ from day 0 to 4 20 of gestation. Dam weight gain, pregnancy length, litter size at birth, number of dams giving 5 birth, and postnatal mortality were unaffected by NO₂. There was a significant decrease in the 6 duration of ultrasonic signals elicited by the removal of the pups from the nest in the 10-day and 7 15-day-old male pups in the 3-ppm NO₂-exposed group. No other parameters of ultrasonic 8 emission, or of motor activity, were significantly affected in these prenatally exposed pups. 9 Since prenatal exposure to NO_2 did not significantly influence the rate of calling, the authors 10 concluded that this decrease in the duration of ultrasounds in the 3-ppm NO₂ exposed group does 11 not necessarily indicate altered emotionality, and the biological significance of these findings 12 remains to be determined.

13

14 3 15

3.4.3.1 Integration and Biological Plausibility for Reproductive and Developmental Effects

16 Integration of epidemiological and toxicological findings is limited by the dearth of 17 studies in both disciplines. In epidemiological studies of birth outcomes, generally, birth 18 certificate data were compared to NO_2 measured by routine monitoring. Only a small number of 19 studies looked at low birth weight or preterm delivery. Of the seven studies that examined 20 associations between low birth weight and ambient NO₂, only two reported a significant 21 association (Bell et al., 2007; Lee et al., 2003). Two studies of fetal growth reported associations 22 of small for gestational age with NO₂ exposure. Overall, exposure in the third trimester may 23 have the strongest association with evaluating effects on fetal growth. In evaluations of preterm 24 delivery, three studies reported positive associations and three studies reported no association. 25 Exposure early and late in the pregnancy may be associated more strongly with effects on 26 preterm delivery. These results are confounded by prior pregnancy history (i.e., multiple births 27 to the same mother are not independent observations), smoking, and poor quality of birth 28 certificate data.

The small body of toxicological literature examining the effects of NO₂ on birth outcomes is somewhat inconclusive, but NO₂ does not appear to be a reproductive toxicant. One early study found a decrease in litter size and neonatal weight when male and female rats were exposed to 1.3 ppm for 3 months and then bred. Earlier studies suggested that exposures of

1 \leq 10 ppm did not induce mutagenesis in rats. The few toxicological studies discussed that 2 evaluated the effects of NO₂ on reproduction and development show that NO₂ at \sim 5 ppm 3 throughout gestation reduced maternal weight gain. A 5-ppm exposure resulted in smaller 4 placentas, increased maternal lipid peroxides, increased late post-implantation mortality, 5 embryotoxicity, and retarded intrauterine development. Gestational exposure to 3-ppm NO₂ 6 caused a decrease in duration, but not rate, of ultrasonic vocalization in pups.

7 8

9

In summary, epidemiological evidence is not strong for associations between NO_2 exposure and grown retardation; however, some evidence is accumulating for effects on preterm delivery. Similarly, scant animal evidence supports a weak association between NO₂ exposure 10 and adverse birth outcomes and provides little mechanistic information or biological plausibility for the epidemiology findings.

11 12 13

3.4.4 **Cancer Incidence Associated with Long-Term NO₂ Exposure**

14 Two studies (see Annex Table AX6.5-6) have investigated the relationship between NO_2 15 exposure and lung cancer and reported positive associations. Although this literature review has 16 concentrated on studies that measured exposure to NO₂, modeled exposures will be considered 17 for cancer studies. This is necessary because the relevant exposure period for lung cancer may 18 be 30 years or more.

19 Nyberg et al. (2000) reported results of a case control study of 1,043 men age 40 to 20 75 years with lung cancer and 2,364 controls in Stockholm County. They mapped residence 21 addresses to a GIS database indicating 4,300 traffic-related line sources and 500 point sources of 22 NO₂ exposure. Exposure was derived from a model validated by comparison to actual measurements of NO₂ at six sites. Exposure to NO₂ at 10 μ g/m³ was associated with an OR of 23 1.10 (95% CI: 0.97, 1.23). Exposure to the 90th percentile ($\geq 29.26 \text{ }\mu\text{g/m}^3$) of NO₂ was 24 25 associated with an OR of 1.44 (95% CI: 1.05, 1.99).

26 Very similar results were reported in a Norwegian study (Nafstad et al., 2003). The study 27 population is a cohort of 16,209 men who enrolled in a study of cardiovascular disease in 1972. 28 The Norwegian cancer registry identified 422 incident cases of lung cancer. Exposure data was 29 modeled based on residence, estimating exposure for each person in each year from 1974 to 1998. Each 10 μ g/m³ of NO₂ was associated with an OR of 1.08 (95% CI: 1.02, 1.15). Cancer 30

incidence with exposure of ≥30 µg/m³ was associated with an OR of 1.36 (95% CI: 1.01, 1.83);
 however, controlling for SO₂ exposure did appreciably change the effect estimates for NO₂.

3 What is particularly striking in these two studies is the similarity in the estimate of effect. 4 Despite the fact that these two studies were conducted by different investigators, in different 5 countries, using different study designs and different methods for modeling exposure, the odds 6 ratios and confidence intervals for exposure per 10 μ g/m³ and above 30 μ g/m³ are virtually 7 identical.

8

9 Animal and In Vitro Carcinogenicity and Genotoxicity Studies

10 There is no clear evidence that NO₂ acts as a complete carcinogen. No studies were 11 found on NO₂ using classical carcinogenesis whole-animal bioassays. Of the existing studies 12 that have evaluated the carcinogenic and cocarcinogenic potential of NO₂, results are often 13 unclear or conflicting. Witschi et al. (1988) critically reviewed some of the important theoretical 14 issues in interpreting these types of studies. NO₂ does appear to act as a tumor promoter at the 15 site of contact (i.e., in the respiratory tract from inhalation exposure), possibly due to its ability to 16 produce cellular damage and, thus, promote regenerative cell proliferation. This hypothesis is 17 supported by observed hyperplasia of the lung epithelium from NO₂ exposure (see Lung 18 Morphology section, U.S. Environmental Protection Agency, 1993), which is a common 19 response to lung injury, and enhancement of endogenous retrovirus expression (Roy-Burman 20 et al., 1982). However, these findings were considered by U.S. Environmental Protection 21 Agency (1993) to be inconclusive.

When studied using in vivo assays, no inductions of recessive lethal mutations were observed in Drosophila exposed to NO₂ (Inoue et al., 1981; Victorin et al., 1990). NO₂ does not increase chromosomal aberrations in lymphocytes and spermatocytes or micronuclei in bone marrow cells (Gooch et al., 1977; Victorin et al., 1990). No increased stimulation of poly(ADPribose)synthetase activity (an indicator of DNA repair, suggesting possible DNA damage) was reported in AMs recovered from BAL of rats continuously exposed to 1.2-ppm NO₂ for 3 days (Bermudez, 2001).

NO₂ has been shown to be positive when tested for genotoxicity in in vitro assays (see
 Annex Table AX4.8). NO₂ is mutagenic in bacteria and in plants. In cell cultures, three studies

showed chromosomal aberrations, SCE, and DNA single-strand breaks. However, a fourth study
 (Isomura et al., 1984) concluded that NO, but not NO₂, was mutagenic in hamster cells.

3 4

Coexposure Studies with NO₂ and Known Carcinogens

5 Rats were injected with *N*-bis(2-hydroxy-propyl)nitrosamine (BHPN) and continuously 6 exposed to 0.04, 0.4, or 4.0-ppm NO₂ for 17 months. Although the data indicated five times as 7 many lung adenomas or adenocarcinomas in the rats injected with BHPN and exposed to 4-ppm 8 NO_2 (5/40 compared to 1/10), the results failed to achieve statistical significance (Ichinose et al., 9 1991). In a later study, Ichinose and Sagai (1992) reported increased lung tumors in rats injected 10 with BHPN, followed the next day by either clean air (0%), 0.05-ppm O₃ (8.3%), 0.05-ppm $O_3 + 0.4$ -ppm NO₂ (13.9%) or 0.4-ppm NO₂ + 1 mg/m³ H₂SO₄-aerosol (8.3%) for 13 months, 11 and then maintained for another 11 months until study termination. Exposure to NO₂ was 12 13 continuous, while the exposures to O₃ and H₂SO₄-aerosol were intermittent (exposure for 14 10 h/day). The increased lung tumors from combined exposure of O₃ and NO₂ were statistically 15 significant.

16 Ohyama et al. (1999) coexposed rats to diesel exhaust particulates (DEP) extract-coated 17 carbon black particles (DEPcCBP) once a week for 4 weeks by intratracheal instillation and to 18 either 6-ppm NO₂, 4-ppm SO₂, or 6-ppm NO₂ + 4-ppm SO₂ 16 h/day for 8 months, and 19 thereafter exposed to clean air for 8 months. Alveolar adenomas were increased in animals 20 exposed to DEPcCBP and either NO₂ and/or SO₂ compared to animals in the DEPcCBP-only 21 group and to controls. The incidences of lung tumors for the NO₂, SO₂, and NO₂ and/or SO₂ 22 groups were 6/24 (25%), 4/30 (13%), and 3/28 (11%), respectively. No alveolar adenomas were 23 observed in animals exposed to DEPcCBP alone or in the controls. Increased alveolar 24 hyperplasia was elevated in all groups compared to controls. In addition, DNA adducts, as 25 determined by 32P- postlabelling, was observed in the 2/3 animals exposed to both DEPcCBP 26 and either NO₂ and/or SO₂, but not in animals exposed to DEPcCBP alone or controls. The 27 authors concluded that the cellular damage induced by NO₂ and/or SO₂ may have resulted in 28 increased cellular permeability of the DEPcCBP particles into the cells.

29

30 Studies in Animals with Spontaneously High Tumor Rates

Three studies evaluated tumor response in strains with high tumor rates. The frequency
 and incidence of spontaneously occurring pulmonary adenomas was increased in strain A/J mice

1 (with spontaneously high tumor rates) after exposure to 10.0-ppm NO₂ for 6 h/day, 5 days/week 2 for 6 months (Adkins et al., 1986). These small, but statistically significant, increases were only 3 detectable when the control response from nine groups (n = 400) were pooled. Exposure to 1.0-4 and 5.0-ppm NO₂ had no effect. In contrast, Richters and Damji (1990) found that an 5 intermittent exposure to 0.25-ppm NO₂ for up to 26 weeks decreased the progression of a 6 spontaneous T cell lymphoma in AKR/cum mice and increased survival rates. The investigators 7 attribute this effect to an NO₂-induced decrease in the proliferation of T cell subpopulation in the 8 spleen (especially T-helper/inducer CD⁺ lymphocytes), that produce growth factors for the 9 lymphoma. A study by Wagner et al. (1965) suggested that NO₂ may accelerate the production 10 of tumors in CAF1/Jax mice (a strain that has spontaneously high pulmonary tumor rates) after 11 continuous exposure to 5.0-ppm NO₂. After 12 months of exposure, 7/10 mice in the exposed 12 group had tumors, compared to 4/10 in the controls. No differences in tumor production were 13 observed after 14 and 16 months of exposure. A statistical evaluation of the data was not 14 presented.

15

16 Facilitation of Metastases

17 Whether NO₂ facilitates metastases has been the subject of several experiments by 18 Richters and Kuraitis (1981, 1983), Richters and Richters (1983), and Richters et al. (1985). 19 Mice were exposed to several concentrations and durations of NO₂ and were injected 20 intravenously with a cultured-derived melanoma cell line (B16) after exposure, and subsequent 21 tumors in the lung were counted. Although some of the experiments showed an increased number of lung tumors, statistical methods were inappropriate. Furthermore, the experimental 22 23 technique used in these studies probably did not evaluate metastases formation, as the term is 24 generally understood, but more correctly, colonization of the lung by tumor cells.

25

26 Production of N-Nitroso Compounds and other Nitro Derivatives

Because of evidence that NO_2 could produce NO_2^- and NO_3^- in the blood and the fact that NO_2^- is known to react with amines to produce animal carcinogens (nitrosamines), the possibility that NO_2 could produce cancer via nitrosamine formation has been investigated. Iqbal et al. (1980) were the first to demonstrate a linear time- and concentration-dependent relationship between the amount of N-nitrosomorpholine (NMOR, an animal carcinogen) found in wholemouse homogenates after the mice were gavaged with 2 mg of morpholine (an exogenous amine that is rapidly nitrosated) and exposure to 15.0- to 50.0-ppm NO₂ for between 1 and 4 h. In a
follow-up study at more environmentally relevant exposures, Iqbal et al. (1981) used
dimethylamine (DMA), an amine that is slowly nitrosated to dimethylnitrosamine (DMN). They
reported a concentration-related increase in biosynthesis of DMN at NO₂ concentrations as low
as 0.1 ppm; however, the rate was significantly greater at concentrations above 10.0-ppm NO₂.
Increased length of exposure also increased DMN formation between 0.5 and 2 h, but synthesis
of DMN was less after 3 or 4 h of exposure than after 0.5 h.

8 Mirvish et al. (1981) concluded that the results of Igbal et al. (1980) were technically 9 flawed, but they found that in vivo exposure to NO₂ could produce a nitrosating agent (NSA) 10 that would nitrosate morpholine only when morpholine was added in vitro. Further experiments 11 showed that the NSA was localized in the skin (Mirvish et al., 1983) and that mouse skin 12 cholesterol was a likely NSA (Mirvish et al., 1986). It has also been reported that only very 13 lipid-soluble amines, which can penetrate the skin, would be available to the NSA. Compounds 14 such as morpholine, which are not lipid-soluble, could only react with NO_2 when painted directly 15 on the skin (Mirvish et al., 1988). Igbal (1984), responding to the Mirvish et al. (1981) 16 criticisms, verified their earlier (Iqbal et al., 1980) studies.

17 The relative significance of NO₂⁻ from NO₂ compared with other NO₂ sources such as 18 food, tobacco, and NO₃⁻-reducing oral bacteria is uncertain. Nitrosamines have not been 19 detected in tissues of animals exposed by inhalation to NO₂ unless precursors to nitrosamines 20 and/or inhibitors of nitrosamine metabolism are coadministered. Rubenchik et al. (1995) could not detect *N*-nitrosodimethylamine (NDMA) in tissues of mice exposed to 7.5 to 8.5 $mg/m^3 NO_2$ 21 22 for 1 h. NDMA was found in tissues, however, if mice were simultaneously given oral doses of 23 amidopyrine and 4-methylpyrazole, an inhibitor of NDMA metabolism. Nevertheless, the main 24 source of NO_2^- in the body is formed endogenously, and food is also a contributing source of 25 nitrite (from nitrate conversion).

26

27 **3.4.4.1** Integration and Biological Plausibility for Cancer Incidence

In summary, two epidemiological studies conducted in Europe showed an association
 between long-term NO₂ exposure and cancer incidence, with OR at 10-µg/m³ NO₂, ranging from
 1.10 to 1.08. Animal studies have provided no clear evidence that NO₂ acts as a carcinogen.
 The 1993 AQCD for Oxides of Nitrogendeemed findings of hyperplasia of lung epithelium from

NO₂ exposure as inconclusive, though NO₂ does appear to act as a tumor promoter at the site of
 contact. There are no in vivo studies that suggest that NO₂ causes teratogenesis or malignant
 tumors. Only very high exposure studies, i.e., levels not relevant to ambient NO₂ levels,
 demonstrate increased chromosomal aberrations and mutations in in vitro studies.

5 6

3.4.5 Summary of Morbidity Effects Associated with Long-Term Exposure

7 This section has presented epidemiological and toxicological studies evaluating 8 decrements in lung function, asthma prevalence, respiratory symptoms, and morphological 9 damage associated with long-term NO₂ exposures. It has further presented limited evidence of 10 cardiovascular effects, adverse birth outcomes, and cancer incidence linked to long-term NO₂ 11 exposure. Toxicological studies characterizing altered lung host defenses provide convincing 12 biological plausibility for many of the respiratory effects observed in epidemiological studies, 13 especially the decrements in lung function observed in the cohort studies. Epidemiology 14 evidence is less clear for effects of long-term NO₂ exposure on adverse birth outcomes and 15 cancer incidence. Animal studies do not provide mechanistic information to support these 16 observational findings. Some toxicological studies have demonstrated an effect of NO₂ exposure 17 on cardiovascular endpoints; however, whether these effects are the direct result of NO₂ 18 exposure or secondary responses to lung edema and changes in blood hemoglobin content are not 19 known. Parallel findings have been reported in the epidemiological literature for short-term 20 exposures only.

- 21
- 22 23

3.5 MORTALITY ASSOCIATED WITH LONG-TERM EXPOSURE

There have been several studies that examined mortality associations with long-term exposure to air pollution, including NO₂. They all used Cox-proportional hazards regression models with adjustment for potential confounders. The U.S. studies tended to focus on effects of PM, while the European studies tended to investigate the influence of traffic-related air pollution.

28

29 **3.5.1** U.S. Studies on the Long-Term Exposure Effects on Mortality

30 Dockery et al. (1993) conducted a prospective cohort study to study the effects of air 31 pollution with main focus on PM components in six U.S. cities, which were chosen based on the 32 levels of air pollution (with Portage, WI being the least polluted and Steubenville, OH, the most

1 polluted). Cox proportional hazards regression was conducted with data from a 14-to-16-year 2 mortality follow-up of 8,111 adults in the six cities, adjusting for smoking, sex, occupational 3 exposures, etc. Fine particles were the strongest predictor of mortality, but NO₂ was not 4 analyzed in their study. Krewski et al. (2000) conducted sensitivity analysis of the Harvard Six 5 Cities study and examined associations between gaseous pollutants (i.e., O₃, NO₂, SO₂, CO) and mortality. NO₂ showed risk estimates similar to those for PM_{2.5} per "low to high" range 6 7 increment with total (1.15 [95% CI: 1.04, 1.27] per 10-ppb increase), cardiopulmonary (1.17 8 [95% CI: 1.02, 1.34]), and lung cancer (1.09 [95% CI: 0.76, 1.57]) deaths; however, in this dataset NO₂ was highly correlated with PM_{2.5} (r = 0.78), SO₄²⁻ (r = 0.78), and SO₂ (r = 0.84). 9 Pope et al. (1995) examined PM effects on mortality using the American Cancer Society 10 11 (ACS) cohort. Air pollution data from 151 U.S. metropolitan areas in 1980 were linked with 12 individual risk factors on 552,138 adults who resided in these areas when enrolled in the study in 13 1982. Mortality was followed up until 1989. As with the Harvard Six Cities Study, the main hypothesis of this study was focused on fine particles and SO_4^{2-} , and gaseous pollutants were not 14 15 analyzed. Krewski et al. (2000) examined association between gaseous pollutants (means by 16 season) and mortality in the Pope et al. (1995) study dataset. NO₂ showed weak but negative 17 associations with total and cardiopulmonary deaths using either seasonal means. An extended 18 study of the ACS cohort doubled the follow-up time (to 1998) and tripled the number of deaths 19 compared to the original study (Pope et al., 2002). In addition to PM_{2.5}, all the gaseous 20 pollutants were examined. SO₂ was associated with all the mortality outcomes (including all 21 other cause of deaths), but NO₂ showed no associations with the mortality outcomes (RR = 1.0022 [95% CI: 0.98, 1.02] per 10-ppb increase in multi-year average NO₂). 23 Miller et al. (2007) studied 65,893 postmenopausal women between the ages of 50 and

24 79 years without previous cardiovascular disease in 36 U.S. metropolitan areas from 1994 to 25 1998. They examined the association between one or more fatal or nonfatal cardiovascular 26 events and the women's exposure to air pollutants. Subject's exposures to air pollution were 27 estimated by assigning the annual mean levels of air pollutants in 2000 measured at the nearest 28 monitor to the location of residence based on its five-digit ZIP Code centroid. Thus, the 29 exposure estimate in this study is spatially more resolved than those in the Harvard Six Cities or 30 the ACS cohort study. A total of 1,816 women had one or more fatal or nonfatal cardiovascular 31 events, including 261 deaths from cardiovascular causes. The main focus of the study was

1 PM_{2.5}, but the overall CVD events (but not results for death events only) using all the 2 copollutants (PM₁₀, PM_{10-2.5}, SO₂, NO₂, CO, and O₃) in both single- and multipollutant models 3 were presented. The results for the data with non-missing exposure data were included 4 (N = 28,402 subjects resulting in 879 CVD events) are described here. In the single-pollutant 5 model results, PM_{2.5} showed the strongest associations with the CVD events by far among the pollutants (hazard ratio = 1.24 [95% CI: 1.04, 1.48] per $10 - \mu g/m^3$ increase in annual average). 6 7 followed by SO₂ (HR = 1.07 [95% CI: 0.95, 1.20] per 5-ppb increase in the annual average). 8 NO_2 did not show association with the overall CVD events (HR = 0.98 [95% CI: 0.89, 1.08] per 9 10-ppb increase in the annual average). In the multipollutant model (apparently, all the 10 pollutants were included in the model), the PM₂₅'s association with the overall CVD events was 11 even stronger and the estimate larger (1.53 [95% CI: 1.21, 1.94]), and the association with SO₂ 12 also became stronger and the estimate larger (HR = 1.13 [95% CI: 0.98, 1.30]). NO₂ became 13 negatively associated with the overall CVD events (HR = 0.82 [95% CI: 0.70, 0.95]). 14 Correlations among these pollutants were not described, and therefore it is not possible to 15 estimate the extent of confounding among these pollutants in these associations, but it is clear 16 that PM_{2.5} was the best predictor of the CVD events.

17 Lipfert et al. (2000a) conducted an analysis of a national cohort of ~70,000 male U.S. 18 military veterans who were diagnosed as hypertensive in the mid 1970s and were followed up for 19 about 21 years (up to 1996). This cohort was 35% black and 81% had been smokers at one time. TSP, PM₁₀, CO, O₃, NO₂, SO₂, SO₄²⁻, PM_{2.5}, and coarse particles were considered. The county 20 21 of residence at the time of entry to the study was used to estimate exposures. Pollution levels 22 were averaged by year and county. Four exposure periods (1960-74, 1975-81, 1982-88, and 23 1989-96) were defined, and deaths during each of the three most recent exposure periods were 24 considered. Lipfert et al. noted that the pollution risk estimates were sensitive to the regression 25 model specification, exposure periods, and the inclusion of ecological and individual variables. 26 The authors reported that indications of concurrent mortality risks were found for NO_2 (the 27 estimate was not given with confidence bands) and peak O₃. Their subsequent analysis (Lipfert 28 et al., 2003) reported that the air pollution-mortality associations were not sensitive to the 29 adjustment for blood pressure. Lipfert et al. (2006a) also examined associations between traffic 30 density and mortality in the same cohort, whose follow-up period was extended to 2001. The 31 county-level traffic density was derived by dividing vehicle-km traveled by the county land area.

1 Because of the wide range of the traffic density variable, log-transformed traffic density was 2 used in their analysis. They reported that traffic density was a better predictor of mortality than 3 ambient air pollution variables, with the possible exception of O₃. The log-transformed traffic 4 density variable was moderately correlated with NO₂ (r = 0.48) and PM_{2.5} (r = 0.50) in this data 5 set. For the 1989 to 1996 data period (the period that showed generally the strongest 6 associations with exposure variables among the four periods), the estimated mortality relative 7 risk for NO₂ was 1.025 (95% CI: 0.983, 1.068) per 10-ppb increase in a single-pollutant model. 8 The two-pollutant model with the traffic density variable reduced NO₂ risk estimates to 0.996 9 (95% CI: 0.954, 1.040). Interestingly, as the investigators pointed out, the risk estimates due to 10 traffic density did not vary appreciably across these four periods. They speculated that other 11 environmental factors such as particles from tire, traffic noise, spatial gradients in socioeconomic 12 status, etc., might have been involved. Lipfert et al. (2006b) further extended analysis of the 13 veteran's cohort data to include the U.S. Environmental Protection Agency's Speciation Trends 14 Network (STN) data, which collected chemical components of PM_{2.5}. They analyzed the STN 15 data for year 2002, again using county-level averages. As in the previous Lipfert et al. (2006a) 16 study, traffic density was the most important predictor of mortality, but associations were also 17 seen for elemental carbon, vanadium, NO₃⁻, and nickel. NO₂, O₃, and PM₁₀ also showed 18 positive but weaker associations. The risk estimate for NO₂ was 1.043 (95% CI: 0.967, 1.125) 19 per 10-ppb increase in a single-pollutant model. Multi-pollutant model results were not 20 presented for NO₂.

21 Abbey et al. (1999) investigated associations between long-term ambient concentrations 22 of PM₁₀, O₃, NO₂, SO₂, and CO (1973 to 1992) and mortality (1977 to 1992) in a cohort of 23 6,338 nonsmoking California Seventh-day Adventists. Monthly indices of ambient air pollutant 24 concentrations at 348 monitoring stations throughout California were interpolated to zip code 25 centroids according to home or work location histories of study participants, cumulated, and then 26 averaged over time. They reported associations between PM_{10} and total mortality for males and 27 non-malignant respiratory mortality for both sexes. NO₂ was not associated with all-cause, 28 cardiopulmonary, or respiratory mortality for either sex. Lung cancer mortality showed large 29 risk estimates for most of the pollutants in either or both sexes, but the number of lung cancer 30 deaths in this cohort was very small (12 for female and 18 for male) and therefore it is difficult to 31 interpret these estimates.

1 The U.S. studies mentioned above have differences in study population characteristics 2 and geographic unit of averaging for pollution exposure estimates, and therefore the results 3 cannot be directly compared. The ACS and Women's Health Initiative (WHI) cohort studies 4 found no associations with NO₂, but in the veterans study, NO₂ was among the pollutants that 5 showed associations with mortality, though traffic density showed the strongest association. The 6 geographic resolution of air pollution exposure estimation varied across these studies: the 7 Metropolitan Statistical Area (MSA)-level averaging in the ACS study; county-level averaging 8 in the veterans' study; and assigning the nearest monitor's annual average to the ZIP code 9 centroid. Traffic density and other pollutants that showed mortality associations in the veterans 10 study, including elemental carbon, nickel, and vanadium and NO₂ (but not O₃ or NO₃⁻), are more localized pollutants, and therefore, using county-level aggregation, rather than MSA-level, may 11 12 have resulted in smaller exposure misclassification. However, in the WHI cohort study, despite 13 its finer resolution of exposure estimation, NO_2 (which is presumably more locally impacted than 14 PM_{25}) was not associated with cardiovascular events. It should also be noted that there are 15 generally fewer NO₂ monitors than PM_{2.5} monitors in U.S. cities (nationwide, NO₂ has the 16 smallest number of monitors among the Criteria pollutants except lead). Therefore, even when 17 the spatial resolution for exposure estimates is high in the study design, the fewer available 18 monitors for NO₂ compared to other pollutants, may result in compromised exposure estimation 19 for NO_2 . Thus, there is uncertainty regarding how the scale of aggregation affects the analyses 20 that utilize cross-sectional comparisons.

- 21
- 22

3.5.2 European Studies on the Long-Term Exposure Effects on Mortality

In contrast to the U.S. studies described above, the European studies described below,
have more spatially resolved exposure estimates, because their hypotheses or study aims
involved mortality effects of traffic-related air pollution. One study from France used a design
similar to the Harvard Six Cities study or ACS in that it was not intended to study of trafficrelated air pollution, and the exposure estimate was not done on an individual basis.
Hoek et al. (2002) investigated a random sample of 5,000 subjects from the Netherlands

29 Cohort Study on Diet and Cancer (NLCS) ages 55 to 69 from 1986 to 1994. Long-term exposure

30 to traffic-related air pollutants (black smoke and NO₂) was estimated using 1986 home

31 addresses. Exposure was estimated with the measured regional and urban background

1 concentration and an indicator variable for living near major roads. Cardiopulmonary mortality 2 was associated with living near a major road (RR = 1.95 [95% CI: 1.09, 3.52]) and less strongly 3 with the estimated air pollution levels (e.g., for NO₂, RR = 1.32 [95% CI: 0.88, 1.98] per 10-ppb 4 increase). The risk estimate for living near a major road was 1.41 (95% CI: 0.94, 2.12) for total 5 mortality. For estimated NO₂ (incorporating both background and local impact), the RR was 6 1.15 (95% CI: 0.60, 2.23) per 10 ppb). Because the NO₂ exposure estimates were modeled, 7 interpretation of their risk estimates is not straightforward. However, these results do suggest 8 that NO₂, as a marker of traffic-related air pollution, was associated with these mortality 9 outcomes.

10 Filleul et al. (2005) investigated long-term effects of air pollution on mortality in 14.284 11 adults who resided in 24 areas from seven French cities when enrolled in the PAARC survey (for air pollution and chronic respiratory diseases) in 1974. Daily measurements of SO₂, TSP, black 12 13 smoke, NO₂, and NO were made in 24 areas for 3 years (1974 through 76). Cox-proportional 14 hazards models adjusted for smoking, educational level, BMI, and occupational exposure. 15 Models were run before and after exclusion of six area monitors influenced by local traffic as 16 determined by the NO/NO₂ ratio of >3. Before exclusion of the six areas, none of the air 17 pollutants were associated with mortality outcomes. After exclusion of these areas, analyses 18 showed associations between total mortality and TSP, black smoke, NO₂, and NO. The 19 estimated NO₂ risks were 1.28 (95% CI: 1.07, 1.55), 1.58 (95% CI: 1.07, 2.33), and 2.12 20 (95% CI: 1.11, 4.03) per 10-ppb increase in NO₂ mean over the study period for total, 21 cardiopulmonary, and lung cancer mortality, respectively. From these results, the authors noted 22 that inclusion of air monitoring data from stations directly influenced by local traffic could 23 overestimate the mean population exposure and bias the results. This point raises a concern for 24 NO₂ exposure estimates used in other studies (e.g., ACS) in which the average of available 25 monitors was used to represent the exposure of each city's entire population. 26 Nafstad et al. (2004) investigated the association between mortality and long-term air 27 pollution exposure in a cohort of Norwegian men followed from 1972/1973 through 1998. 28 Nafstad et al. also presented the result for lung cancer deaths only in their earlier (Nafstad et al., 29 2003) analysis discussed in Section 3.3.4, but their 2004 study includes more mortality 30 categories and is therefore described here. Data from 16,209 men 40 to 49 years of age living in 31 Oslo, Norway, in 1972 and 1973 were linked with data from the Norwegian Death Register and

1 with estimates of average yearly air pollution levels at the participants' home addresses from 2 1974 to 1998. PM was not considered in this study because measurement methods changed 3 during the study period. NO_x , rather than NO_2 , was used. Exposure estimates for NO_x and SO_2 4 were constructed using models based on subjects' addresses and emission data for industry, 5 heating, and traffic and measured concentrations. Addresses linked to 50 of the busiest streets 6 were given an additional exposure based on estimates of annual average daily traffic. The 7 adjusted risk estimate for total mortality was 1.08 [95% CI: 1.06, 1.11] for a $10-\mu g/m^3$ increase 8 in the estimated exposure to NO_x . Corresponding mortality risk estimates for respiratory causes 9 other than lung cancer was 1.16 (95% CI: 1.06, 1.26); for lung cancer, 1.11 (95% CI: 1.03, 10 1.19); and for ischemic heart diseases, 1.08 (95% CI: 1.03, 1.12). SO₂ did not show similar 11 associations. The risk estimates presented for categorical levels of these pollutants showed 12 mostly monotonic exposure-response relationships for NO_x, but not for SO₂. The authors noted 13 that the SO₂ levels were reduced by a factor of 7 during the study period, whereas NO_x did not 14 show any clear downward trends. These results are suggestive of the effects of traffic-related air 15 pollution on long-term mortality, but NO_x likely represented the combined effects of that source, 16 possibly including PM, which could not be analyzed in this study. Nyberg et al. (2000), a case-17 control study of 1,043 men aged 40 to 75 with lung cancer and 2,364 controls in Stockholm 18 County, reported similar results to this study. They mapped residence addresses to a GIS 19 database indicating 4,300 traffic-related line sources and 500 point sources of NO₂ exposure. 20 Exposure was derived from a model validated by comparison to actual measurements of NO₂ at six sites. Exposure to NO₂ at 10 μ g/m³ was associated with an OR of 1.10 (95% CI: 0.97 1.23). 21 Exposure to the 90th percentile ($\geq 29.26 \ \mu g/m^3$) of NO₂ was associated with an OR of 1.44 (95%) 22 23 CI: 1.05, 1.99).

24 Naess et al. (2007) investigated the concentration-response relationships between air 25 pollution (i.e., NO₂, PM₁₀, PM_{2.5}) and cause-specific mortality using all the inhabitants of Oslo, 26 Norway, aged 51 to 90 years on January 1, 1992 (n = 143,842), with follow-up of deaths from 27 1992 to 1998. An air dispersion model was used to estimate the air pollution levels for 1992 28 through 1995 in all 470 administrative neighborhoods. Correlations among these pollutants were 29 high (ranged 0.88 to 0.95), but they were not correlated with education and occupation (less than 30 0.05). All causes of deaths were associated with all indicators of air pollution for both sexes and both age groups. The investigators reported that the effects appeared to increase at NO₂ levels 31

higher than 40 μ g/m³ (21 ppb) in the younger age (51 to 70 years) group and with a linear effect 1 in the interval of 20 to 60 μ g/m³ (10 to 31 ppb) for the older age group (see Figure 3.4-4). 2 3 However, they also noted that a similar pattern was found for both PM_{2.5} and PM₁₀. Thus, the 4 apparent threshold effect was not unique to NO₂. NO₂ risk estimates for all-cause mortality were 5 presented only in a figure. Associations between these pollutants and cardiovascular causes, 6 lung cancer, and COPD were also found in both age groups and sexes. The effect estimates were 7 particularly larger for COPD deaths. The findings are generally consistent with those from 8 Nafstad et al. (2003 and 2004) studies, in which a smaller number of male-only subjects were 9 analyzed. Unlike the 2004 Nafstad study, the Naess et al. study (2007) did not adjust for 10 smoking or physical activities. While NO₂ effects were suggested, the high correlation among 11 the PM indices and NO₂ or NO_x makes it difficult to ascribe these associations to NO₂/NO_x

12 alone.

Figure 3.4-4. Age-adjusted, nonparametric smoothed relationship between NO₂ and mortality from all causes in Oslo, Norway, 1992 through 1995.

Gehring et al. (2006) investigated the relationship between long-term exposure to air pollution originating from traffic and industrial sources and total and cause-specific mortality in a cohort of women living in North Rhine-Westphalia, Germany. The area includes the Ruhr region, one of Europe's largest industrial areas. Approximately 4,800 women (age 50 to

Source: Naess et al. (2007).

1 59 years) were followed for vital status and migration. Exposure to air pollution was estimated 2 by GIS models using the distance to major roads, NO₂, and PM₁₀ (estimated from $0.71 \times TSP$, 3 based on available PM₁₀ and TSP data in the area) concentrations from air monitoring station 4 data. Cardiopulmonary mortality was associated with living within a 50-m radius of a major 5 road (RR = 1.70 [95% CI: 1.02, 2.81]), NO₂ (RR = 1.72 [95% CI: 1.28, 2.29] per 10-ppb increase in annual average), and PM₁₀ (RR = 1.34 [95% CI: 1.06, 1.71] per 7- μ g/m³ increase in 6 7 annual average). Exposure to NO₂ was also associated with all-cause mortality (1.21 [95% CI: 8 1.03, 1.42] per 10 ppb). NO₂ was generally more strongly associated with mortality than the 9 indicator for living near a major road (within versus beyond a 50-m radius) or PM_{10} .

10

11

3.5.3 Estimation of Exposure in Long-Term Exposure Mortality Studies

12 The long-term exposure mortality studies described above can be categorized into two 13 types based on the way exposure estimates were made: (1) studies in which the community 14 average values were assigned to all the subjects in that community; (2) studies in which 15 individual subject's exposure was estimated based on spatial modeling using emission and 16 concentration data. The first type is what Kunzli and Tager (1997) called "semi-individual" 17 study in which the information on potential confounders are collected and adjusted for on an 18 individual basis, but the air pollution exposure estimate was done on an ecologic basis. The 19 Harvard Six Cities study, the ACS study, and the French PAARC study are of this type. The studies that used the latter type of approach are mostly studies that attempted to investigate the 20 21 effects of traffic-related pollutants. In the Abbey et al. (1999) Seventh-day Adventist study, 22 individual exposure estimates were made through interpolation of ambient monitors because a 23 relatively large number of monitors (348) were available within California, but unlike the 24 European studies, they did not attempt to address specifically the influence of traffic-related 25 exposures.

The Filleul et al. (2005) French seven cities (24 areas) study found that associations between NO₂ and mortality outcomes were found only after exclusions of six area monitors that were highly influenced by local traffic. This raises a question about potential exposure errors associated with NO₂ or NO_x in the semi-individual studies. In order for the population average exposure estimate to be representative in a semi-ecologic study, the data from locally impacted NO₂ monitors may cause exposure error or, at the least, monitor selection criteria need to be

consistent across cities (even if those who live near the source are the ones who are adversely 1 2 affected). It is not clear; to what extent such exposure error affected other semi-individual studies. Unlike regional air pollutants (e.g., SO_4^{2-} and $PM_{2.5}$) in the eastern United States in 3 warm seasons when its major constituent is $SO_4^{2^-}$) whose levels are generally uniform within the 4 5 scale of the metropolitan area, the within-city variation for more locally impacted pollutants such 6 as NO₂, SO₂, and CO are likely to be larger and, therefore, are more likely to have larger exposure errors in the semi-individual studies. The smaller number of monitors available for 7 8 NO₂ in the United States may make the relative error worse for NO₂ compared to other 9 pollutants. In the Krewski et al. (2000) sensitivity analysis of the Harvard Six Cities study, NO₂ 10 was associated with total and cardiopulmonary deaths. However, NO₂ was highly correlated with $PM_{2.5}$, SO_4^{2-} , and SO_2 in this data set, and combined with the relatively small number of 11 12 cities studied, it is difficult to interpret the risk estimates. In Krewski et al.'s sensitivity analysis 13 of the 1995 ACS study, or in the Pope et al.'s (2002) extended ACS study, NO₂ was not 14 associated with deaths.

15 In the Hoek et al. study (2002), the indicator of living near a major road was a better 16 predictor of mortality than the estimated NO₂ exposures. In the Gehring et al. study (2006) of 17 the North Rhine-Westphalia, Germany, the estimated NO₂ was a better predictor of total and 18 cardiopulmonary mortality than the indicator of living near a major road. Comparing the results 19 for the indicators of living near a major road (categorical) and the estimated NO₂ or NO_x 20 exposures (continuous) is not straightforward, but it is possible that, depending on the presence 21 of other combustion sources (e.g., the North Rhine-Westphalia area included highly industrial 22 areas), NO₂ may represent more than traffic-related pollution.

23 The second type of studies discussed above, which estimated individual exposures, may 24 provide more accurate exposure estimates than the semi-individual studies. However, because 25 they generally involve modeling with such information as traffic volume and other emission 26 estimates in addition to monitored concentrations, additional uncertainties may be introduced. 27 Thus, validity and comparability of various methods may need to be examined. In addition, 28 because the review process, such as this, ultimately needs to link the relationship between the 29 concentration measured at the community monitors and the health effects, interpreting the risk 30 estimates based on individual-level exposures will require an additional step to translate the 31 difference. In addition, the studies with estimated individual exposures will need to deal with

within-city spatial confounding with socioeconomic conditions. While most of these studies adjusted for the socioeconomic variables, residual confounding is always a concern. Finally, a more accurate exposure estimate does not solve the problem of the surrogate role that NO₂ may play. Most of these studies do acknowledge this issue and generally treat NO₂ as a surrogate marker, but the extent of such surrogacy and confounding with other traffic- or combustionrelated pollutant is not clear at this point.

7 8

3.5.4 Summary of Risk Estimates for Mortality with Long-Term Exposure

Figure 3.4-5 summarizes the NO₂ risk estimates for total mortality from the studies
reviewed above. The risk estimates are grouped to those that used ecologic-level exposure
estimates and those that used individual exposure estimates, but because of the small number of
studies listed, no systematic pattern is apparent. Not all of these studies presented correlation
between NO₂ and other pollutants, but those that did present some high correlation coefficients.
For example, in the Harvard Six Cities study, the correlation between NO₂ and PM_{2.5} was 0.78.

In the French study, the correlation between NO₂ and black smoke was 0.72. In the
German study, the correlation between NO₂ and PM₁₀ was 0.8 for the 5-year averages.
Therefore, interpretation of the estimates requires additional caution. The risk estimates for total
mortality ranged from 0 to 1.28 per 10-ppb increase in annual or longer averages of NO₂. The
risk estimates for more specific categories were often larger than these, but such associations
were often not specific to NO₂, or not consistent across studies.

In the long-term studies, those that did report correlation among pollutants suggest that NO₂ was highly correlated with PM indices to the extent ($r \sim 0.8$) that results from multipollutant models would be meaningless.

Available information on long-term mortality NO₂ risk estimates for more specific causes is also limited. Among the studies with larger number of subjects, the ACS study (Pope et al., 2002) examined cardiopulmonary and lung cancer deaths, but as with the all-cause deaths, they were not associated with NO₂. In the Naess et al. (2007) analysis of all inhabitants of Oslo, Norway, age 51 to 90, NO₂ risk estimates for COPD were higher than those for other causes, but the same pattern was seen for PM_{2.5} and PM₁₀. In the Gehring et al. (2006) study in North Rhine-Westphalia, Germany, NO₂ risk estimates for cardiopulmonary mortality were larger than

Figure 3.4-5. Total mortality risk estimates from long-term studies. The original estimate for the Norwegian study was estimated for NO_x . Conversion of $NO_2 = 0.35 \times NO_x$ was used.

1 those for all-cause mortality, but, again, the same pattern was seen for PM_{10} . Thus, higher risk 2 estimates seen for specific causes of deaths were not specific to NO_2 in these studies.

In long-term studies, different geographic scales were used to estimate air pollution exposure estimates across studies. Since the relative strength of association with health outcomes among various air pollutant indices may be affected by the spatial distribution of the pollutants (i.e., regional versus local), the numbers of monitors available, and the scale of aggregation in the study design, it is not clear how these factors affected the apparent difference in results.

- 9
- 10
- 11

3.6 STUDIES OF NO, HONO, AND HNO₃

As discussed earlier in Chapter 3, the family of NO_x contains many other chemicals besides NO₂. Of these, chemicals of interest from a toxicology standpoint include nitric oxide (NO) and HNO₃. Most of the data is on NO, with many of the studies using high concentrations. Only the lower concentration studies (i.e., studies that tested concentrations within an order or two of magnitude above environmental levels) have been included in this update.

17

18 Nitric Oxide (NO)

19

20 Endogenous Formation of NO

Compared with NO₂, the toxicity database on NO is small. A confounding factor with
the toxicity studies on NO is that it is often difficult to obtain pure NO in air without some
contamination with NO₂.

24 Endogenous NO is formed in cells from the amino acid L-arginine by at least three 25 different oxygen-utilizing NO synthetases. Endogenous NO is involved in intracellular signaling 26 in the nervous system, mediation of vasodilation in both systemic and pulmonary circulation, and 27 mediation of cytotoxicity and host defense reactions in the immune system (Garthwaite, 1991; 28 Barinaga, 1991; Moncada et al., 1991, 1992; Snyder and Bredt, 1992). There are two basic 29 actions of endogenous NO. It is involved in a variety of actions at low concentrations (pico-30 nanomolar) within nerve and endothelial cells via activation of guanylate cyclase (Ignarro, 31 1989). The other action of endogenous NO involves high concentrations (nano- to micromolar) 32 and is formed during induction of enzymes triggered by exposure of cells to bacterial toxins or to

growth-regulating factors (cytokinins). The inducible nitric oxide synthetase (iNOS) formation
 occurs especially in macrophages and neutrophil leukocytes and is important for the killing of
 bacteria and parasites and possibly also for cytostasis in antitumor reactions (Hibbs et al., 1988;
 Ignarro, 1989; Moncada et al., 1991, 1992).

5 6

Effects of NO on Pulmonary Function, Morphology, and Host Lung Defense Function

7 Murphy et al. (1964) found that respiratory function was not affected in guinea pigs exposed to NO at 19,600 μ g/m³ (16 ppm) or 61,300 μ g/m³ (50 ppm) for 4 h. Guinea pigs 8 9 exposed to $6130 \text{-}\mu\text{g/m}^3$ (5 ppm) NO for 30 min, twice a week for 7 weeks showed increased 10 airways responsiveness to acetylcholine. Reversal of methacholine-induced bronchoconstriction 11 by NO has been reported in guinea pigs at 6130 μ g/m³ (5 ppm) (Dupuy et al., 1992), while in 12 rabbits, full reversal of methacholine-induced bronchoconstriction was seen at 98,100 μ g/m³ 13 (80 ppm) (Högman et al., 1993). This action is in contrast to NO_2 as described above, which 14 sensitizes the lung to bronchoconstriction following irritant and allergen challenge.

Holt et al. (1979) found grossly emphysematous lungs in NO-exposed mice, whereas comparable exposures to NO₂ resulted in only airspace enlargement. In the study by Azoulay et al. (1981), rats exposed continuously to $3760-\mu g/m^3$ (2 ppm) NO for 6-h to 6 weeks were found to have significant enlargement of the airspaces and destruction of alveolar septa.

19 Results from a recent study (Mercer et al. (1995) suggest that the pattern of injury 20 produced by NO may differ from NO₂, as well as being more potent in introducing certain 21 changes in lung morphology. In this study, male rats were exposed to either NO or NO_2 at 22 0.5 ppm with twice daily 1-h spikes of 1.5 ppm for 9 weeks. The number of pores of Kohn and 23 detached alveolar septa were evaluated by electron microscopy, using stereological procedures 24 for the study of lung structure that involved morphometric analyses of electron micrographs. 25 The average number of pores per lung for the NO group exceeded by approximately 2.5 times 26 the mean number for the NO₂ groups, which was more than 10 times that for controls. The mean 27 number of detached septa per lung was significantly higher for the NO group (mean 117) than 28 the NO₂ group (mean 20) or the controls (mean 4). There was also a statistically significant 29 30% reduction in interstitial cells in the NO group, but no significant differences in the other 30 parenchymal cell types were observed between the controls and the NO- or NO₂-exposed groups. 31 Lastly, the thickness of the interstitial space was reduced for the NO group (mean 0.24 µm

versus 0.32 μm for controls) but not for the NO₂ group (mean 0.29 μm), and epithelial cell
 thickness did not differ between the groups.

3 In a subsequent study, Mercer et al. (1999) exposed rats continuously 22 h/day to 0, 2454, or 7362- μ g/m³ (0, 2, or 6 ppm) NO for 6 weeks. The surface density of the alveolar 4 5 basement membrane and the average thickness of the type II alveolar epithelium, although 6 reduced, did not differ statistically from control animals. Morphometric analysis showed that a 7 significant greater fraction of the alveolar surface was covered by type II cells in the lungs from 8 both NO exposure groups. There was a 52% increase in the number of type II cells per surface area of basement membrane in the 7362-µg/m³ (6 ppm) NO-exposed animals, as well as an 9 10 approximate 3-fold increase in the number of AMs in the airspaces of rat lungs. The mean 11 number of AMs in the airspaces of lungs from the $2454 \mu g/m^3$ (2 ppm) NO-exposed animals was 12 elevated but not statistically different from controls. Inhaled NO produced significant 13 sequestration of platelets in the pulmonary capillaries, as determined from transmission electron 14 micrographs. The volume density of platelets in the pulmonary capillaries was increased 15 approximately 2-fold in the NO-exposed groups. Although present in higher numbers, the 16 platelets did not demonstrate morphologic features of activation such as large, irregular profiles. 17 Under scanning electron microscopy, fenestrae were found to be distributed throughout the gas-18 exchange region of the lungs. Unlike the results of Mercer et al. (1995), there were no 19 statistically significant differences in the number of lung fenestrae between control and NO-20 exposed lungs, as determined by both serial-section counts and scanning electron microscopy. Thus, it appears that inhaled NO produces a pattern of injury similar to that of NO₂, at least in 21 22 this regard.

23 Two studies reported the effects of NO on host defense function of the lungs. Mice exposed to 12,270-µg/m³ (10 ppm) NO for 2 h/day, 5 days/week for 30 weeks (Holt et al., 1979) 24 25 developed immunological alterations that are difficult to interpret due to the duration dependence 26 of some of the responses (e.g., an enhancement of the humoral immune response to sheep red 27 blood cells was seen at 10 weeks, but this was not evident at the end of the exposure series). In the study by Azoulay et al. (1981), mice exposed continuously to 3760-µg/m³ (2.0 ppm) NO for 28 29 6-h to 4 weeks did not show any effect on resistance to infection induced by a bacterial aerosol 30 administered after each NO exposure. Although the data are limited, NO does not appear to have 31 the same effect on parameters related to host immune defense as NO₂.

1 Metabolic Effects in the Lung and Other Tissues

2 NO has a higher affinity for heme-bound iron than does CO. This affinity leads to the 3 formation of methemoglobin and the stimulation of guanylate cyclase. NO stimulates guanylate 4 cyclase in vitro, resulting in smooth muscle relaxation and vasodilation (Katsuki et al., 1977; 5 Ignarro, 1989; Moncada et al., 1991). This activation pathway via guanylate cyclase is probably 6 involved in the vasodilation observed in the pulmonary circulation and the acute bronchodilator 7 effect from inhaled NO. The initial pulmonary vasodilation that occurs during NO inhalation 8 does not appear to be maintained chronically. Pulmonary cGMP, iNOS, mRNA, and TNF-a were increased in the lungs of rats after a 1-h exposure to $7362-ug/m^3$ (6 ppm) NO, but 9 10 decreased to control values after 1-day and 1-week exposure periods (Brady et. al., 1998). Lipid 11 peroxidation (measured as malonyl dialdehyde) was decreased at all time points. 12 It is unclear whether other effects might be exerted from ambient NO via the pathway 13 involving guanylate cyclase. Since NO is rapidly inactivated by hemoglobin, internal organs 14 other than the lungs are unlikely to be affected directly by cGMP-mediated vasodilator influence 15 from ambient concentrations of NO. 16 Methemoglobin formation from inhaled NO, via the formation of nitrosylhemoglobin 17 (Oda et al., 1975, 1979, 1980a,b; Case et al., 1979; Nakajima et al., 1980) and subsequent 18 oxidation with oxygen, has been well-characterized (Kon et al., 1977; Chiodi and Mohler, 1985). 19 Levels of reduced glutathione in the lung are not changed in mice exposed to NO concentrations of 12,300 to 25,800 μ g/m³ (10 to 21 ppm) for 3-h daily for 7 days (Watanabe 20 21 et al., 1980). 22 The cytotoxic effects of NO may be explained by the possible mechanism of NO reacting 23 with thiol-associated iron in enzymes and eventually displacing the iron (Hibbs et al., 1988;

Weinberg, 1992). Other effects of NO with iron and various enzymes and nucleic acids arelisted in Annex AX4.6.

26

27 Effects of Short-Term NO Exposure

Research on the role of endogenous NO as a mediator of vascular tone continues to be active. NO inhalation is used in clinical settings or therapeutically to treat pulmonary hypertension due to its effects on vascular tone in the pulmonary vascular bed. It is possible that NO₂ could influence airways or pulmonary vascular availability of NO, with consequences for the regulation of pulmonary vascular function. Ponka and Virtenen (1996) report an association of hospital and ED admissions with NO. Other studies summarized below were experimental in
 design.

3 The effects of inhaled NO are limited to the pulmonary vasculature presumably due to 4 rapid removal of NO from the circulation arising from reactions with hemoglobin. Although 5 many studies have used concentrations that are not relevant to environmental levels of air 6 pollution and were not designed to evaluate the effects of ambient exposures, changes in 7 pulmonary vascular resistance do occur at concentrations as low as 10 ppm following acute 8 exposure in pigs (Alving et al., 1993; Holopainen et al., 1999) and 5 ppm in sheep (Fratacci 9 et al., 1991; Ichinose et al., 1995; DeMarco, et al., 1996). In addition, Jiang et al (2002) reported 10 in a rodent model of chronic pulmonary hypertension that showed that inhaled NO 11 concentrations ranging from 0.1 to 2.0 ppm reduced mean pulmonary arterial pressure, while no 12 such changes were observed in control rats (i.e., normal hypertensive). Thus, changes in 13 vascular tone from inhaled NO occur in the 5-ppm range, although effects may also be present at 14 lower concentrations in sensitized animals. 15 Formation of methemoglobin, via the formation of nitrosylhemoglobin (Oda et al., 1975, 16 1979, 1980a,b; Case et al., 1979; Nakajima et al., 1980) and subsequent oxidation with oxygen 17 has been well-described (Kon et al., 1977; Chiodi and Mohler, 1985). Methemoglobin in mice increased exponentially with the NO concentration, from 24,500 to 98,100 μ g/m³ (20 to 18 19 80 ppm); levels rapidly decreased after cessation of exposure, with a half-time of only a few minutes (Oda et al., 1980b). Exposure of mice to 2940-µg/m³ (2.4 ppm) NO for 23 to 29 months 20 21 resulted in nitrosylhemoglobin levels at 0.01%, while the maximal methemoglobin level was 0.3% (Oda et al., 1980b). Exposure to 12,300- μ g/m³ (10 ppm) NO₂ for 6.5 months resulted in 22

23 nitrosylhemoglobin level of 0.13% and methemoglobin level of 0.2% (Oda et al., 1976). Rats

exposed to 2450 μ g/m³ (2 ppm) continuously for 6 weeks showed no detectable methemoglobin (Azoulay et al., 1977). In humans, the ability to reduce methemoglobin varies genetically and is

26 lower in infants, complicating direct extrapolation of effect levels to human health risk

assessment.

The ability of NO to react with iron-containing enzymes has additional ramifications beyond methemoglobin. Mice exposed to NO at 11,070 μ g/m³ (9 ppm) for 16-h had decreased iron transferrin (Case et al., 1979). When exposed to 12,300 μ g/m³ (10 ppm) for 6.5 months, leukocyte count and proportion of PMN cells were increased (Oda et al., 1976). Red blood cell 1 morphology, spleen weight, and bilirubin were also affected. A slight increase in hemolysis was 2 seen in mice exposed to 2940 μ g/m³ (2.4 ppm) of NO (Oda et al., 1980a).

3

4 Nitrous Acid (HONO)

5 Two indoor nitrous acid studies were identified that examine health effects and HONO 6 exposure. One of these was van Strien et al. (2004) discussed above, and the other is Jarvis et al. 7 (2006). In England, Jarvis et al. (2005) studied 276 adults and related respiratory symptoms and 8 lung function to home levels of NO₂ and HONO as well as outdoor NO₂ levels. The median 9 indoor HONO level was 3.10 ppb (IQR 2.05 to 5.09) and 12.76 ppb for NO₂ indoors and 10 13.83-ppb NO₂ outdoors. The prevalence of wheeze was higher in individuals in the highest quartile HONO concentration where 33.3% reported wheeze in the previous 12 months versus 11 12 those in the lowest concentration quartile where 25.5% reported wheeze. No significant 13 relationships for NO₂ were noted. An increase in 1 ppb in indoor HONO was associated with a 14 decrease in FEV₁, percentages predicted (-0.96% [95% CI: -1.82, -0.09). After adjustment for 15 NO₂ measures, the association of HONO with low lung function persisted. In the van Strien 16 et al. (2004) study of infants in the United States, NO₂ and HONO were moderately correlated 17 (r = 0.40) with higher correlations in homes during autumn and winter (r = 0.83). The highest 18 nitrous acid level was 4.2 ppb. Nitrous acid exposure was not independently associated with 19 respiratory symptoms.

20 There have also been controlled human exposure studies evaluating the effects of nitrous 21 acid. Beckett et al. (1995) exposed 11 mild asthmatics to air or 0.65 ppm HONO for 3 h, 22 including three 20-min exercise periods. Spirometry and symptoms were measured during and 23 immediately following exposure. HONO caused a small increase in irritant respiratory 24 symptoms, and a 3% decline in FVC, relative to air exposure. FEV_1 was not significantly 25 affected. Rasmussen et al. (1995) exposed 15 healthy nonsmokers to air, 0.077, and 0.395-ppm 26 HONO for 3.5-h including a single 10-min exercise period. HONO caused concentration-related 27 increases in epithelial cells in eye tear fluid, suggesting eye conjunctival irritation. Specific 28 airways conductance (the inverse of airways resistance) decreased 10% after HONO and 29 2% after air. There were no significant effects on FEV₁ or airways responsiveness. 30
1 Nitric Acid (HNO₃)

As discussed in Section 3.4.1, recent reports from the Childrens' Health Study in
Southern California have reported associations between decreased lung function growth and acid
vapor (results primarily from photochemical conversions of oxides of nitrogen to HNO₃ vapor).
Significant associations were reported for long-term exposure to acid vapor with decrements in
measures of lung function, though similar associations were reported with NO₂ and measures of
PM (Gauderman et al., 2004).

8 Very few toxicological studies have been conducted with HNO₃, even though it exists in 9 ambient air generally as a water-soluble vapor. The few studies available have examined the 10 histological response to instilled HNO₃ (usually 1%). This procedure was used to develop 11 models of bronchiolitis obliterans in various animal species, including dogs, rabbits, and rats 12 (Totten and Moran, 1961; Greenberg et al., 1971; Gardiner and Schanker, 1976; Mink et al., 13 1984). The World Health Organization (WHO, 1997) considered these studies to be informative 14 for the design of inhalation studies but of questionable relevancy to understanding the pulmonary 15 response to pure HNO₃ vapor. Based on the limited data available, HNO₃ appears to affect some 16 respiratory tract parameters in a fashion that is qualitatively similar to NO₂.

17 In a study by Abraham et al. (1982), normal sheep and allergic sheep (i.e., having airways 18 responses similar to those occurring in humans with allergic airways disease) were exposed to 4120-µg/m³ (1.6 ppm) HNO₃ vapor for 4-h using a "head-only" chamber. There was decreased 19 20 specific pulmonary flow resistance in both groups of sheep, indicating no bronchoconstriction. 21 The allergic, but not the normal, sheep showed increased airways reactivity to carbachol, both 22 immediately and 24-h after HNO₃ exposure. Exposure of rabbits to HNO₃ concentrations of 50, 23 150, or 450 μ g/m³ (0.02, 0.06, or 0.17 ppm), 4 h/day, 3 days/week for 4 weeks caused no overt 24 pathology in conducting airways, and airways epithelium was normal in all exposure groups 25 (Schlesinger et al., 1994). Stimulated superoxide production, however, was reduced in 26 pulmonary macrophages at all exposure levels. Nadziejko et al. (1992) exposed rats to HNO₃ vapor for either a single 4-h exposure period to $1000-\mu g/m^3$ (0.39 ppm) HNO₃ vapor or 4 h/day 27 for 4 days to $250-\mu g/m^3$ (0.1 ppm) HNO₃ vapor. There were no changes in cell populations in 28 29 the BAL fluid from rats under either exposure condition. HNO₃ vapor, under either exposure 30 condition, did not affect zymosan-stimulated respiratory burst activity when pulmonary 31 macrophages were cultured overnight in order to prevent spontaneous respiratory burst activity.

1 However, when measured using freshly isolated macrophages, both spontaneous and PMA-2 stimulated respiratory burst activity was decreased in pulmonary macrophages from rats exposed to $250-\mu g/m^3$ (0.1 ppm) HNO₃ vapor for 4 days; results from the single 4-h exposure to 3 1000-µg/m³ (0.39 ppm) HNO₃ vapor were not reported. Lavage fluid protein content was not 4 5 affected, but lavage fluid elastase inhibitor capacity was increased in both exposure groups. It is 6 not known whether this increase was caused by enhanced production of an elastase inhibitor 7 within the lung or due to increased permeability and leakage of elastase inhibitor from the 8 plasma into the lung lining layer. 9 Sindhu et al. (1998) reported no effects on lung polyamine metabolism in rats exposed to

10 $50-\mu g/m^3$ (0.02 ppm) HNO₃ 4 h/day, 3 days/week for 40 weeks. No other endpoints were 11 evaluated.

TABLE 3.2-1. PROPOSED MECHANISMS WHEREBY NO₂ AND RESPIRATORY VIRUS INFECTIONS MAY EXACERBATE UPPER AND LOWER AIRWAY SYMPTOMS

	Proposed Mechanisms
Upper Airways	
Epithelium	↓ Ciliary beat frequency
	↑ Epithelial permeability
	\downarrow Nasal filtering of inhaled allergen and increased penetration to lower airway
	\uparrow Conditional of inspire air, low temperature/humidity, bronchospasm
Lower Airways	
Epithelium	(as in upper airways)
Cytokines	↓ Epithelial-derived IL-8
	↑ Macrophage-derived IL-1b
Inflammatory cells	
Mast cells	↑ Mast cell tryptase
Lymphocytes	↑ Neutrophils
	↑ Total lymphocytes
	↑ NK lymphocytes
	↓ T-helper/T-cytotoxic cell ratio
Inflammatory mediators	↑ Free radicals, proteases, TXA ₂ , TXB ₂ , LTB ₄
Allergens	↑ Penetrance due to ciliostasis
	$\downarrow PD_{20} FEV_1$
	↑ Antigen-specific IgE
Peripheral blood	↓ Total macrophages
	\downarrow B and NK lymphocytes
	↓ Total lymphocytes

Source: Chauhan et al. (1998).

Reference			NO ₂	(ppb) ¹	_	95% Co Inte		
Location	Effect	Age	24-h avg (Range of Means Across Cities)	1-h Max (Range of Means Across Cities)	%Change Normalized to 10 ppb ²	Lower	Upper	Lag
ANALYSES								
Barnett et al. (2005)	Respiratory	0	7.0, 11.5		6.1	-2.0	14.3	0, 1
Barnett et al. (2005)	Respiratory	1 to 4	7.0, 11.5		4.7	-1.6	11.2	0, 1
Barnett et al. (2005)	Respiratory	1 to 4		15.7, 23.2	3.1	0.8	5.4	0, 1
Barnett et al. (2005)	Respiratory	5 to 14	7.0, 11.5		11.4	3.3	19.8	0, 1
Barnett et al. (2005)	Respiratory	5 to 14		15.7, 23.2	5.2	1.8	8.8	0, 1
Simpson et al. (2005a)	Respiratory	>65		16.3, 24.1	3.0	1.5	3.9	0, 1

TABLE 3.2-2. MULTICITY STUDIES FOR RESPIRATORY DISEASE OUTCOMES AND INCREMENTAL CHANGES IN NO₂

¹ Conversion from $\mu g/m^3$ to ppb: \div 1.91 ² In order to normalize values for percentage change into a standard unit of 10 ppb, the inverse of the increments identified by the author were multiplied by 10

		NO ₂ Averaging	0	Correlation (r) with Other Pollutants			_		
Location and Period	Statistical Analysis	Time and Mean Levels (ppb)	PM ₁₀	PM _{2.5}	PM _{10-2.5}	SO ₂	СО	O ₃	Standardized* Percent Excess Risk (95% CI)
Samet et al. (2000) (Reanalysis Dominici et al. (2003)) 90 cities, United States 1987-1994	Original two-stage analytic approach that pooled data from multiple locations using GAM, reanalysis with GAM with more stringent criteria and with GLM with natural cubic splines	24-h avg: 11.0-39.4	0.53	NR	NR	0.51	0.64	0.02	Total Mortality: NO ₂ alone: 0.50% [0.10, 0.90] NO ₂ + PM ₁₀ : 0.60% [-0.10, 1.40] NO ₂ + PM ₁₀ + O ₃ : 0.64% [-0.20, 1.60] NO ₂ + PM ₁₀ + SO ₂ : 0.50% [-0.40, 1.40] NO ₂ + PM ₁₀ + CO: 0.54% [-0.36, 1.44]
Sunyer et al. (1997) Multi- city, Europe (Barcelona, Helsinki, Paris, London) 1986- 1992	Poisson regression, GEE; followed APHEA protocol	24-h avg: Barcelona: 27.56 Helsinki: 18.2 London: 35.88 Paris: 21.84	NR	NR	NR	NR	NR	NR	Asthma: NO ₂ alone, <15 yrs: 1.5% [0.2, 2.6] NO ₂ + BS, <15 yrs: 1.4% [-1.8, 4.7] NO ₂ + SO ₂ , <15 yrs: 1.3% [-0.5, 3.2] NO ₂ alone, 15-64 yrs: 1.5% [0.3, 2.7] NO ₂ + BS, 15-64 yrs: 3.4% [1.0, 5.9]
Atkinson et al. (1999b) London, United Kingdom, 1/92-12/94	Poisson regression, followed APHEA protocol	1-h max: 50.3 (17.0)	NR	NR	NR	NR	NR	NR	Asthma among 0-14 year olds: NO_2 alone: 7.4% [3.6, 11.3] $NO_2 + SO_2$: 4.8% [0.3, 9.4] $NO_2 + CO$: 6.9% [3.0, 11.0] $NO_2 + PM_{10}$: 5.8% [1.6, 10.1] $NO_2 + BS$: 6.9% [3.0, 11.0] $NO_2 + O_3$: 8.0% [4.2, 12.0]
Galan et al. (2003) Madrid, Spain 1995-1998	Poisson Regression with (1) APHEA protocol, and (2) GAM with strict criteria	24-h avg: 34.89 (9.36)	0.76	NR	NR	0.61	NR	-0.21	Asthma: NO_2 alone: 6.7% [2.6, 11.1] $NO_2 + SO_2$: 6.3% [0.8, 12.1] $NO_2 + PM_{10}$: 0.2% [-5.8, 6.3]

TABLE 3.2-3. EFFECTS OF INCLUDING COPOLLUTANTS WITH NO₂ IN MULTIPOLLUTANT MODELS

	NO ₂ Averaging Correlation (r) with Other Pollutants		ts						
Reference, Study Location and Period	Statistical Analysis	Time and Mean Levels (ppb)	PM ₁₀	PM _{2.5}	PM _{10-2.5}	SO ₂	СО	O ₃	Standardized* Percent Excess Risk (95% CI)
McConnell et al. (2003), Southern California, United States 1993-1999	Three-stage regression to yield a logistic mixed-effects model	24-h avg: 19.4 (11.3)	0.2	0.54	-0.22	NR	NR	0.59	Asthma: NO_2 Alone: 7.4% $NO_2 + O_3$: 5.9% $NO_2 + PM_{10}$: 6.7% $NO_2 + PM_{2.5}$: 5.5% $NO_2 + PM_{10-2.5}$: 8.2%
Nafstad et al. (2003), Oslo, Norway 1972-1999	Cox-proportional hazard regression	24-h avg (NO _x): 5.6	NR	NR	NR	0.63	NR	NR	Lung Cancer Incidence: NO_x alone: 34.4% [7.9, 71.2] $NO_x + SO_2$: 44.3% [12.0, 82.9] Other Cancer Incidence: NO_x alone: 7.9% [-3.8, 25.1] $NO_x + SO_2$: 20.6% [3.9, 39.3]
Burnett et al. (1997b) Toronto, ON, Canada	Poisson regression, GEE, GAM	1-h max: 38.5	0.61	NR	NR	0.46	0.25	0.07	All respiratory hospital admissions: NO_2 alone: 25.2% [13.2, 38.2] $NO_2 + PM_{10}$: 22.1% [t = 2.85] $NO_2 + O_3 + SO_2$: 15.5% [t = 2.45] $NO_2 + O_3 + SO_2 + PM_{10}$: 15.5% [t = 1.77]
Burnett et al. (1999) Toronto, ON, Canada 1980-1994	Poisson regression	24-h avg: 25.2 (9.1)	0.52	0.5	0.38	0.54	0.55	-0.03	$\begin{array}{l} Respiratory \ infection: \\ NO_2 \ alone: \ 3.7\% \ [SE \ge 3] \\ NO_2 + SO_2 + O_3 + PM_{10}: \ 3.3\% \ [SE \ge 3] \\ NO_2 + SO_2 + O_3 + PM_{2.5}: \ 3.2\% \ [SE \ge 2] \\ NO_2 + SO_2 + O_3 + PM_{10-2.5}: \ 3.6\% \ [SE \ge 3] \end{array}$

TABLE 3.2-3 (cont'd). EFFECTS OF INCLUDING COPOLLUTANTS WITH NO₂ IN MULTIPOLLUTANT MODELS

Reference,		NO ₂ Averaging		Correla	ation (r) wit	th Other	Pollutant	S	_
Study Location and Period	Statistical Analysis	Time and Mean Levels (ppb)	PM ₁₀	PM _{2.5}	PM _{10-2.5}	SO_2	СО	03	Standardized* Percent Excess Risk (95% CI)
Lee et al. (2002) Seoul, Korea 12/1/1997- 12/31/1999	Poisson regression, GAM	24-h avg: 31.5 (10.3)	0.74	NR	NR	0.72	0.79	-0.07	Asthma: NO_2 alone: 21.1% [13.9, 28.4] $NO_2 + PM_{10}$: 18.2% [9.7, 26.9] $NO_2 + SO_2$: 28.4% [15.4, 41.7] $NO_2 + O_3$: 19.7% [12.5, 28.4] $NO_2 + CO$: 16.8% [4.1, 31.3] $NO_2 + O_3 + CO + PM_{10} + SO_2$: 13.7% [0.3, 28.7]
Schwartz et al. (1994), Six cities, United States 1984- 1988	Logistic regression, subsequent analysis using GAM	24-h avg: 13.3	0.36	0.35	NR	0.51	NR	-0.28	Cough Incidence: NO ₂ alone: 61.3% [8.2, 143.4] NO ₂ + PM ₁₀ : 36.9% [-11.6, 113.2] NO ₂ + O ₃ : 61.3% [8.2, 140.3] NO ₂ + SO ₂ : 18.8% [-11.6, 69.0]
Mortimer et al. (2002) Eight urban areas, United States 1993	Linear mixed effects models and GEE	4-h avg: 32	NR	NR	NR	NR	NR	0.29	Morning %PEFR NO ₂ alone: 48% [2, 116] NO ₂ + O ₃ : 40% [-7, 109] NO ₂ + O ₃ + SO ₂ : 31% [-13, 109] NO ₂ + O ₃ + SO ₂ + PM ₁₀ : 45% [-37, 234]
Schildcrout et al. (2006) Eight North American Cities 1993-1995	Logistic and Poisson regression with GEE	24-h avg: 17.8-26.0	0.26, 0.64	NR	NR	0.23, 0.68	0.63, 0.92	0.04, 0.47	Asthma symptoms: NO_2 alone: 4.0% [1.0, 7.0] NO_2 + CO: 4.0% [0.0, 8.0] NO_2 + PM ₁₀ : 4.0% [0.0, 7.0] NO_2 + SO ₂ : 4.0% [-1.0, 8.0] Rescue Inhaler Use: NO_2 alone: 3.0% [1.0, 5.0] NO_2 + CO: 4.0% [0.0, 7.0] NO_2 + PM ₁₀ : 2.0% [0.0, 5.0] NO_2 + SO ₂ : 3.0% [-2.0, 5.0]

3.2-3 (cont'd). EFFECTS OF INCLUDING COPOLLUTANTS WITH NO₂ IN MULTIPOLLUTANT MODELS

 \ast 24-h avg NO_2 standardized to 20-ppb increment; 1-h max NO_2 standardized to 30-ppb increment NR: Not Reported

TABLE 3.4-1. ASSOCIATIONS BETWEEN EXPOSURE TO TRAFFIC AT HOME AND ASTHMA HISTORY

Exposure Metric	Odds Ratio per IQR OR* (95% CI)
Distance to freeway	1.89 (1.19-3.02)
Traffic volume within 150 meters	1.45 (0.73-2.91)
Model-based pollution from:	
Freeways	2.22 (1.36-3.63)
Other roads	1.00 (0.75-1.33)
Freeways and other roads	1.40 (0.86-2.27)

*Odds ratio per change of 1 IQR. For distance to freeway, OR for the 25th percentile compared with the 75th percentile (i.e., living closer compared with farther from the freeway). For remaining traffic variables, OR for the 75th percentile compared with the 25th percentile. All models were adjusted for sex, race, Hispanic ethnicity, cohort, and community.

Source: Gaudermann et al. (2005).

Outcome	No.	Measured NO ₂ OR* (95% CI)	Distance to Freeway OR* (95% CI)	Model-based Pollution From Freeways OR* (95% CI)
Lifetime history of asthma	31	1.83 (1.04-3.21)	1.89 (1.19-3.02)	2.22 (1.36-3.63)
Recent wheeze;	43	1.72 (1.07-2.77)	1.59 (1.06-2.36)	1.70 (1.12-2.58)
Recent wheeze with exercise [†]	25	2.01 (1.08-3.72)	2.57 (1.50-4.38)	2.56 (1.50-4.38)
Current asthma medication use	26	2.19 (1.20-4.01)	2.04 (1.25-3.31)	1.92 (1.18-3.12)

TABLE 3.4-2. ASSOCIATIONS BETWEEN MEASURED NO2 AND ASTHMA-
RELATED OUTCOMES (N = 208)

*Odds ratio per change of 1 IQR in exposure (see footnotes to Table 3.4-1). †Within the last 12 months.

Source: Gaudermann et al. (2005).

1 2

3

4

4. SUSCEPTIBLE AND VULNERABLE POPULATIONS

4.1 INTRODUCTION

5 The previous AQCD for Oxides of Nitrogen (1993) identified certain groups within the 6 population that may be more susceptible to the effects of NO_2 exposure, including persons with 7 preexisting respiratory disease, children, and the elderly. Many other factors such as gender, 8 nutritional status, smoking, and genetic variability also may contribute to the differential effects 9 of environmental pollutants, including NO_x .

10 The reasons for paying special attention to these groups were that (1) they may be 11 affected by lower levels of NO₂ than the general populations or that (2) the impact of an effect 12 may be greater for these groups. Finally, epidemiological studies reviewed in the previous 13 AQCD for Oxides of Nitrogen identified children aged 5 to 12 years as a potentially susceptible 14 subpopulation for increases in NO₂ respiratory morbidity.

In the current document, we will focus on the susceptibility of subpopulations with preexisting asthma and cardiovascular disease, age-related susceptibility and vulnerability, highexposure occupational groups, and genetic factors.

18

19 4.1.1 Preexisting Disease as a Potential Risk Factor

20 A recent report of the National Research Council (NRC) emphasized the need to evaluate 21 the effect of air pollution on susceptible groups including those with respiratory illnesses and 22 cardiovascular disease (CVD) (NRC, 2004). Generally, chronic obstructive pulmonary disease 23 (COPD), conduction disorders, congestive heart failure (CHF), diabetes, and myocardial 24 infarction (MI) are conditions believed to put persons at greater risk of adverse events associated 25 with air pollution. In addition, epidemiological evidence indicates that persons with bronchial 26 hyperresponsivness (BHR) as determined by methacholine provocation may be at greater risk of 27 symptoms, such as phlegm and lower respiratory symptoms, than subjects without BHR (Boezen 28 et al., 1998). Several researchers have investigated the effect of air pollution among potentially 29 sensitive groups with preexisting medical conditions. Asthmatics are known to be one of the 30 most NO₂-responsive subgroups in the population; the evidence related to asthmatics is discussed 31 in further detail below.

32

1 Asthmatics

2 Airways hyperresponsiveness in asthmatics to both nonspecific chemical and physical stimuli and to specific allergens appears to be the most sensitive indicator of response to NO₂. 3 4 Responsiveness is determined using a challenge agent, which causes an abnormal degree of 5 constriction of the airways as a result of smooth muscle contraction. This response ranges from 6 mild to severe (spanning orders of magnitude) and is often accompanied by production of 7 sputum, cough, wheezing, shortness of breath, and chest tightness. Though some asthmatics do 8 not have this bronchoconstrictor response and some nonasthmatic individuals do (Pattenmore 9 et al., 1990), increased airways responsiveness is correlated with asthma symptoms and 10 increased asthma medication usage. Clinical studies have reported increased airways 11 responsiveness to allergen challenge in asthmatics following exposure to 0.26-ppm NO_2 for 12 30 min during rest (Barck et al., 2002; Strand et al., 1996, 1998). 13 Epidemiological studies have reported associations with a range of health outcomes with

both short-term and long-term NO₂ exposure in asthmatics; Table 4.1 highlights some of the
findings for asthmatics discussed in Chapter 3. The results reported in these studies generally
report a positive excess risk for asthmatics associated with NO₂. The recent evidence
strengthens conclusions drawn in the 1993 AQCD for Oxides of Nitrogen that asthmatics are
likely more susceptible to effects from NO₂ exposures than the general public.

19

20 Persons with Cardiovascular Diseases

21 Epidemiological studies consistently have demonstrated an association between ambient 22 levels of air pollutants and daily hospital admissions, and CVD emergency department (ED) 23 visits. Recent epidemiological studies also have shown that persons with preexisting 24 cardiopulmonary conditions are at increased risk for adverse cardiac health events associated 25 with ambient NO₂ concentrations (Peel et al., 2006; Mann et al., 2002; D'Ippoliti et al., 2003; 26 von Klot et al., 2005). Peel et al. (2006) reported evidence of effect modification by co-morbid 27 hypertension and diabetes for the association of ED visits for arrhythmia associated with NO_x 28 exposure. In another study, a statistically significant positive relationship was found between 29 NO₂ concentrations and hospitalizations for ischemic heart disease (IHD) among those with prior 30 diagnoses of CHF and arrhythmia (Mann et al., 2002). The authors speculated, however that the 31 vulnerability of the secondary CHF group may be due to differential diagnoses in this group 32 (Mann et al., 2002). Modification of the association between NO_2 and MI by conduction

disorders was observed in another study (D'Ippoliti et al., 2003). Though there is limited
evidence from clinical or toxicological studies on potential susceptibility in those with CVDs, the
epidemiological evidence suggests that these individuals may be more sensitive to effects of NO₂
exposure.

5 6

4.1.2 Age-Related Variations in Susceptibility/Vulnerability

7 Children and elders often are both considered at increase risks from air pollution, 8 compared to the general population. The American Academy of Pediatrics (2004) notes that 9 children and infants are among the most susceptible to many air pollutants, including NO₂. 10 Eighty percent of alveoli are formed postnatally and changes in the lung continue through 11 adolescence; the developing lung is highly susceptible to damage from exposure to 12 environmental toxicants (Dietert et al., 2000). Children also have increased vulnerability as they 13 spend more time outdoors, are highly active, and have high minute ventilation, which collectively increase their dose (Plunkett et al., 1992; Wiley et al., 1991a,b). In addition to 14 15 children, the elderly are frequently classified as being particularly susceptible to air pollution. The basis of the increased sensitivity in the elderly is not known, but one hypothesis is that it 16 17 may be related to changes in the respiratory tract lining fluid antioxidant defense network (Kelly 18 et al., 2003). Also, the generally declining health status of many elders may increase their risks 19 to air pollution induced effects.

20 While evidence is limited for age-specific associations between NO₂ and acute 21 respiratory ED visits, there is stronger evidence of the association between ambient NO_2 22 concentrations and hospital admissions for children and older adults. Peel et al. (2005) and 23 Atkinson et al. (1999b) each found that the percent increase in ED visits for asthma among 24 children was twice that found for subjects of all ages. Specifically, Peel et al. (2005) found that 25 asthma ED visits among children (2 to 18 years) increased by 2.7% in response to a 20-ppb 26 increase in the 1-h maximum NO_2 concentration, while the increase for all ages was 1.4%. 27 Similarly, Atkinson et al. (1999b) reported an 8.97% increase in ED visits for asthma among 28 children aged 0 to 14 years associated with a 36-ppb increase in the 1-h maximum NO_2 29 concentration, while the increase for adults aged 15 to 64 and all ages together were 4.44% and 30 4.37%, respectively. Two additional studies (Sunyer et al., 1997; Migliaretti et al., 2005) found 31 no difference in the rates of ED visits associated with NO₂ concentrations for children <15 years and adults aged 15 to 64 years. Migliaretti et al. (2005) found that a 5.2-ppb increase in NO₂ was
associated with a 7.7% increase in ED visits for asthma for participants over 64 years of age,
while the same increment was associated with a 2.4% increase among participants of all ages.
Atkinson et al. (1999b) evaluated the effect of a 36-ppb increase in NO₂ on ED visits for all
respiratory causes and found percent increases to be higher among children (1 to 14 years,

6 2.17%) and the elderly (\geq 65 years, 3.65%) compared to adults aged 15 to 64 (1.87%).

7 A number of studies investigated the association between ambient NO₂ levels and 8 hospital admissions for all respiratory causes stratified by age group (Luginaah et al., 2005; 9 Schouten et al., 1996; Ponce de Leon et al., 1996; Atkinson et al., 1999a; Prescott et al., 1998; 10 Fusco et al., 2001; Braga et al., 2001; Wong et al., 1999). Of the six studies that evaluated the 11 elderly population, four found that the percent increase in hospital admissions for all respiratory 12 causes associated with ambient NO₂ concentrations was higher for the elderly age group 13 $(\geq 65 \text{ years})$ compared with the adult age group (Schouten et al., 1996; Ponce de Leon et al., 14 1996; Atkinson et al., 1999a; Prescott et al., 1998). Luginaah et al. (2005) and Wong et al. 15 (1999) found no statistically significant difference in the elderly and adult age groups. Braga 16 et al. (2001) only included subjects aged 0 to 19 years, but further stratified to find the largest 17 percent increase in hospital admissions associated with NO₂ concentrations in the 0 to 2 age 18 group (9.4%). Fusco et al. (2001) reported a larger increase in hospital admissions for all 19 respiratory diseases among children compared with subjects of all ages (4.0% and 2.5%, 20 respectively). The difference persisted when hospital admissions were limited to asthma only. 21 Likewise, Fusco et al. (2001) reported a larger increase in hospital admission for asthma among 22 children compared with subjects of all ages (10.7% and 4.6%, respectively). Hinwood et al. 23 (2006), Atkinson et al. (1999a), and Anderson et al. (1998) also found larger increases in hospital 24 admissions for asthma among children (0 to 14 years) and the elderly (\geq 65 years) compared to 25 subjects of all ages, though the increases reported in these studies were more modest in 26 magnitude than that reported by Fusco et al. (2001).

In elderly populations, associations between NO₂ and hospitalizations or ED visits for CVD, including stroke, have been observed in several multicity studies (Barnett et al., 2006; Simpson et al., 2005; Wellenius et al., 2005; Morris et al., 1995). However, some results were inconsistent across cities (Morris et al., 1995), and investigators could not distinguish the effect of NO₂ from the effect of other traffic-related pollutants such as CO and particulate matter (PM). Reductions in blood hemoglobin (~10%) have been reported in healthy subjects following
 exposure to NO₂ (1 to 2 ppm) for a few hours during intermittent exercise (Frampton et al.,
 2002). The consequence of this hemoglobin reduction in individuals with significant underlying
 lung disease, heart disease, or anemia has not been evaluated, but the reductions could lead to
 adverse cardiovascular consequences.

Many field studies focused on the effect of NO₂ on the respiratory health of children,
while fewer field studies compared the effect of NO₂ in adults and other age groups. In general,
children and adults experienced decrements in lung function associated with short-term ambient
NO₂ exposures (see Section 3.2.1.2 for more details). Importantly, a number of long-term

10 exposures studies suggest effects in children - impaired lung function growth, increased

11 respiratory symptoms and infections, and onset of asthma (see Table 4.1 and Section 3.4.1.1).

12 Several mortality studies have investigated age-related differences in NO₂ effects. 13 Among the studies that observed positive associations between NO₂ and mortality, a comparison 14 of all age or ≤ 64 years of age NO₂-mortality risk estimates to that of the ≥ 65 years of age 15 indicates that, in general, the elderly population is more susceptible to NO₂ effects (Biggeri et al., 16 2005; Burnett et al., 2004). One study (Simpson et al., 2005) found no difference in increases in 17 CVD mortality associated with NO₂ concentrations between all ages and those participants 18 ≥ 65 years of age.

19 Collectively, there is supporting evidence of age-related differences in susceptibility to 20 NO₂ health effects. Elders (>65 years of age) appears to be at increased risk of NO₂-related 21 hospitalizations. Asthmatic children (<18 years of age) are likely to experience other adverse 22 respiratory health outcomes with increased NO₂ exposure e.g. airways hyperresponsivness often 23 accompanied by production of sputum, cough, wheezing, shortness of breath, chest tightness, 24 and increased use of asthma medication. Toxicological evidence available in the 1993 AQCD 25 also provided evidence for age-related differences in NO2-induced lung injury. Neonates, prior 26 to weaning, appeared to be relatively resistant to effects of NO₂. However, responsiveness 27 increased in young animals following weaning, appeared to decline in mature animals, then an 28 increase in responsiveness occurred at some point in senescence. Additionally, new evidence 29 since the 1993 AQCD raises concerns for increased severity and frequency of respiratory 30 infections, decreased lung function growth, increased onset of asthma and allergy, increase hospital and ED visits for asthmatic children. 31

1 4.1.3 High-Exposure Groups

2 Lee et al. (2000) reported that NO₂ concentration in heavy traffic (~60 ppb) can be over 3 twice that of a residential outdoor level (~26 ppb) in North America. Westerdahl et al. (2005) 4 reported on-road NO₂ concentrations in Los Angeles ranging from 40 to 70 ppb on freeways, 5 compared to 20 to 40 ppb on residential or arterial roads. People in traffic can potentially 6 experience high concentrations of NO_2 as a result of the high air exchange rates for vehicles. 7 Park et al. (1998) observed that the air exchange in cars varied from 1 to 3 times per hour, with 8 windows closed and no mechanical ventilation, to 36 to 47 times per hour, with windows closed 9 and the fan set on fresh air. These results imply that the NO_2 concentration inside a vehicle 10 could rapidly approach those outside the vehicle during commuting. It follows that people with 11 occupations that require them to be in or close to traffic or roadways (i.e. bus and taxi drivers, 12 highway patrol officers) could be differentially exposed to NO₂ and, therefore, should be 13 considered a susceptible population.

14 While driving, concentrations for personal exposure in a vehicle cabin could be 15 substantially higher than ambient concentrations measured nearby. Sabin et al. (2005) reported 16 that NO₂ concentrations in the cabins of school buses in Los Angeles ranged from 24 to 120 ppb, 17 which were typically factors of 2 to 3 (maximum, 5) higher than at ambient monitors in the area. 18 Lewné et al. (2006) reported work hour exposures to NO_2 for taxi drivers (25.1 ppb), bus drivers 19 (31.4 ppb), and truck drivers (35.6 ppb). These levels were 1.8, 2.7, and 2.8 times ambient 20 concentrations. Riediker et al. (2003) studied the exposure to NO_2 inside patrol cars. The 21 authors found that the mean and maximum NO₂ concentrations in a patrol car were 41.7 and 22 548.5 ppb compared to 30.4 and 69.5 ppb for the ambient sites. These studies suggest that 23 people in traffic can be exposed to much higher levels of NO_2 than are obtained at ambient 24 monitoring sites. Due to the high peak exposures while driving, total personal exposure could be 25 underestimated if exposures while commuting are not considered; and sometimes exposure in 26 traffic can dominate personal exposure to NO_2 (Lee et al., 2000; Son et al., 2004). Variations in 27 traffic-related exposure could be attributed to time spent in traffic, type of vehicle, and distance 28 from major roads (Sabin et al., 2005; Son et al., 2004; Chan et al., 1999). Sabin et al. (2005) 29 reported that the intrusion of the vehicle's own exhaust into the passenger cabin is another NO₂ 30 source contributing to personal exposure while commuting but that the fraction of air inside the

cabin from a vehicle's own exhaust was small, ranging from 0.02 to 0.28%, increasing with the
age of the vehicle (CARB, 2007).

3 Distance to major roadways could be another factor affecting indoor and outdoor NO₂ 4 concentration, and personal NO₂ exposure. Many studies show that outdoor NO₂ levels are 5 strongly associated with distance from major roads (i.e., the closer to a major road, the higher the 6 NO₂ concentration) (Gilbert et al., 2005; Roorda-Knape et al., 1998; Lal and Patil, 2001; 7 Kodama et al., 2002; Gonzales et al., 2005; Cotterill and Kingham, 1997; Nakai et al., 1995). 8 Meteorological factors (wind direction and wind speed) and traffic density are also important in 9 interpreting measured NO₂ concentrations (Gilbert et al., 2005; Roorda-Knape et al., 1998; 10 Rotko et al., 2001; Alm et al., 1998; Singer et al., 2004; Nakai et al., 1995). Singer et al. (2004) 11 reported results of the East Bay Children's Respiratory Health Study. The authors found that 12 NO₂ concentrations increased with decreasing downwind distance for school and neighborhood 13 sites within 350 m downwind of a freeway, and schools located upwind or far downwind of 14 freeways were generally indistinguishable from one another and regional pollution levels. 15 Most studies show that indoor NO_2 is correlated with outdoor NO_2 and is also a function 16 of distance to traffic, traffic density, and meteorological parameters. For example, 17 Roorda-Knape et al. (1998) reported that NO_2 concentrations in classrooms were significantly 18 correlated with car and total traffic density (r = 0.68), percentage of time downwind (r = 0.88) 19 and distance of the school from the roadway (r = -0.83). 20 Personal exposure is associated with traffic density and proximity to traffic, although 21 personal exposure is also influenced by indoor sources. Alm et al. (1998) reported that NO₂

exposures was higher for the children living in the downtown (13.9 ppb) than in the suburban area (9.2 ppb, p = 0.0001) of Helsinki. Within the urban area of Helsinki, Rotko et al. (2001) observed that the NO₂ exposure was significantly associated with traffic volume near homes.

25 The average exposure level of 138 subjects having low or moderate traffic near their homes was

26 12.3 ppb, while the level was 15.8 ppb for the 38 subjects having high traffic volume near home.

27 Gauvin et al. (2001) reported the ratio of traffic density to distance from a roadway was one of

the significant interpreters of personal exposure in Grenoble, Toulouse, and Paris. After

29 controlling indoor source impacts on personal exposure, Kodama et al. (2002) and Nakai et al.

30 (1995) observed that personal exposure decreased with increasing distance from residence home

31 to major road.

1 Although traffic is a major source of ambient NO₂, industrial point sources are also 2 contributors to ambient NO₂. However, no published reports were found to address the effect of 3 those sources on population exposure within the United States. Nerriere et al. (2005) measured 4 personal exposures to fine PM (PM_{2.5}), PM₁₀, and NO₂ in traffic dominated, urban background 5 and industrial settings in Paris, Grenoble, Rouen, and Strasbourg, France. They always found 6 highest ambient concentrations and personal exposures close to traffic. In some cases, traffic 7 urban background concentrations of NO₂ were higher than in the industrial zone. However, PM 8 levels and personal exposures tended to be higher in the industrial area than in the traffic-9 dominated area. It should be remembered that there can be high traffic emissions in industrial 10 zones, such as in the Ship Channel in Houston, TX. In rural areas where traffic is sparse, other 11 sources could dominate. Martin et al. (2003) found pulses of NO₂ release from agricultural areas 12 occur following rainfall. Other rural contributors to NO₂ include wildfires and residential wood 13 burning.

- 14 15
- 16

4.1.4 Genetic Factors for Oxidant and Inflammatory Damage from Air Pollutants

17 A consensus now exists among epidemiologists that genetic factors related to health 18 outcomes and ambient pollutant exposures merit serious consideration (Kauffmann et al., 2004; 19 Gilliland et al., 1999). Several criteria must be satisfied in selecting and establishing useful links 20 between polymorphisms in candidate genes and adverse respiratory effects. First, the product of 21 the candidate gene must be significantly involved in the pathogenesis of the adverse effect of 22 interest, often a complex trait with many determinants. Second, polymorphisms in the gene must 23 produce a functional change in either the protein product or in the level of expression of the 24 protein. Third, in epidemiological studies, the issue of confounding by other environmental 25 exposures must be carefully considered.

Several glutathione s-transferase (GST) families have common, functionally important polymorphic alleles that significantly affect host defense function in the lung (e.g., homozygosity for the null allele at the GSTM1 and GSTT1 loci, and homozygosity for the A105G allele at the GSTP1 locus). GST genes are inducible by oxidative stress. Exposure to radicals and oxidants in air pollution induces decreases in GSH that increase transcription of GSTs. Individuals with genotypes that result in enzymes with reduced or absent peroxide activity are likely to have reduced oxidant defenses and increased susceptibility to inhaled oxidants and radicals.

4-8 DRAFT-DO NOT QUOTE OR CITE

1 Romieu et al. (2006) investigated the relationships between common polymorphisms in 2 two genes involved in response to oxidative stress (i.e., GSTM1 and GSTP1) and both 3 respiratory symptoms and lung function in response to O₃, NO₂, and PM₁₀ among 151 asthmatic 4 children. The children were genotyped using polymerase chain reaction (PCR) methods and 5 followed from October 1998 to April 2000. After adjusting for asthma severity, temperature, 6 environmental tobacco smoke, chronological time and supplementation group, children with the 7 GSTM1 null polymorphism were more likely to report difficulty breathing in response to O_3 than 8 GSTM1 positive children. Children with the GSTP1 Val/Val genotype were more likely to 9 experience breathing difficulty and bronchodilator use in response to O_3 compared with children 10 with the GSTP1 Ile/Ile and Ile/Val genotypes. This pattern was consistent for O₃ exposure over 11 various numbers of lag days. Table 4.1-1 shows the results for the effect of a 20-ppb exposure to 12 NO₂ on respiratory symptom according to genetic polymorphisms of GSTM1 and GSTP1. A small increase in breathing difficulty was observed with a 20-ppb increase in ambient NO₂ levels 13 14 for all of the genotype groups across various numbers of lag days, though none of these 15 associations was statistically significant. This suggests that ambient NO₂ concentrations may 16 affect breathing in children regardless of their GSTM1 or GSTP1 genotypes. In contrast to O₃, 17 the GSTM1 positive and GSTP1 Ile/Ile and Ile/Val genotype children were more likely to 18 experience cough and bronchodilator use in response to NO₂ than GSTM1 null and GSTP11 19 Val/Val children. Contrary to expectations, a 20-ppb increase in ambient NO₂ concentrations 20 was associated with a decrease in bronchodilator use among GSTP1 Val/Val genotype children. 21 A few studies of genotypes and respiratory health or general air pollution also have been 22 conducted. Lee et al. (2004) studied ninth grade schoolchildren with asthma in Taiwan for a 23 gene-environmental interaction between GSTP1105 genotypes and outdoor pollution. While 24 noting mean NO₂ levels of 41.2 ppb from 1994 to 2001, they examined general district air 25 pollution levels of low, moderate, and high in the analysis and reported results suggested of such 26 an interaction of asthma, genotype and air pollution. Gilliland et al. (2002) examined effects of 27 GSTM1, GSTT1, and GSTP1 genotypes and acute respiratory illness, specifically respiratory 28 illness related absences from school. The goal was to examine potential susceptibilities on this 29 basis, but not specifically air pollutants. They concluded that fourth grade school children who 30 inherited a GSTP1 Val105 variant allele had a decreased risk of respiratory illness related school 31 absence, indicating that GSTP1 genotype influences the risk and/or severity of acute respiratory

1 infections in school-aged children. Gauderman et al. (2007) described a methodology that uses 2 principal components (PC) analysis computed on single nucleotide polymorphisms (SNP) 3 markers for testing association between a disease and a candidate gene. As an example, they 4 evaluated subjects in the children's health study (CHS) looking at chronic bronchitis symptoms. 5 The authors observed stronger evidence of an association using the PC approach (p = 0.044) than 6 using either a genotype-based (p = 0.13) or haplotype-based (p = 0.052) approach. This 7 methodology may be applied to relationships in this and other databases to evaluate aspects of air 8 pollutants such as NO_2 . Khoury et al. (2005) states that while genomics is still in its infancy, 9 opportunities exist for developing, testing, and applying the tools of genomics to public health 10 research with possible environmental causes.

11 In summary, NO₂-related genetic effects have been presented primarily by Romieu et al. 12 (2006) and indicate that asthmatic children with GSTM1 null and GSTP1 Val/Val genotypes 13 appear to be more susceptible to developing respiratory symptoms related to O_3 , but not NO_2 , 14 concentrations. It was suggested that ambient NO_2 concentrations may affect breathing in 15 children regardless of their GSTM1 or GSTP1 genotypes. In contrast to O_3 , the GSTM1 positive 16 and GSTP1 Ile/Ile and Ile/Val genotype children were more likely to experience cough and 17 bronchodilator use in response to NO₂ than GSTM1 null and GSTP11 Val/Val children. 18 Contrary to expectations, a 20-ppb increase in ambient NO₂ concentrations was associated with a 19 decrease in bronchodilator use among GSTP1 Val/Val genotype children. Understanding a basis 20 for susceptibility to asthma, will facilitate improve the precision of future studies of air pollution 21 and health.

22

23

4.1.5 Vulnerability Related to Socioeconomic Status

24 Finally, it is possible that individuals with lower socioeconomic status be more 25 vulnerable to the effects of exposure to NO_2 . There are a range of potential factors that would 26 cause increased vulnerability, including reduced access to health care or living in areas with 27 increased emissions, such as near major sources or roadways. However, the evidence 28 specifically related to vulnerability is sparse. In one new study, Clougherty et al. (2007) 29 evaluated the synergistic effects of traffic related air pollutants, including NO₂, and the 30 synergistic effects between social and physical factors in asthma, e.g. stress, violence. The 31 authors reported an elevated risk of asthma with a 4.3 ppb increase in NO_2 exposure solely

among children with above-median exposure to violence in their neighborhoods, an indicator of
 lower socioeconomic status.

- 3
- 4
- 5

4.2 PUBLIC HEALTH IMPACTS

6 Exposure to ambient NO_x (primarily NO_2 studied) is associated with a variety of health 7 outcomes. In protecting public health, a distinction must be made between health effects that are 8 considered "adverse" and those that are not. What constitutes an adverse health effect varies for 9 different population groups, with some changes in healthy individuals not being viewed as 10 adverse but those of similar type and magnitude in other susceptible individuals with preexisting 11 disease being seen as adverse.

12 13

4.2.1 Concepts Related to Defining of Adverse Health Effects

14 The American Thoracic Society (ATS) published an official statement on "What 15 Constitutes an Adverse Health Effect of Air Pollution?" (ATS, 2000b). This statement updated 16 guidance for defining adverse respiratory health effects published 15 years earlier (ATS, 1985). 17 The 2000 update takes into account (1) new investigative approaches used to identify the effects 18 of air pollution; (2) increased focus on quality of life measures more sophisticated considerations 19 of risks, particularly to susceptible groups; and (3) exposure to air pollution that increases the 20 risk of an adverse effect to the entire population is viewed as adverse, even though it may not 21 increase the risk of any identifiable individual to an unacceptable level. For example, if the risk 22 distribution for asthmatics is shifted toward increased risks, this is considered adverse even if 23 this shift does not result in clinically observable effects at the lower end of the distribution, 24 because individuals within the population would have diminished reserve function.

Reflecting new investigative approaches, the ATS statement also describes the potential usefulness of research into the genetic basis for disease, including responses to environmental agents that provide insights into the mechanistic basis for susceptibility and provide markers of risk status. Likewise, biomarkers that are indicators of exposure, effect, or susceptibility may someday be useful in defining the point at which one or an array of responses should be considered an adverse effect.

In an attempt to provide information useful in helping to define adverse health effects
 associated with ambient NO₂ exposure by describing the gradation of severity and adversity of

respiratory related NO₂ effects, and those definitions are presented here as Tables 4.1-2 and
 4.1-3. The severity of effects described in those tables and the approaches taken to define their
 relative adversity are adapted from the ATS statements (ATS, 1985, 2000).

4 As assessed in detail in earlier chapters of this document and briefly recapitulated in 5 preceding sections of this chapter, exposures to a range of NO₂ concentrations have been 6 reported to be associated with increasing severity of several categories of health effects.

7 8

9

4.2.2 Estimation of Potential Numbers of Persons in At-Risk Susceptible Population Groups in the United States

10 11

4.2.2.1 Asthma

12 A recent CDC report (CDC, 2005) on the prevalence of asthma in the United States, 13 states that the burden of asthma has increased over the past two decades. It is known that a 14 complex set of factors influence asthma; it is not clear what factors are driving this increase in 15 prevalence. In 1982, roughly 4% of people younger than 18 years old had asthma. Asthma is 16 the most prevalent chronic disease among children, and is the number one reason for school 17 absences. By 1994, this rate had increased to almost 7%, or approximately five million people 18 under the age of 18. Furthermore, from 1982 through 1994, the overall annual age-adjusted prevalence rate of asthma for people younger than 18 years old increased by 72%. In 2005, 19 20 approximately 22.2 million (or 7.7% of the population) currently had asthma. The incidence was 21 higher among children (8.9% of children) compared to adults (7.2% of adults.) Prevalence also 22 is higher among certain ethnic or racial groups, such as Puerto Ricans, American Indians, Alaska 23 Natives, and African Americans. The asthma prevalence rate for black Americans in 1992 was 24 just under 6%, representing almost two million people with asthma. The prevalence rate among 25 white was about 5%, which translates to approximately 12 million people. Gender and age is 26 also a determinant of prevalence, with adult females having a 40% higher prevalence rate than 27 adult males, and boys having a 30% higher rate than girls. Additionally a recent study, 28 Clougherty et al. (2007) evaluated the synergistic effects of traffic relate air pollutants, including 29 NO₂, and the synergistic effects between social and physical factors in asthma, e.g. stress, 30 violence. The difference in prevalence among races may be related to differences in such things 31 as socioeconomic status, living conditions, diet, and allergen exposures.

32

1 4.2.2.2 Heart Disease and Stroke

2 Heart disease is the leading cause of death in the United States, while death from stroke 3 ranks third. Survey results published by Centers for Disease Control and Prevention (CDC, 4 2007 a,b) provide estimates of the prevalence of persons living with heart disease and stroke. 5 The data used for the analyses was from the 2005 Behavioral Risk Factor Surveillance System 6 (BRFSS). A random selection of the civilian population aged 18 years or more (n = 356,112) 7 participated in the survey. Participants were asked if a doctor or other health professional had 8 ever told them that they had a "heart attack, also called a myocardial infarction," "angina or 9 coronary heart disease," or "stroke." Differences in prevalence were assessed by age, 10 race/ethnicity/ sex, education, and state or territory of residence. Approximately 6.5% 11 (13.6 million people, based on Census 2000 data) of respondents reported a history of MI, angina 12 or coronary heart disease (CHD). Men reported a higher prevalence of heart disease than 13 women, and prevalence increased with age. Heart disease decreased with higher education, and 14 American Indians/Alaska natives and multiracial persons had substantially higher prevalence of 15 history of heart disease. The prevalence of heart disease also varied depending on state of 16 residence, with persons from West Virginia reporting the highest prevalence of heart disease. 17 Approximately 2.6% of participants reported a history of stroke (approximately 5.4 million 18 people, based on census 2000 data). Again, the prevalence of stroke increased with age, male 19 gender, and lower educational attainment. American Indians and Alaska natives reported a 20 higher prevalence of stroke. In addition, residents for southern state reported a higher prevalence 21 of history of stroke. Approximately 35 million people (12.4%) are above the age of 65 in the 22 United States (Census 2000). Together, American Indians, Alaska Natives, and multiracial 23 persons represent approximately 7.2 million people (2.5% of the U.S. population).

TABLE 4.1. NO2 EXPOSURE AFFECTS ASTHMATICS

An intervention study (Pilotto et al., 2004) of respiratory symptoms of asthmatic children in Australia resulted in reductions in several symptoms (difficulty in breathing during the day and at night, chest tightness during the day and at night, and asthma attacks during the day) related to reduction in NO_2 exposure from in-class heaters. Information on other heater emissions, such as ultrafine particles, was not reported.

Birth cohort studies in the United Sates (Belanger et al., 2006; Van Strein et al., 2004) and Europe (Brauer et al., 2007) relate NO_2 concentrations to increased respiratory symptoms, infections, and asthma in the very young.

In England, Chauhan et al. (2003) and Linaker et al. (2000) studied personal NO_2 exposure and found NO_2 exposure in the week before an upper respiratory infection was associated with either increased severity of lower-respiratory-tract symptoms, or reduction of PEF for all virus types together, and for two of the common viruses, RSV and a picorna virus, individually.

Nitschke et al. (2006) reported difficulty breathing and chest tightness associated with 10 ppb increases in NO_2 measured in school classrooms. Lung function tests were performed at the beginning and at the end of the study period, and the authors observed personal NO_2 exposures related in a dose-response manner for reported symptoms in asthmatics.

United States multicity studies of ambient NO₂ exposure examined respiratory symptoms in asthmatics (Mortimer et al., 2002; Schildcrout et al., 2006). In the NCICAS (Mortimer et al., 2002) the greatest effect was seen for morning symptoms (cough, wheeze, shortness of breath) for a 6-day-morning average. In multi-pollutant models, the NO₂ effect was attenuated though remained positive, for O₃, SO₂, and combined coarse and fine particulate matter (PM₁₀). In the CAMP study (Schildcrout et al., 2006), the strongest association between NO₂ and increased risk of cough and increased use of rescue medication was found for a 2-day lag, which was not attenuated, in two-pollutant models for CO, PM₁₀, or SO₂. Single city panel studies in the Los Angeles area are supportive of these associations for asthmatics (Ostro et al., 2001; Delfino et al., 2002, 2003a,b). Segala et al. (1998) and Just et al. (2002), in Paris both found positive relationships to NO₂ exposure and symptoms in asthmatics.

Few studies of the impact of NO_2 on respiratory symptoms of *adult* asthmatics are available. These find positive associations for NO_2 exposure and respiratory symptoms in European studies (Hiltermann et al., 1998; Von Klot et al., 2002; and Forseberg et al., 1998).

The associations between ambient concentrations of NO_2 and ER visits for asthma in the United States are positive (Jaffe et al., 2003; Peel et al., 2005; Tolbert et al., 2000). Studies conducted outside the United States (Castlellsague et al., 1995; Sunyer et al., 1997; Atkinson et al., 1999a,b; Tenias et al., 1998; Erbas et al., 2005) found similar results. A concentration response for NO_2 and asthma ER visits is indicated in these studies (Jaffe et al., 2003; Tenias et al., 1998; Castellsague et al., 1995).

In relation to *long-term* exposure, Moseler (1994) examined a cohort in Germany and reported decrements in lung function parameters related to NO₂ exposure measures in a group of physician-diagnosed asthmatic children.

The relationship between *long-term* NO₂ exposure and asthma prevalence and incidence has been examined in several studies. In the CHS, Gauderman et al. (2005) report a positive relationship. Further, Islam et al. (2007) studied the CHS cohort to determine whether lung function is associated with new onset asthma. A positive relationship was seen for NO₂ exposure, which was marginally significant while indications for PM were significant. In a separate cohort in the Netherlands, Brauer et al. (2007) provide confirming evidence for this relationship.

Acute mortality related to asthma was examined in Barcelona, Spain (Saez et al., 1999; Sunyer et al., 2002). In the study by Sunyer et al. (2002), severe asthmatics with more than one asthma emergency visit were found to have the strongest mortality associations with NO₂.

TABLE 4.1-1. EFFECT OF NITROGEN DIOXIDE (20 PPB) ON THE RISK OF REPORTING RESPIRATORY SYMPTOMS AND BRONCHODILATOR USE ON A GIVEN DAY ACCORDING TO GSTM1 OR GSTP1 GENOTYPES AMONG 151 ASTHMATIC CHILDREN IN MEXICO CITY

	GSTM1 positive OR (95% CI)	GSTM1 null OR (95% CI)	GSTP1 Ile/Ile Ile/Val OR (95% CI)	GSTP1 Val/Val OR (95% CI)
Cough				
NO ₂ 1 day lag	1.03 (1.00, 1.06)	1.01 (0.97, 1.05)	1.04 (1.01, 1.07)	1.00 (0.96, 1.03)
NO ₂ 2 day avg	1.05 (1.01, 1.09)	1.00 (0.96, 1.05)	1.05 (1.02, 1.09)	0.99 (0.95, 1.04)
NO ₂ 6 day avg	1.12 (1.07, 1.17)	1.06 (1.00, 1.13)	1.12 (1.07, 1.17)	1.05 (0.99, 1.12)
Difficulty breathing				
NO ₂ 1 day lag	1.04 (0.98, 1.10)	1.01 (0.95, 1.07)	1.03 (0.98, 1.07)	1.03 (0.94, 1.13)
NO ₂ 2 day avg	1.03 (0.97, 1.10)	1.02 (0.95, 1.10)	1.03 (0.98, 1.09)	1.04 (0.93, 1.16)
NO ₂ 6 day avg	1.07 (0.98, 1.17)	1.02 (0.93, 1.12)	1.06 (0.99, 1.13)	1.04 (0.90, 1.20)
Bronchodilator use				
NO ₂ 1 day lag	1.02 (0.99, 1.05)	0.97 (0.94, 1.00)	1.02 (0.99, 1.05)	0.96 (0.93, 1.00)
NO ₂ 2 day avg	1.03 (1.00, 1.07)	0.96 (0.93, 1.00)	1.03 (0.99, 1.06)	0.96 (0.92, 1.00)
NO ₂ 6 day avg	1.06 (1.01, 1.11)	0.96 (0.91, 1.00)	1.05 (1.01, 1.09)	0.96 (0.90, 1.01)

ORs are calculated using GEE models for logistic regression adjusting for asthma severity, previous day temperature, environmental tobacco smoke exposure, chronological time, and supplementation group. Changes in symptoms are shown for an increase of 20 ppb in 1 h nitrogen dioxide (NO₂) maximum over different averages.

Source: Romieu et al. (2006).

Symptomatic				
Response	Normal	Mild	Moderate	Severe
Cough	Infrequent cough	Cough with deep breath	Frequent spontaneous cough	Persistent uncontrollable cough
Chest pain	None	Discomfort just noticeable on exercise or deep breath	Marked discomfort on exercise or deep breath	Severe discomfort on exercise or deep breath
Duration of response	None	<4 h	>4 h but ≤ 24 h	>24 h
Functional Response	None	Small	Moderate	Large
FEV ₁	Within normal range (± 3%)	Decrements of $3 \text{ to } \le 10\%$	Decrements of >10 but <20%	Decrements of ≥20%
Nonspecific bronchial responsiveness	Within normal range	Increases of <100%	Increases of ≤300%	Increases of >300%
Duration of response	None	<4 h	>4 h but ≤ 24 h	>24 h
Impact of Responses	Normal	Normal	Mild	Moderate
Interference with normal activity	None	None	A few sensitive individuals choose to limit activity	Many sensitive individuals choose to limit activity

TABLE 4.1-2. GRADATION OF INDIVIDUAL RESPONSES TO SHORT-TERM NO2EXPOSURE IN HEALTHY PERSONS^a

An increase in nonspecific bronchial responsiveness of 100% is equivalent to a 50% decrease in PD20 or PD100.

Symptomatic Response	Normal	Mild	Moderate	Severe
Wheeze	None	With otherwise normal breathing	With shortness of breath	Persistent with shortness of breath
Cough	Infrequent cough	Cough with deep breath	Frequent spontaneous cough	Persistent uncontrollable cough
Chest pain	None	Discomfort just noticeable on exercise or deep breath	Marked discomfort on exercise or deep breath	Severe discomfort on exercise or deep breath
Duration of response	None	<4 h	>4 h, but ≤ 24 h	>24 h
Functional Response	None	Small	Moderate	Large
FEV ₁ change	Decrements of <3%	Decrements of $3 \text{ to } \le 10\%$	Decrements of >10 but <20%	Decrements of ≥20%
Nonspecific bronchial responsiveness	Within normal range	Increases of <100%	Increases of ≤300%	Increases of >300%
Airways resistance (SRaw)	Within normal range (± 20%)	SRaw increased <100%	SRaw increased up to 200% or up to $15 \text{ cm H}_2\text{O}\cdot\text{s}$	SRaw increased >200% or more than 15 cm H ₂ O·s
Duration of response	None	<4 h	>4 h but ≤ 24 h	>24 h
Impact of Responses	Normal	Mild	Moderate	Severe
Interference with normal activity	None	Few individuals choose to limit activity	Many individuals choose to limit activity	Most individuals choose to limit activity
Medical treatment	No change	Normal medication as needed	Increased frequency of medication use or additional medication	Physician or emergency room visit

TABLE 4.1-3. GRADATION OF INDIVIDUAL RESPONSES TO SHORT-TERM NO2EXPOSURE IN PERSONS WITH IMPAIRED RESPIRATORY SYSTEMS

An increase in nonspecific bronchial responsiveness of 100% is equivalent to a 50% decrease in PD20 or PD100.

5. FINDINGS AND CONCLUSIONS

4 5.1 INTRODUCTION

1 2 3

5 The previous chapters have presented the most policy-relevant science, integrated across 6 disciplines, as it pertains to oxides of nitrogen. The goal of this chapter is to summarize key 7 findings and draw conclusions from this information. Sections of this chapter are as follows: 8 (1) this introduction, (2) atmospheric sciences, (3) exposure assessment, (4) NO₂ exposure 9 indices, (5) a summary of health effects, and (6) conclusions.

10 It will be useful at the outset to distinguish between the definitions of "nitrogen oxides" 11 as it appears in the enabling legislation related to the NAAQS and the definition commonly used 12 in the air pollution research and management community. In this document, the terms "oxides of 13 nitrogen" and "nitrogen oxides" refer to all forms of oxidized nitrogen compounds, including 14 NO, NO₂, and all other oxidized nitrogen-containing compounds transformed from NO and NO₂. 15 This follows usage in the Clean Air Act Section 108(c): "Such criteria [for oxides of nitrogen] 16 shall include a discussion of nitric and nitrous acids, nitrites, nitrates, nitrosamines, and other 17 carcinogenic and potentially carcinogenic derivatives of oxides of nitrogen." By contrast, within 18 the air pollution research and control community, the terms "oxides of nitrogen" and "nitrogen 19 oxides" are restricted to refer only to the sum of NO and NO₂, and this sum is commonly 20 abbreviated as NO_x. The category label used by this community for the sum of all forms of 21 oxidized nitrogen compounds including those listed in Section 108(c) is NO_v.

22 For the current review, multiple species of many nitrogen oxides are considered as 23 appropriate and as allowed by the available data. For example, descriptions of the atmospheric 24 chemistry of nitrogen oxides include both gaseous and particulate species, because a meaningful 25 analysis would not be possible otherwise. In addition, the health effects of gaseous nitrogen 26 oxides other than NO₂ are evaluated when information on these other species is available. 27 Finally, the possible influence of other atmospheric pollutants on the interpretation of the role of NO₂ in health effects studies is considered, including interactions of NO₂ with other pollutants 28 29 that co-occur in the environment (e.g., SO₂, CO, O₃, particulate matter). The available database 30 for this draft ISA largely provides information on the health effects of NO₂, with limited 31 information examining other forms of oxides of nitrogen (e.g., HONO). Thus, the review

examines a large NO₂ database along with other studies of other gaseous oxides of nitrogen, as
 available.

- 3
- 4
- 5

5.2 ATMOSPHERIC SCIENCES

Atmospheric sciences and exposure assessment are key elements in the causal chain
linking pollutant sources to health effects. Atmospheric chemical processes involving NO₂ result
in the formation of photochemical oxidants such as O₃ and PAN and precursors to acid aerosol
formation such as the strong acid, mutagenic nitro-PAHs and other potentially toxic compounds.
Key findings related to measuring such compounds are listed below.

- 11 The current method of determining ambient NO_x (i.e., $NO + NO_2$) and then reporting • 12 NO₂ concentrations by subtraction of NO is subject to interference by NO_x oxidation 13 products (NO_z), chiefly HNO₃ and PAN at levels that are largely uncharacterized and 14 highly variable. Limited evidence suggests that these compounds result in an 15 overestimate of NO₂ levels by roughly 20 to 25% at typical ambient levels. Smaller 16 errors are estimated to occur in measurements taken nearer to strong NO_x sources since 17 most of the mass emitted as NO_x would not yet have been further oxidized to NO_z. 18 Relatively larger errors, then, appear in locations more distant from strong local NO_x 19 sources.
- Techniques for measuring NO₂ more selectively than the FRM generally involve
 expensive and complex systems. As an example, NO₂ could be photolytically reduced to
 NO before detection by chemiluminescence in existing networks to eliminate the NO_z
 interference; however, this technique requires further development to ensure its reliability
 and cost effectiveness for extensive field deployment.
- A measurement of total oxidized nitrogen compounds, i.e., the sum of NO, NO₂, and all their reaction products, defined as NO_y, would provide a more physically meaningful measurement of oxidized nitrogen than do measurements of NO_x and NO₂ as reported currently.
- Existing NO_x monitors could be converted to NO_y monitors with relatively
 straightforward modifications. However, NO_y monitors can be subject to relatively
- 31 minor positive artifacts from particulate nitrate compounds, and, like the FRM NO_x

1		monitors, to positive interference by reduced nitrogen compounds if the converter
2		temperature is not carefully controlled.
3	•	Because motor vehicles are a large source of urban NO ₂ , ambient NO ₂ generally behaves
4		much like a traffic-generated pollutant in urban areas. It is associated with other traffic-
5		generated pollutants such as CO at ambient levels and shows spatial and temporal
6		variability consistent with other traffic-generated pollutants.
7	•	Nitro-PAHs, which are responsible for most of the mutagenicity associated with ambient
8		PAH samples and other potentially toxic compounds are emitted both directly from
9		automobile tailpipes and by other NOx sources and also are formed secondarily from
10		atmospheric reactions of NO ₂ .
11	•	Annual average concentrations of NO ₂ (~15 ppb) are well below the level of the current
12		NAAQS (53 ppb). However, daily maximum 1-h average concentrations can be greater
13		than 100 ppb in a few locations, such as those heavily influenced by traffic.
14	•	Policy Relevant Background Concentrations of NO2 are much lower than average
15		ambient concentrations and are typically less than 0.1 ppb over most of the United States,
16		with highest values found in agricultural areas.
17	•	Measurements of NO _y have the additional benefit of characterizing the entire suite of
18		oxidized nitrogen compounds in ambient air to which people are exposed.
19		
20 21	5.3	EXPOSURE ASSESSMENT
22		In assessing human exposures to NO_2 , recall that people are exposed to the entire suite of
23	oxidiz	red nitrogen compounds that are characterized by NO_v and not just to NO_2 or NO_x . The
24	amoui	nt of time a person spends in different microenvironments and the infiltration
25	charac	cteristics of these microenvironments are strong determinants of the association between
26	ambie	nt NO ₂ concentrations and human exposures. In addition to ambient NO ₂ , people are also
27	expos	ed to NO_2 produced by indoor sources such as gas stoves, to NO_2 and other products of
28	indoo	r air reactions, and to NO ₂ in vehicles while commuting. Key findings related to assessing
29	NO ₂ e	xposures are listed below.
30	•	Spatially, NO ₂ is highly variable in urban areas, potentially leading to exposure error
31		resulting from either a lack of correlation or differences in levels between a central

1		monitoring site and the community average. Intersite correlations for NO ₂ concentrations
2		range from slightly negative to highly positive. The range of spatial variation in NO ₂
3		concentrations is similar to that for O_3 , but larger than that of $PM_{2.5}$. Twenty-four-hour
4		concentration differences between individual paired sites in an MSA can be larger than
5		the annual means at these sites.
6	•	Rooftop NO ₂ measurements, particularly in inner cities, likely underestimate levels
7		occurring at or near the earth's surface closer to the vehicle emitters.
8	•	Methods for measuring personal NO ₂ generally correlate well with ambient methods in
9		collocated samples, but they tend to be biased high relative to reported ambient
10		measurements and are subject to artifacts.
11	•	In the absence of indoor sources, indoor NO_2 levels are about one-half those found
12		outdoors. In the presence of indoor sources, particularly unvented combustion sources,
13		NO ₂ levels can be much higher than reported ambient concentrations.
14	•	Alpha (α), the fraction of the ambient NO ₂ concentration that contributes to a person's
15		exposure to ambient NO ₂ ranged from ~ 0.3 to ~ 0.6 in studies where examined.
16	•	Indoor exposures to NO ₂ are accompanied by exposures to other products of indoor
17		combustion and to products of NO_2 chemistry occurring indoors and outdoors, such as
18		HONO.
19	•	The evidence relating ambient levels to personal exposures is mixed. Most of the
20		longitudinal studies examined found that ambient levels of NO ₂ were reliable proxies of
21		personal exposures to NO ₂ . However, a number of studies found no significant
22		associations between ambient and personal levels of NO ₂ . The differences in study
23		results are related in large measure to differences in study design, to the spatial
24		heterogeneity of NO_2 in study areas, to the presence of indoor sources, to seasonal and
25		geographic differences in the infiltration of ambient NO ₂ , and to differences in the time
26		spent in different microenvironments. Measurement artifacts and differences in
27		analytical measurement capabilities could also have contributed to the mixed results.
28	•	The collective variability in all of the above parameters, in general, contributes to
29		exposure misclassification errors in air pollution-health outcome studies.
30	•	A few European studies in which community averages of personal exposures were
31		compared to either ambient or outdoor concentrations support the assumption that

1 2 ambient concentrations are a reasonable surrogate for community average exposures in epidemiological studies.

3 The available data are limited, but suggest that the regulatory ambient monitors provide 4 reasonable proxies for personal exposures to NO_2 . At the same time, variable, positive artifacts 5 associated with measuring NO₂ using the Federal Reference Method severely limit its ability to 6 serve as a precise indicator of NO₂ concentrations at typical ambient levels generally 7 encountered outside of urban cores. Within the urban core, where many of the regulatory 8 monitors are sited close to strong NO_x sources such as traffic, the positive artifacts are much 9 smaller on a relative basis, and the measurement is more precise. Importantly, because the 10 nitrogen species that introduce the positive artifacts in the FRM NO₂ measurement are present in 11 ambient air, these artifacts introduce the same error into epidemiological studies. To alleviate 12 these problems and provide a better understanding of the relationships between nitrogen oxides 13 and health outcomes, it may be appropriate either to adopt a different indicator for the mixture of 14 nitrogen oxides, such as NO_v -NO, or to actively aid continued development of the more specific 15 techniques for measuring NO2 with the goal of replacing the current FRM method in the 16 networks.

17

18 19

5.4 NO₂ EXPOSURE INDICES

The available NO₂ indices used to indicate short-term ambient NO₂ exposure are daily maximum 1-h (1-h max); 24-h average; and 2-week average NO₂ concentrations. New data on short-term exposures have been published since the 1993 AQCD for Oxides of Nitrogen. Some studies examined only one index, and these studies form an evidence base for that individual index. A few studies used both 1-h and 24-h data and, thus, allow a comparison of these averaging periods. These include studies of respiratory symptoms, ED visits for asthma, hospital admissions for asthma, and mortality.

Meta-analysis regression results for asthma ED visits comparing effect estimates for the
 1-h and 24-h time periods indicate that effect estimates are slightly, but not significantly,
 larger with a 24-h average compared with a 1-h max NO₂.

Experimental studies in both animals and humans provided evidence that short-term NO₂
 exposure (i.e., <1 h to 2–3 h) can result in respiratory effects such as increased airways
 responsiveness or inflammation thereby increasing the potential for exacerbation of

2 3

4

5

1

asthma. These findings generally support epidemiological evidence on short-term exposures, but do not provide evidence that distinguishes effects for one short-term averaging period from another.

• Based on these findings, we have concluded that differences between 1-h and 24-h exposures are unlikely for several health outcomes.

6 7 8

5.5 HEALTH EFFECTS

9 10

5.5.1 The 1993 AQCD Findings

The 1993 AQCD for Oxides of Nitrogen found that there were two key health effects of greatest concern at ambient or near-ambient concentrations of NO_2 : (1) increases in airways responsiveness of asthmatic individuals after short-term exposures and (2) increased occurrence of respiratory illness among children associated with longer-term exposures to NO_2 . Evidence also was found for increased risk of emphysema, but this appeared to be of major concern only with exposures to levels of NO_2 much higher than current ambient levels of NO_2 (U.S.

Environmental Protection Agency, 1993). The evidence regarding airways responsiveness was drawn from controlled human exposure and animal toxicological studies showing both airways responsiveness and lung function changes, though there was a lack of a concentration-response relationship. Epidemiological studies reported increased respiratory symptoms with increased indoor NO₂ exposures, and animal toxicological findings of lung host defense system changes with NO₂ exposure provided a biologically plausible basis for these results. Subpopulations considered potentially more susceptible to the effects of NO₂ exposure included persons with

24 preexisting respiratory disease, children, and the elderly. In the 1993 AQCD, the

25 epidemiological evidence for respiratory health effects was limited, and no studies had

26 considered effects such as hospital admissions, ED visits, or mortality.

27

28 **5.5.2** New Findings

New evidence developed since 1993 has generally confirmed and extended the
conclusions articulated in the 1993 AQCD. Since the 1993 AQCD, the epidemiological
evidence has grown substantially, including new field or panel studies on respiratory health
outcomes, numerous time-series epidemiological studies of effects such as hospital admissions,

1 and a substantial number of studies evaluating mortality risk with short-term NO_2 exposures. As 2 noted above, no epidemiological studies were available in 1993 that assessed relationships 3 between oxides of nitrogen and outcomes such as hospital admissions, ED visits, or mortality; in 4 contrast, there are now dozens of epidemiological studies on such outcomes included in this 5 evaluation. Several new studies have reported findings from prospective cohort studies on 6 respiratory health effects with long-term NO₂ exposure. Significant new evidence characterizing 7 the responses of susceptible and vulnerable populations also has developed since 1993, 8 particularly concerning children, asthmatics, and those living and working near roadways. While 9 not as marked as the growth in the epidemiological literature, a number of new toxicological and 10 controlled human exposure studies provide further insights into relationships between NO₂ and 11 health effects.

12 In the following subsections, we build upon previous chapters to draw conclusions 13 regarding the overall strength of the evidence and extent to which causal inferences may be 14 made. Where the associations observed in epidemiological and experimental studies are strong, 15 consistent, coherent, and plausible, we have concluded that the relationship is "likely causal." 16 Where the epidemiological or clinical findings are generally strong and consistent, but the 17 available experimental evidence is too limited to draw conclusions regarding coherence or plausibility of the results, we have concluded that this relationship is "suggestive." In some 18 19 situations, the evidence from epidemiological and experimental studies is not found to be strong 20 or consistent, and there is limited or no support for coherence and plausibility; these relationships 21 we judge to be "inconclusive." Where possible, we have also included observations about the 22 concentrations at which effects have been observed. A series of tables at the end of this chapter 23 provide specific information supporting these conclusions. Table 5.5-1 summarizes the key 24 findings of controlled human exposure studies, and the exposure levels at which those effects 25 have been observed. Table 5.5-2 summarizes the lowest levels at which effects have been seen 26 in toxicological studies for a series of effect categories. Table 5.5-3 presents results of 27 epidemiological studies on respiratory health effects, and it includes information about the 28 distribution of NO₂ levels used in the study as presented in the study publications (generally 29 provided as mean and range).

5-7

30

1 5.5.2.1 Respiratory Health Effects and Short-Term Exposure to NO₂

2 Taken together, recent studies provide strong scientific evidence that NO₂ is associated 3 with a range of respiratory effects and describe a likely causal relationship between short-term 4 NO₂ exposure and adverse effects on the respiratory system. This is based on findings from 5 numerous new epidemiological studies, including multipollutant studies that control for the 6 effects of other pollutants. This conclusion is supported by evidence from toxicological and 7 controlled human exposure studies. A number of studies have been conducted in areas where the 8 full distribution of ambient 24-h average NO₂ concentrations was below the current annual-9 average NAAQS level of 53 ppb (see data in Tables 5.5-3A and 5.5-3B). Key findings related to 10 assessing NO₂ associated health effects are listed below.

11 The strongest new epidemiological evidence exists for associations with increased ED 12 visits and hospital admissions for respiratory causes, especially asthma and COPD, with 13 ambient concentrations of NO₂. In nearly all of these studies, high correlations were 14 found between ambient measures of NO₂ and of CO and PM. The effect estimates for 15 NO₂ were robust after the inclusion of CO and PM in multipollutant models. Significant associations have been reported in some studies conducted in areas such as Vancouver, 16 17 Canada, where daily NO₂ concentrations were all below the level of the current annual 18 NAAQS.

- Results from recent field and panel studies confirm previous studies that short-term NO₂
 exposure is associated with increased respiratory symptoms (e.g., cough, wheeze),
 particularly in children and asthmatics. Few recent epidemiological evaluations of lung
 function measures such as FEV₁, and PEF exist, providing only limited new evidence for
 pulmonary effects of NO₂ exposure.
- Recent studies reporting associations between indoor and personal exposure to NO₂ and
 respiratory symptoms or lung function provide key support for epidemiological findings
 of associations with NO₂ concentrations (e.g., Pilotto et al., 2004, Chauhan et al., 2004).
 In particular, the Pilotto et al. (2004) intervention study provides strong evidence of a
 detrimental effect with exposure to NO₂.
- A recent epidemiological study (Chauhan et al., 2003) provided evidence that increased
 personal exposures to NO₂ worsen virus-associated symptoms and lung function in

1	children with asthma. The limited evidence from controlled human exposure studies
2	indicates that NO ₂ may increase susceptibility to injury by subsequent viral challenge.
3	• Controlled human exposure studies provide strong evidence in asthmatics for increased
4	airways responsiveness to bronchoconstricting agents with short-term exposure to 0.2 to
5	0.3 ppm NO ₂ . The clinical significance of increased airways reactivity is the potential for
6	a flare-up or exacerbation of asthma or other underlying pulmonary disease following
7	increased bronchial response to nonspecific airborne irritants. These studies do not
8	provide compelling evidence for other respiratory effects such as changes in lung
9	function. Toxicological studies have shown that lung host defenses are sensitive to NO_2
10	exposure, with numerous measures of such effects observed at concentrations below
11	1 ppm.

 Biological markers of inflammation are reported in antioxidant-deficient laboratory animals with exposures to 0.4-ppm NO₂. Normal animals do not respond until exposed to much higher levels, i.e., ≥5 ppm NO₂. Recent epidemiological studies provide somewhat mixed evidence on short-term exposure to NO₂ and inflammatory responses in the airways. Controlled human exposure studies provide evidence for increased airways inflammation at NO₂ concentrations of <2.0 ppm; the onset of inflammatory responses in healthy subjects appears to be between 100 and 200 ppm-min, i.e., 1 ppm for 2 to 3 h.

19 20

5.5.2.2 Cardiovascular Effects and Short-Term Exposure to NO₂

Overall, the evidence is inconclusive regarding the effect of NO₂ on the CV system.
Numerous epidemiological studies report an association of NO₂ with hospital admissions or ED visits for CVD (MI and CHF in particular). However, PM and other ambient air pollutants were also associated with hospitalizations. Further, results from multipollutant models were inconsistent, with no clear pattern emerging to suggest that the NO₂ associations observed were robust.

Epidemiological evidence from studies of HRV and cardiac rhythm disorders provide limited evidence of associations with NO₂. The parameters measured in these studies were associated most strongly with PM compared to other ambient pollutants, so the effects observed for NO₂ may have been confounded. Furthermore, a study of

1 2 repolarization changes found no association between NO₂ and the outcomes measured, while an effect for PM was observed.

- The limited evidence from controlled human exposure studies suggests a reduction in
 hemoglobin with NO₂ exposure may occur at concentrations between 1.0 and 2.0 ppm
 (with 3-h exposures), but the observations require confirmation. The results on the effect
 of NO₂ on various hematological parameters in animals are inconsistent and, thus,
 provide little biological plausibility for effects on the CV system.
- 8 9

5.5.2.3 Mortality and Short-Term Exposure to NO₂

- Epidemiological evidence is suggestive of associations between NO₂ and nonaccidental
 and cardiopulmonary-related mortality, but additional research is needed to establish
 underlying mechanisms by which such effects occur.
- Results from several large U.S. and European multicity studies and a meta-analysis study
 observed positive associations between ambient NO₂ concentrations and risk of all-cause
 (nonaccidental) mortality, with effect estimates ranging from 0.5 to 3.6% excess risk in
 mortality. In general, the effect estimates were robust to adjustment for copollutants.
- Both CV and respiratory mortality have been associated with increased NO₂
 concentrations in epidemiological studies; however, similar associations were observed
 for other pollutants, including PM and SO₂.
- Clinical studies showing hematologic effects (noted above) and animal toxicological
 studies showing biochemical, lung host defense, permeability, and inflammation changes
 with short-term exposures to NO₂ provide limited evidence of plausible pathways by
 which risks of morbidity and, potentially, mortality may be increased, but no coherent
 picture is evident at this time.
- While NO₂ exposure, alone or in conjunction with other pollutants, may contribute to
 increased mortality, evaluation of the specificity of this effect is difficult. Limited
 experimental evidence exists to prohibits considering biological plausibility at this time,
 and the range of mortality risk estimates is smaller than that for other pollutants such as
 PM. It is possible that NO₂ is acting as a marker for another pollutants or traffic-related
 mixtures.
- 31
1

5.5.2.4 Morbidity and Long-Term Exposure to NO₂

2 The available epidemiological and toxicological data provide *suggestive* evidence that
3 long-term exposure to NO₂ affects respiratory health.

4 A number of epidemiological studies examined the effects of long-term exposure to NO₂ 5 and observed associations with decrements in lung function, and partially irreversible 6 decrements in lung function growth. In one analysis, results were similar for boys 7 compared to girls and among children who did not have a history of asthma: clinically 8 significant differences in lung function remained at age 18. These studies, however, are 9 confounded by other ambient pollutants. In particular, associations are also found for PM 10 and proximity to traffic (<500 m). As shown in Table 5.5-3C, the mean NO₂ 11 concentrations in these studies range from 21.5 to 34.6 ppb; thus, all have been conducted 12 in areas where NO₂ levels are below the level of the NAAQS (53 ppb, annual average). A limited number of epidemiological studies examined the effects of long-term exposure 13

A limited number of epidemiological studies examined the effects of long-term exposure
 to NO₂ and observed associations with increases in asthma prevalence. However,
 potential confounding by other ambient pollutants introduces uncertainty.

Animal toxicological studies demonstrate that exposure to NO₂ results in morphological
 changes in the centriacinar region of the lung and in bronchiolar epithelial proliferation,
 which may provide biological plausibility for the observed increased incidence of
 respiratory illness.

Two epidemiological studies conducted in Europe showed an association between long-term NO₂ exposure and cancer incidence, although animal studies have provided no clear evidence that NO₂ acts as a carcinogen. There are no in vivo studies suggesting that NO₂ causes malignant tumors and no evidence of mutagenicity. Substantial evidence exists that nitro-PAHs are formed via combination of NO_x and other air pollutants, though many of these are found in the particulate phase. The PAHs are considered to be known human carcinogens, and nitration of PAHs is thought to increase carcinogenic potential.

No studies have been conducted on potential CV effects of long-term exposure to oxides
 of nitrogen.

Epidemiological evidence is weak for associations between NO₂ exposure and
 intrauterine growth retardation and preterm delivery. Limited toxicological evidence
 suggests a weak association between NO₂ exposure and adverse birth outcomes and

provides little mechanistic information or biological plausibility for the epidemiological findings.

3 4 5.5.2.5 Mortality and Long-Term Exposure to NO₂ 5 Results from the few available epidemiological studies are inconclusive regarding the 6 association between long-term exposure to NO₂ and mortality. 7 A limited number of epidemiological studies have investigated the effect of long-term 8 exposure to NO_2 on mortality. In general, inconsistent associations were observed across 9 study locations and cause-specific mortality outcomes. 10 Multipollutant analyses were usually not conducted, but studies indicated high 11 correlations between NO₂ and PM indices ($r \sim 0.8$). 12 5.5.2.6 13 **Concentration-Response Relationships and Thresholds** 14 An important consideration in characterizing the public health impacts associated with 15 NO₂ exposure is whether the concentration-response relationship is linear across the full 16 concentration range that is encountered or if nonlinear departures exist along any part of this 17 range. Of particular interest is the shape of the concentration-response curve at and below the 18 level of the current annual average standard of 53 ppb (0.053 ppm). 19 Identifying possible "thresholds" in air pollution epidemiological studies is problematic. 20 Various factors tend to linearize the concentration-response relationships, obscuring any 21 thresholds that may exist. Exposure measurement error, response measurement error, and low 22 data density in the lower concentration range are some factors that complicate determining the 23 shape of the concentration-response curve. Biological characteristics tending to linearize 24 concentration-response relationships include interindividual variation in susceptibility to health 25 effects, additivity of pollutant-induced effects to the naturally occurring background disease 26 processes, and the extent to which health effects are due to other environmental insults having a 27 mode of action similar to that of NO₂. Additionally, if the concentration-response relationship is 28 shallow, identification of any threshold that may exist will be more difficult. 29 The slope of the NO₂ concentration-response relationship has been explored in several 30 studies. To examine the shape of the concentration-response relationship between NO₂ and daily 31 physician consultations for asthma and lower respiratory disease in children, Hajat et al. (1999) 32 used bubble plots to examine residuals of significant models plotted against moving averages of

1

2

1	NO_2 concentration. They noted a weak trend for asthma and 0-1 day moving average of NO_2
2	and suggested that effects are weaker at low concentrations and stronger at higher concentrations
3	than predicted by the linear model. These departures are in accord with the sigmoidal dose-
4	response models. A number of epidemiological studies have reported no evidence for nonlinear
5	relationships or a threshold response in relationships between NO ₂ and mortality or morbidity.
6	One multicity time-series study (Samoli et al., 2006) examined the relationship between
7	mortality and NO ₂ in 29 European cities. There was no indication of a response threshold, and
8	the concentration-response curves were consistent with a linear relationship. Kim et al. (2004b)
9	investigated the presence of a threshold in relationships between air pollutants and mortality in
10	Seoul, Korea, by analyzing data using a log-linear GAM (linear model), a cubic natural spline
11	model (nonlinear model), and a B-mode splined model (threshold model). The 24-h average
12	NO ₂ level was 32.5 ppb (SD 10.3); there was no evidence that NO ₂ had a nonlinear association
13	with mortality. Burnett et al. (1997a) used the LOESS smoothing method to present
14	nonparametric concentration-response curves for respiratory and cardiac hospitalizations. These
15	smoothed curves did not have significant departures from the linear model. One problem with
16	this approach is that the LOESS smoothed curve may lack biological rationale. Burnett et al.
17	(1997b) tested for nonlinearity by testing the significance of the quadratic term in a study of
18	hospital admissions for respiratory diseases and reported no evidence for nonlinearity for the
19	association with NO ₂ .
20	In studies that have specifically examined concentration-response relationships between
21	NO ₂ and health outcomes, there is little evidence of an effect threshold. Factors that make
22	difficult identification of any threshold that may exist are noted above.
23	
24	5.5.2.7 Susceptible and Vulnerable Populations
25	Several susceptible subpopulations can be identified.
26	• Based on both short- and long-term studies of an array of respiratory and cardiac health
27	effects data, asthmatics and persons with preexisting cardiopulmonary conditions are at
28	greater risk from ambient NO_2 exposures than the general public, with the most extensive
29	evidence available for asthmatics as a potentially susceptible group. In addition, studies
30	suggest that upper respiratory viral infections can trigger susceptibility to the effects of
31	exposure to NO_2 .

- There is supporting evidence of age-related differences in susceptibility to NO₂ health
 effects such that the elderly population (>65 years of age) appears to be at increased risk
 of mortality and hospitalizations and that children (<18 years of age) experience other
 potentially adverse respiratory health outcomes with increased NO₂ exposure.
- People with occupations that require them to be in or close to traffic or roadways (i.e.,
 bus and taxi drivers, highway patrol officers) may have enhanced exposure to NO₂
 compared to the general population, possibly increasing their vulnerability. Limited
 studies, however, provide no evidence that they are more susceptible to the effects of
 NO₂ than the general population.
- In addition to observed increases in NO₂-exposure-related illnesses, a general shift of the
 population response distribution towards greater sensitivity to illness is anticipated. This
 shift, in itself is considered adverse.
- 13 14

15 **5.6 CONCLUSIONS**

16 New evidence confirms previous findings in the 1993 AQCD that short-term NO₂ 17 exposure is associated with increased airways responsiveness, often accompanied by respiratory 18 symptoms, particularly in children and asthmatics. Additionally, the new body of 19 epidemiological data provides strong evidence of associations with increased ED visits and 20 hospital admissions for respiratory causes, especially asthma and COPD, and short-term ambient 21 exposure to NO₂. These new findings are based on numerous studies, including panel and field 22 studies, multipollutant studies that control for the effects of other pollutants, and studies 23 conducted in areas where the full distribution of ambient 24-h average NO₂ concentrations was 24 below the current NAAOS of 53 ppb (see data in Table 5.5-3A and 5.5-3B). These conclusions 25 are supported by evidence from toxicological and controlled human exposure studies. 26 Individually and together, these data sets form a plausible, consistent, and coherent description of 27 a relationship between NO₂ exposures and an array of adverse health effects that range from the 28 onset of respiratory symptoms to hospital admission. 29 It is difficult to determine from these new studies if NO₂ is the causal agent or if NO₂ is a 30 marker for the effects of another traffic-related pollutant or mix of pollutants (see Chapter 2 and

31 Section 5.4 for more details on exposure issues). To understand the relationship of NO_2 and

32 impacts on public health with more certainty, one must turn to other lines of evidence.

1 Other evidence of the effects of NO_2 comes from personal exposure studies of indoor 2 sources and from clinical and animal studies. Recent studies reporting associations between 3 personal exposure to NO₂ indoor sources and respiratory symptoms provide key support for 4 epidemiological findings of associations with ambient NO_2 concentrations. In particular, an 5 intervention study (Pilotto et al., 2004) provides strong evidence of a detrimental effect on 6 asthmatic children of exposure to NO_2 from indoor sources. Additionally, a complex set of 7 recent controlled human exposure studies provides good evidence for increased airways 8 responsiveness to allergen-induced inflammation and allergen-induced bronchoconstriction 9 following short-term exposure to levels of NO_2 in the range of 0.26 ppm. The significance of 10 increased airways responsiveness is the potential for exacerbation of asthma. Increases in 11 biological markers of inflammation are also reported in antioxidant-deficient laboratory animals 12 exposed to 0.4-ppm NO₂; however, it is not clear how these antioxidant-deficient laboratory 13 animals differ from humans.

An argument can be made that NO_2 exacerbates the response to allergen challenge and worsens virus-associated symptoms in asthmatic children, although data to support this argument is more limited. A recent epidemiological study (Chauhan et al., 2003) provided evidence that an increased personal exposure to NO_2 worsens virus-associated symptoms and lung function in children with asthma. Controlled human exposure studies of healthy adults, conducted at higher than ambient concentrations, also provide limited evidence that NO_2 may increase inflammation and increase susceptibility to injury associated with subsequent viral challenge.

Lastly, but importantly, large, well-conducted prospective studies provide strong evidence of partially irreversible decreased lung function growth and lung function capacity among children with long-term exposure to NO₂ and/or traffic. These studies do not suggest that NO₂ alone is responsible for these deficits. Chronic animal toxicological studies, at higher than ambient exposure concentrations, demonstrate that exposure to NO₂ results in morphological changes in the centriacinar region of the lung and bronchiolar epithelial proliferation and provide biological plausibility for the lung function growth decrements observed in children.

Integrating across the epidemiological, clinical, and animal evidence presented above, we find that it is plausible, consistent, and coherent that current ambient NO₂ exposures directly result in adverse impacts to public health at concentrations below the current NAAQS for NO₂. In particular, a set of coherent and plausible respiratory health outcomes indicative of 1 exacerbated asthma are associated with NO₂ exposures: increase airways hyperresponsivness,

- 2 inflammation, impair host defense, a progression of respiratory symptoms, worsened virus
- 3 infections, emergency room visits, and hospital admission. Additionally, evidence is suggestive
- 4 of potentially permanent decreased lung function capacity and increased mortality.
- 5 The evidence presented in Chapters 2, 3, and 4 also leads us to conclude that NO_2 can be
- 6 expected to be an indicator of the effects of traffic-related pollutants. Furthermore, since is it
- 7 well known that traffic-related pollutants other than NO₂ produce adverse effects on public
- 8 health, it is reasonable to conclude that the impact of multiple pollutant mixtures on public health
- 9 produce greater impacts on public health than would be expected from NO₂ alone.

NO ₂ (ppm) (Exposure Duration)	Observed Effects	References
0.26 (0.5 h)	Asthmatics exposed to NO_2 during rest experienced enhanced sensitivity to allergen-induced decrements in lung function and increase the allergen-induced airways inflammatory response. Inflammatory response to allergen observed in the absence of allergen-induced lung function response. No NO_2 -induced change in lung function.	Barck et al. (2002, 2005a) Strand et al. (1996,1997, 1998)
0.1-0.3 (0.5-2.0 h)	Meta-analysis showed increased airways responsiveness following NO ₂ exposure in asthmatics. Large variability in protocols and responses. Most studies used nonspecific airways challenges. Airways responsiveness tended to be greater for resting (mean 45 min) than exercising (mean 102 min) exposures conditions.	Folinsbee (1992)
0.3-0.4 (2-4 h)	Inconsistent effects on FVC and FEV_1 in COPD patients with mild exercise.	Gong et al. (2005) Morrow et al. (1992) Vagaggini et al. (1996)
1.0-2.0 (2-6 h)	Increased inflammatory response and airways responsiveness to nonspecific challenge in healthy adults exposed during intermittent exercise. Effects on lung function and symptoms in healthy subjects not detected by most investigators. Small decrements in FEV ₁ reported for asthmatics.	Azadniv et al. (1998) Blomberg et al. (1997, 1999) Devlin et al. (1999) Frampton et al. (2002) Jorres et al. (1995)
≥2.00 (1-3 h)	Lung function changes (e.g., increased airways resistance) in healthy subjects. Effects not found by others at 2-4 ppm.	Beil and Ulmer (1976) Nieding et al. (1979) Nieding and Wagner (1977) Nieding et al. (1980)

TABLE 5.5-1. KEY HUMAN HEALTH EFFECTS OF EXPOSURE TO NITROGEN DIOXIDE—CLINICAL STUDIES^a

a NO_2 = Nitrogen dioxide

FVC = Forced vital capacity.

 $FEV_1 =$ Functional expiratory volume in 1 s.

COPD = Chronic obstructive pulmonary disease.

August 2007

Concentration (ppm)	Exposure Duration	Species	Effect	Category	Reference
0.2	From conception to 12 wks post delivery	Rats	Increase in BALF lymphocytes	Inflammation	Kume and Arakawa (2006)
0.5	Weanling period (from 5 wks old to 12 wks)	Rats	Suppression of ROS	Lung host defense	Kume and Arakawa (2006)
0.5	0.5-10 days	Rats	Depressed activation of arachidonic acid metabolism and superoxide production	Lung host defense	Robison et al. (1993)
0.5 with spikes of 1.5	9 wks	Rats	Increase in the number of fenestrae in the lungs	Morphological effects	Mercer et al. (1995)
0.8	1 or 3 days	Rats	Increase in bronchiolar epithelial proliferation	Morphological effects	Barth et al. (1994a)

TABLE 5.5-2. SUMMARY OF TOXICOLOGICAL EFFECTS FROM NO2 EXPOSURE(LOEL BASED ON CATEGORY)

				Statistics f	Cor NO ₂		
Defense Stude		Averaging time, Mean (SD) NO ₂ Levels (ppb)	Air Quanty Data (ppb)			- C(4 - 1 - 1 - 1 * D 4 E D * 1	
Location, and Period	Study Population		98th %	99th %	Range	(95% CI)	
Schwartz et al. (1994), Six cities, United States 1984-1988	1,844 elementary school children in 6 U.S. cities	24-h avg: 13.3	NR	NR	Max: 44.2	Cough incidence: NO_2 alone: 61.3% (8.2, 143.4) $NO_2 + PM_{10}$: 36.9% (-11.6, 113.2) $NO_2 + O_3$: 61.3% (8.2, 140.3) $NO_2 + SO_2$: 18.8% (-11.6, 69.0)	
Mortimer et al. (2002) Eight urban areas, United States 1993	Asthmatic children (4-9 yrs) from the National Cooperative Inner-City Asthma Study (NCICAS) cohort	4-h avg: 32	NR	NR	≈ 7, 96	Morning %PEFR NO ₂ alone: 48% (2, 116) NO ₂ + O ₃ : 40% (-7, 109) NO ₂ + O ₃ + SO ₂ : 31% (-13, 109) NO ₂ + O ₃ + SO ₂ + PM ₁₀ : 45% (-37, 234)	
Schildcrout et al. (2006) Eight North American Cities 1993-1995	990 asthmatic children (aged 5-13 yrs) enrolled in Childhood Asthma Management Program (CAMP) cohort	24-h avg: 17.8-26.0	NR	NR	NR	Asthma symptoms: NO_2 alone: 4.0% (1.0, 7.0) NO_2 + CO: 4.0% (0.0, 8.0) NO_2 + PM_{10} : 4.0% (0.0, 7.0) NO_2 + SO_2 : 4.0% (-1.0, 8.0) Rescue inhaler use: NO_2 alone: 3.0% (1.0, 5.0) NO_2 + CO: 4.0% (0.0, 7.0) NO_2 + PM_{10} : 2.0% (0.0, 5.0) NO_2 + SO_2 : 3.0% (-2.0, 5.0)	
Ostro et al. (2001) Los Angeles and Pasadena, CA, United States Aug-Oct, 1993	138 African-American asthmatic children (8-13 yrs)	L.A. 1-h max: 79.5 (43.6) Pasadena 1-h max: 68.1 (31.3)	NR	NR	L.A.: 20.0, 220.0 Pasadena: 30.0, 170.0	Shortness of breath: Day w/symptoms: 4.7% (-0.6, 10.4) Onset of symptoms: 8.2% (-0.6, 17.6) Wheeze: Day w/symptoms: 4.7% (1.2, 8.7) Onset of symptoms: 7.6% (2.4, 13.8) Cough: Day w/symptoms: 1.8% (-1.8, 5.3) Onset of symptoms: 7.0% (1.0, 13.8)	

TABLE 5.5-3A. EFFECTS OF SHORT-TERM NO2 EXPOSURE ON RESPIRATORY OUTCOMES IN THE
UNITED STATES AND CANADA

		Averaging time, Statistics for NO ₂				
Reference, Study	Study Population	Mean (SD) NO_2 Levels (npb)		Quality Data	(ppb)	Standardized* Percent Excess Risk
Delfino et al. (2002) Alpine, CA, United States Mar-Apr 1996	22 children with asthma (9-19 yrs old) living in nonsmoking households	1-h max: 24 (10)	98th %	99th %	8, 53	Asthma symptoms: NO ₂ alone: 34.6% (-17.9, 122.1) On medication: -8.9% (-79.1, 297.6) Not on medication: 80.3% (-10.7, 263.7) With (compared to without) respiratory infection: 299% (-50.6, 1,708)
Delfino et al (2003a) East Los Angeles County, CA, United States Nov 1999 - Jan 2000	22 Hispanic school children (ages 10-15) with asthma	1-h max: 7.2 (2.1)	NR	NR	3, 14	Asthma symptoms: Symptom scores >1, lag 0: 119.7% (-45.8, 2,038.2) Symptom scores >1, lag 1: 197.4% (-36.7, 5,793.5) Symptom scores >2, lag 0: 360.6% (-95.8, 3,039,358) Symptom scores >2, lag 1: -75.7% (-205.5, 138,807.3)
Silkoff et al. (2005) Denver, CO, United States Winters of 1999-2000 and 2000-2001	34 subjects with advanced COPD (\geq 40 yrs), with a history of more than 10 pack- yrs of tobacco use, airflow limitation with FEV ₁ of <70% of predicted value, and FEV ₁ /FVC ratio of less than 60%	1999-2000 24-h avg: 16 (17) 2000-2001 24-h avg: 29 (11)	NR	NR	1999-2000: 0, 54 2000-2001: 6, 54	FEV ₁ change: 1999-2000 AM, lag 0: 0.012 (-0.001 , 0.026) AM, lag 1: 0.022 (0.013 , 0.035) AM, lag 2: 0.015 (0.006 , 0.028) PM, lag 0: 0.014 (0.001 , 0.030) PM, lag 1: 0.013 (-0.002 , 0.028) PM, lag 2: 0.011 (-0.005 , 0.025) 2000-2001 AM, lag 0: -0.005 (-0.021 , 0.018) AM, lag 1: -0.011 (-0.032 , 0.008) AM, lag 2: 0.010 (-0.008 , 0.024) PM, lag 0: -0.004 (-0.017 , 0.006) PM, lag 2: -0.006 (-0.019 , 0.003) PEF change:

TABLE 5.5-3A (cont'd). EFFECTS OF SHORT-TERM NO2 EXPOSURE ON RESPIRATORY OUTCOMES IN THE
UNITED STATES AND CANADA

	Statis			tatistics for N Quality Data	IO ₂ (ppb)	
Reference, Study Location, and Period	Study Population	Averaging time, Mean (SD) NO ₂ Levels (ppb)	98th %	99th %	Range	– Standardized* Percent Excess Risk (95% CI)
Silkoff (cont'd) et al. (2005) Denver, CO, United States Winters of 1999-2000 and 2000-2001						AM, lag 0: 2.0 (-1.5, 4.0) AM, lag 1: 5.1 (2.5, 7.3) AM, lag 2: 4.0 (1.8, 7.0) PM, lag 0: 2.4 (-1.0, 5.0) PM, lag 1: 2.3 (-1.1, 4.9) PM, lag 2: 2.2 (-1.2, 4.8) 2000-2001 AM, lag 0: -4.9 (-8.0, -2.0) AM, lag 1: -4.7 (-7.8, -0.3) AM, lag 2: 0.8 (-2.0, 4.5) PM, lag 0: -0.5 (-2.7, 2.0) PM, lag 1: -0.8 (-3.0, 1.6) PM, lag 2: -1.3 (-3.3, 0.2)
Gilliand et al. (2001) 200-mile radius of Los Angeles, CA, United States Jan-June 1996	Cohort of 4th grade school children (9-10 yrs) (n = 2,081)	24-h avg 10.9	NR	NR	NR	School absenteeism: All absences: 6.9% (-51.8, 137.2) Non-illness absences: 81.2% (-67.5, 376.1) All illness absences: -9.0% (-66.9, 149.0) Nonrespiratory illness: -61.1% (-90.7, 71.1) Respiratory illness: 43.0% (-59.3, 403.6) URI: -14.3% (-51.4, 51.3) LRI (wet cough): -60.9% (-93.6, 123.2) LRI (wet cough/wheeze or asthma): 10.5% (-91.2, 672.8)
Adamkiewicz et al. (2004) Steubenville, OH. United States Sep-Dec, 2000	29 nonsmoking adults (ages 53+)	24-h avg 10.9	NR	NR	NR	Change in fraction of exhaled NO: 24-h moving average: 0.53 (-0.35, 1.41)

TABLE 5.5-3A (cont'd). EFFECTS OF SHORT-TERM NO2 EXPOSURE ON RESPIRATORY OUTCOMES IN THE
UNITED STATES AND CANADA

Reference, Study	Averaging time, erence, Study Mean (SD) NO ₂ Levels Air Quality Data (ppb)		O ₂ (ppb)	Standardized* Percent Excess Risk		
Location, and Period	Study Population	(ppb)	98th %	99th %	Range	(95% CI)
Rondeau et al. (2005) 200-mile radius of Los Angeles, CA, United States Jan-June 1996	Cohort of 4th grade school children (9-10 yrs) (n = 1,932)	24-h avg: 5-45	NR	NR	NR	School absenteeism: All absences, 5 lag days: -10.6% (-21.0, 1.2) All absences, 15 lag days: -25.4% (-37.3, -11.3) All absences, 30 lag days: -13.2% (-29.0, 5.9) All illness absences, 5 lag days: -9.4% (-15.5, -2.6) All illness absences, 15 lag days: -16.3% (-38.3, 13.4) All illness absences, 30 lag days: -10.4% (-23.5, 33.6) Respiratory illness absences, 5 lag days: 2.8% (-12.2, 35.7) Respiratory illness absences, 15 lag days: -20.3% (-30.0, 16.9) Respiratory illness absences, 30 lag days: -23.8% (-53.9, 25.9)
Linn et al. (1996) Los Angeles, CA, United States 1992-1994	269 school children (during 4th and 5th grade school yrs)	24-h avg: 33 (22)	NR	NR	1, 96	Total symptom score: Previous 24-h, am score: -18.2% (-47.3, 27.1 Current 24-h, pm score: -42.9% (-65.4, -5.9)

TABLE 5.5-3A (cont'd). EFFECTS OF SHORT-TERM NO2 EXPOSURE ON RESPIRATORY OUTCOMES IN THE
UNITED STATES AND CANADA

 \ast 24-h avg NO_2 standardized to 20 ppb increment; 1-h max NO_2 standardized to 30 ppb increment NR = Not reported

TABLE 5.5-3B. EFFECTS OF SHORT-TERM NO2 EXPOSURE ON EMERGENCY DEPARTMENT VISITS AND
HOSPITAL ADMISSIONS FOR RESPIRATORY OUTCOMES IN THE UNITED STATES AND CANADA

			Sta	tistics for I	NO ₂	
Reference, Study		Averaging time, Mean (SD) NO ₂	Air Q	uality Data	ı (ppb)	
Location and Period	Study Population	Levels (ppb)	98th %	99th %	Range	Excess Risk (95% CI)
EMERGENCY DEPARTM	MENT VISITS—ALL R	ESPIRATORY				
Peel et al. (2005) Atlanta, GA, United States Jan 1993-Aug 2000	484,830 ER visits, all ages from 31 hospitals	1-h max: 45.9 (17.3)	NR	NR	NR	1.024 (1.009, 1.041)
Stieb* et al. (2000) Saint John, New Brunswick, Canada Jul 1992-Mar 1996	19,821 ER visits	24-h avg: 8.9	NR	NR	0, 82	-14.70%
EMERGENCY DEPARTM	MENT VISITS—ASTHN	IA				
Jaffe et al. (2003) 2 cities, Ohio, United States, (Cleveland, Cincinnati) Jul 91-Jun 96	4,416 ER visits for asthma, age 5-34	24-h avg: Cincinnati: 50 (15) Cleveland: 48 (15)	NR	NR	NR	6.1% (-2.0, 14.0)
Norris* et al. (1999) Seattle, WA, United States, 1995-1996	900 ER visits for asthma, <18 yrs	24-h avg: 20.2 (7.1) 1-h max: 34.0 (11.3)	NR	NR	NR	24-h avg: -2.0% (-21, 19) 1-h avg: 5% (-2, 33)
Lipsett et al (1997) Santa Clara County, CA, United States, 1988-1992 (winter only)	ER visits for asthma	1-h max: 69 (28)	NR	NR	29, 150	48%
Peel et al. (2005) Atlanta, GA, United States Jan 1993-Aug 2000	Asthma ER visits, all ages and 2-18 yrs from 31 hospitals	1-h max: 45.9 (17.3)	NR	NR	NR	All Ages: 2.1% (-0.4, 4.5) 2-18: 4.1% (0.8, 7.6)

TABLE 5-3B (cont'd). EFFECTS OF SHORT-TERM NO2 EXPOSURE ON EMERGENCY DEPARTMENT VISITS AND
HOSPITAL ADMISSIONS FOR RESPIRATORY OUTCOMES IN THE UNITED STATES AND CANADA

Reference, Study		Averaging time, Mean (SD) NO ₂	Statistics for NO ₂ Air Quality Data (ppb)		NO ₂ a (ppb)	Standardized — Percent Excess	
Location, and Period	ocation, and Period Study Population		98th %	99th %	Range	Risk (95% CI)	
EMERGENCY DEPARTM	MENT VISITS—ASTHMA	(cont'd)					
Tolbert et al. (2000) Atlanta, GA, United States, 1993-1995	5,934 ER visits for asthma, age 0-16	1-h max: 81.7 (53.8)	NR	NR	5.35, 306	0.7% (-0.8, 2.3)	
Cassino* et al. (1999) New York City, NY, United States 1989-1993	1,115 ER visits from 11 hospitals	24-h avg: 45.0	NR	NR	NR	lag 0: -4% (-19, 12) lag 1: 5% (-11, 25) lag 2: 9% (-8, 28)	
Stieb et al. (1996) St. John, New Brunswick, Canada 1984-1992 (summers only)	1,163 ER visits for asthma, ages 0-15, 15 + from 2 hospitals	1-h max: 25.2	NR	NR	0, 120	$NO_2 + O_3$: -11%	
HOSPITAL ADMISSION	S—ALL RESPIRATORY						
Gwynn* et al. (2000) Buffalo, NY, United States, 1988-1990, Days: 1,090	Respiratory hospital admissions	24-h avg: 20.5	NR	NR	4.0, 47.5	2.20%	
Burnett et al. (1997a) 16 Canadian Cities, Canada, 4/1981-12/1991, Days: 3,927	All respiratory admission from 134 hospitals	1-h max: 35.5 (16.5)	NR	87	NR	Only report results or multipollutant model adjusted for CO, O ₃ , SO ₂ and CoH -0.3% (-2.4%, 1.8%)	

TABLE 5-3B (cont'd). EFFECTS OF SHORT-TERM NO2 EXPOSURE ON EMERGENCY DEPARTMENT VISITS AND
HOSPITAL ADMISSIONS FOR RESPIRATORY OUTCOMES IN THE UNITED STATES AND CANADA

Reference, Study		Averaging time, Mean (SD) NO ₂	S Air	tatistics for Quality Da	r NO ₂ ita (ppb)	Standardized Percent Excess	
Location, and Period	Study Population	Levels (ppb)	98th %	99th %	Range	Risk (95% CI)	
HOSPITAL ADMISSION	NS - ALL RESPIRATO	RY (cont'd)					
Yang et al. (2003) Vancouver, BC, Canada 1986-1998, Days: 4,748	Respiratory hospital admissions among young children (<3 yrs) and elderly (≥65 yrs)	24-h avg: 18.74 (5.66)	NR	NR	NR	<3 yrs: 19.1% (11.2, 36.3) ≥65 yrs: 19.1% (7.4, 36.3)	
Fung et al. (2006) Vancouver, BC, Canada 6/1/95-3/31/99	All respiratory admissions for elderly (65 + yrs)	24-h avg: 16.83 (4.34)	NR	NR	7.22, 33.89	9.1% (1.5, 17.2)	
Burnett* et al. (2001) Toronto, ON, Canada 1980-1994	All respiratory admissions for young children (<2 yrs)	1-h max: 44.1	NR	86	Max = 146	18.20%	
Luginaah et al. (2005) Windsor, ON, Canada 4/1/95-12/31/00	All respiratory admissions ages 0-14, 15-64, and 65 + from 4 hospitals	1-h max: 38.9 (12.3)	NR	NR	NR	All ages, female: 6.7% (-5.4, 20.4) All ages, male: -10.3% (-20.3, 1.1) 0-14, female: 22.4% (-1.2, 51.5) 0-14, male: -8.3% (-13.7, 0.8) 15-64, female: 23.9% (-4.1, 60.0) 15-64, male: 2.3% (-17.7, 44.3) 65+, female: 3.8% (-12.8, 23.5) 65+, male: -14.6 (-29.2, 3.0)	

_

Defenence Study		Averaging time,	Ai	Statistics for r Quality Da	Standardized Percent	
Location, and Period	Study Population	Levels (ppb)	98th %	99th %	Range	Excess Risk (95% CI)
HOSPITAL ADMISSION	NS - ASTHMA					
Linn et al. (2000) Los Angeles, CA, United States 1992-1995	302,600 COPD and asthma hospital admissions	24-h avg: Winter: 3.4 (1.3); Spring: 2.8 (0.9); Summer 3.4 (1.0); Autumn: 4.1 (1.4); all yr: 3.4 (1.3)	NR	NR	NR	2.8% ± 1.0%
Lin* et al. (2004) Vancouver, BC, Canada 1987-1991	Asthma hospital admissions among 6-12 yr olds	24-h avg: 18.65 (5.59)	NR	NR	4.28, 45.36	Boys, low SES: 45.3% (12.7, 88.3) Boys, high SES: 12.7% (-14.6, 49.3) Girls, low SES: 23.0% (-11.7, 70.2) Girls, high SES: 3.1% (-27.6, 45.3)
Lin et al. (2003) Toronto, ON, Canada 1981-1993	Asthma hospital admissions among 6-12 yr olds	24-h avg: 25.24 (9.04)	NR	NR	3.0, 82.0	Boys: 18.9% (1.8, 39.3) Girls: 17.0% (-5.4, 41.4)
Burnett et al. (1999) Toronto, ON, Canada 1980-1994	Asthma hospital admissions	24-h avg: 25.2 (9.1)	NR	NR	NR	2.60%

TABLE 5-3B (cont'd). EFFECTS OF SHORT-TERM NO2 EXPOSURE ON EMERGENCY DEPARTMENT VISITS AND
HOSPITAL ADMISSIONS FOR RESPIRATORY OUTCOMES IN THE UNITED STATES AND CANADA

TABLE 5.5-3B (cont'd). EFFECTS OF SHORT-TERM NO2 EXPOSURE ON EMERGENCY DEPARTMENT VISITSAND HOSPITAL ADMISSIONS FOR RESPIRATORY OUTCOMES IN THE UNITED STATES AND CANADA

Reference, Study		Averaging time, Mean (SD) NO ₂ Levels	Sta Air Q	tistics for uality Dat	Standardized - Percent Excess Risk	
Location, and Period	Study Population	(ppb)	98th %	99th %	Range	(95% CI)
HOSPITAL ADMISSION	NS – COPD					
Moolgavkar (2000) Chicago, Los Angeles, Phoenix, United States 1987-1995	Hospital admissions	24-h avg: Chicago: 25; LA: 38; Phoenix: 19	NR	NR	NR	Chicago: 4.0% Los Angeles: 4.0% Phoenix: 9.0%
Linn et al. (2000) Los Angeles, CA, United States 1992-1995	302,600 COPD and asthma hospital admissions	24-h avg: Winter: 3.4 (1.3); Spring: 2.8 (0.9); Summer 3.4 (1.0); Autumn: 4.1 (1.4); all yr: 3.4 (1.3)	NR	NR	NR	1.6% ± 0.8%
Yang (2005) Vancouver, BC, Canada, 1994-1998, Days: 1,826	COPD admissions among elderly (65+)	24-h avg: 17.03 (4.48)	NR	NR	4.28, 33.89	32.3% (7.5, 66.2)

* 24-h avg NO₂ standardized to 20 ppb increment; 1-h max NO₂ standardized to 30 ppb increment

NR = Not reported

.

TABLE 5.5-3C. EFFECTS OF LONG-TERM NO2 EXPOSURE ON RESPIRATORY OUTCOMES IN THE
UNITED STATES AND CANADA

		Averaging Time,	А	Statistics for ir Quality Dat	NO ₂ ta (ppb)	
Reference, Study Location, and Period	Study Population	Mean (SD) NO ₂ Levels (ppb)	98th %	99th %	Range	Standardized* Percent Excess Risk (95% CI)
Gauderman et al. (2004) Southern California, United States 1993-2001	1,759 children followed from age 10-18	Annual avg: 34.6	NR	NR	NR	Difference in avg growth in lung function over eight yr study period from the least to most polluted community: FVC: -95.0 ml (-189.4, -0.6) FEV ₁ : -101.4 (-164.5, -38.4) MMEF: -211.0 (-377.6, -44.4)
Peters et al. (1999) Southern California, United States 1993	3,293 public school students in grades 4, 7, and 10	24-h avg: 21.5	NR	NR	NR	Regression of pulmonary function tests on NO ₂ concentrations (1986-1990): FVC: -42.6 (13.5) Males only: -27.6 (25.9) Females only: -58.5 (15.4) FEV ₁ : -23.2 (12.5) Males only: -7.6 (22.1) Females only: -39.9 (13.9) PEFR: -19.0 (43.2) Males only: 48.0 (50.6) Females only: -109.2 (74.8) MMEF: -27.5 (21.7) Males only: 23.0 (27.6) Females only: -90.1 (36.1) Regression of pulmonary function tests on NO ₂ concentrations (1994): FVC: -46.2 (16.0) Males only: -29.9 (29.5) Females only: -63.8 (18.3) FEV ₁ : -22.3 (14.8) Males only: -21 (25.1)

TABLE 5.5-3C (cont'd). EFFECTS OF LONG-TERM NO2 EXPOSURE ON RESPIRATORY OUTCOMES IN THE UNITED STATES AND CANADA

			Statistics for NO ₂ Air Quality Data (ppb)				
		Averaging time,					
Reference, Study Location, and Period	Study Population	Mean (SD) NO ₂ Levels (ppb)	98th %	99th %	Range	Standardized* Percent Excess Risk (95% CI)	
Peters et al. (1999) Southern California, United States 1993 (cont'd)						Females only: -44.1 (16.1) PEFR: -29.5 (48.5) Males only: 54.2 (57.3) Females only: -133.4 (83.1) MMEF: -32.9 (24.4) Males only: 30.0 (30.9) Females only: -109.5 (38.9)	
Tager et al. (2005) Los Angeles and San Francisco, CA, United States 2000-2002	255 freshman undergraduates between 16-19 yrs old at UC- Berkeley with permanent residence in LA or SF	24-h avg: 28.5	NR	NR	8, 51	Sex-specific effects of estimated lifetime mean exposure to NO ₂ LnFEF75: Men: -0.029 (0.003) Women: -0.032 (0.002)	
Millstein et al. (2004) 200 mile radius of Los Angeles 1995	Cohort of 4th grade children (age 9) that entered Children's Health Study in 1995	Monthly avg: NR	NR	NR	NR	Monthly prevalence of asthma medication use: OR: -10.3% (-44.9, 41.4) High time outdoors: -27.8% (-65.9, 51.7) Low time outdoors: -15.2% (-50.5, 43.4)	
Kim et al. (2004) San Francisco, CA, United States 2001	1,109 children (grades 3-5) from neighborhoods that span a busy traffic corridor	Annual avg: 23.0	NR	NR	NR	Bronchitis: 5.7% (-2.8, 17.6) Asthma: 5.7% (-8.2, 20.7) Asthma (no outlier): 17.6% (-2.8, 40.4)	

TABLE 5.5-3C (cont'd). EFFECTS OF LONG-TERM NO2 EXPOSURE ON RESPIRATORY OUTCOMES IN THE UNITED STATES AND CANADA

Reference, Study Location, and Period	Study Population	Averaging Time, Mean (SD) NO ₂ Levels (ppb)	Air 98th %	Quality Data 99th %	(ppb) Range	Standardized* Percent Excess Risk (95% CI)
Gauderman et al. (2005) Southern California, United States 2000	208 children originally enrolled in Children's Health Study as 4th graders in 1993 or 1996	Monthly avg: 15.3-51.5	NR	NR	NR	Asthma: 188.7% (7.1, 773.8) Recent wheeze: 158.9% (12.6, 497.4) Recent wheeze with exercise: 240.3% (14.5, 902.2) Current asthma medication use: 295.6% (37.7, 1,043.3)

* 24-h avg NO₂ standardized to 20 ppb increment; 1-h max NO₂ standardized to 30 ppb increment; monthly and yearly NO₂ avgs standardized to 10 ppb NR = Not reported

1	6. REFERENCES
2 3	
4	Abbey, D. E.; Nishino, N.; McDonnell, W. F.; Burchette, R. J.; Knutsen, S. F.; Beeson, W. L.;
5	Yang, J. X. (1999) Long-term inhalable particles and other air pollutants related to
6	mortality in nonsmokers. Am. J. Respir. Crit. Care Med. 159: 373-382.
7 8 9	Abdul-Kareem, H. S.; Sharma, R. P.; Brown, D. B. (1991) Effects of repeated intermittent exposures to nitrous oxide on central neurotransmitters and hepatic methionine synthetase activity in CD-1 mice. Toxicol. Ind. Health 7: 97-108.
10	Abraham, W. M.; Kim, C. S.; King, M. M.; Oliver, W., Jr.; Yerger, L. (1982) Effects of nitric
11	acid on carbachol reactivity of the airways in normal and allergic sheep. Arch. Environ.
12	Health 37: 36-40.
13	 Ackermann-Liebrich, U.; Leuenberger, P.; Schwartz, J.; Schindler, C.; Monn, C.; Bolognini, B.;
14	Bongard, J. P.; Brändli, O.; Domenighetti, G.; Elsasser, S.; Grize, L.; Karrer, W.; Keller,
15	R.; Keller-Wossidlo, H.; Künzli, N.; Martin, B. W.; Medici, T. C.; Perruchoud, A. P.;
16	Schöni, M. H.; Tschopp, J. M.; Villiger, B.; Wüthrich, B.; Zellweger, J. P.; Zemp, E.
17	(1997) Lung function and long term exposure to air pollutants in Switzerland. Am. J.
18	Respir. Crit. Care Med. 155: 122-129.
19	Acton, J. D.; Myrvik, Q. N. (1972) Nitrogen dioxide effects on alveolar macrophages. Arch.
20	Environ. Health 24: 48-52.
21 22 23	 Adamkiewicz, G.; Ebelt, S.; Syring, M.; Slater, J.; Speizer, F. E.; Schwartz, J.; Suh, H.; Gold, D. R. (2004) Association between air pollution exposure and exhaled nitric oxide in an elderly population. Thorax 59: 204-209.
24 25	Adams, W. C.; Brookes, K. A.; Schelegle, E. S. (1987) Effects of NO ₂ alone and in combination with O ₃ on young men and women. J. Appl. Physiol. 62: 1698-1704.
26 27	Adkins, B., Jr.; Van Stee, E. W.; Simmons, J. E.; Eustis, S. L. (1986) Oncogenic response of strain A/J mice to inhaled chemicals. J. Toxicol. Environ. Health 17: 311-322.
28	 Aga, E.; Samoli, E.; Touloumi, G.; Anderson, H. R.; Cadum, E.; Forsberg, B.; Goodman, P.;
29	Goren, A.; Kotesovec, F.; Kriz, B.; Macarol-Hiti, M.; Medina, S.; Paldy, A.; Schindler,
30	C.; Sunyer, J.; Tittanen, P.; Wojtyniak, B.; Zmirou, D.; Schwartz, J.; Katsouyanni, K.
31	(2003) Short-term effects of ambient particles on mortality in the elderly: results from 28
32	cities in the APHEA2 project. Eur. Respir. J. 21(suppl. 40): 28s-33s.
33	Albritton, D. L.; Greenbaum, D. S., eds. (1998) Atmospheric observations: helping build the
34	scientific basis for decisions related to airborne particulate matter: report of the PM
35	Measurements Research Workshop; July; Chapel Hill, NC. Cambridge, MA: Health
36	Effects Institute.
37	Alm, S.; Mukala, K.; Pasanen, P.; Tiittanen, P.; Ruuskanen, J.; Tuomisto, J.; Jantunen, M. J.
38	(1998) Personal NO ₂ exposures of preschool children in Helsinki. J. Exposure Anal.
39	Environ. Epidemiol. 8: 79-100.

1 Alving, K.; Fornhem, C.; Lundberg, J. M. (1993) Pulmonary effects of endogenous and 2 exogenous nitric oxide in the pig: relation to cigarette smoke inhalation. Br. J. Pharmacol. 3 110: 739-746. 4 American Academy of Pediatrics, Committee on Environmental Health. (2004) Ambient air 5 pollution: health hazards to children. Pediatrics 114: 1699-1707. 6 American Thoracic Society. (2000a) Guidelines for methacholine and exercise challenge testing-7 1999. Am. J. Respir. Crit. Care Med. 161: 309-329. 8 American Thoracic Society. (2000b) What constitutes an adverse health effect of air pollution? 9 Am. J. Respir. Crit. Care Med. 161: 665-673. 10 Ammann, M.; Kalberer, M.; Jost, D. T.; Tobler, L.; Rössler, E.; Piguet, D.; Gäggeler, H. W.; Baltensperger, U. (1998) Heterogeneous production of nitrous acid on soot in polluted air 11 12 masses. Nature (London) 395: 157-160. 13 Amoruso, M. A.; Witz, G.; Goldstein, B. D. (1981) Decreased superoxide anion radical 14 production by rat alveolar macrophages following inhalation of ozone or nitrogen 15 dioxide. Life Sci. 28: 2215-2221. 16 Anderson, H. R.; Spix, C.; Medina, S.; Schouten, J. P.; Castellsague, J.; Rossi, G.; Zmirou, D.; 17 Touloumi, G.; Wojtyniak, B.; Ponka, A.; Bacharova, L.; Schwartz, J.; Katsouyanni, K. 18 (1997) Air pollution and daily admissions for chronic obstructive pulmonary disease in 6 European cities: results from the APHEA project. Eur. Respir. J. 10: 1064-1071. 19 20 Anderson, H. R.; Ponce de Leon, A.; Bland, J. M.; Bower, J. S.; Emberlin, J.; Strachen, D. P. 21 (1998) Air pollution, pollens, and daily admissions for asthma in London 1987-92. 22 Thorax 53: 842-848. 23 Ando, M.; Shima, M.; Adachi, M.; Tsunetoshi, Y. (2001) The role of intercellular adhesion 24 molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and regulated on 25 activation, normal T-cell expressed and secreted (RANTES) in the relationship between 26 air pollution and asthma among children. Arch. Environ. Health 56: 227-233. Aranyi, C.; Fenters, J.; Erhlich, R.; Gardner, D. (1976) Scanning electron microscopy of alveolar 27 28 macrophages after exposure to oxygen, nitrogen dioxide, and ozone. Environ. Health 29 Perspect. 16: 180. 30 Arner, E. C.; Rhoades, R. A. (1973) Long-term nitrogen dioxide exposure: effects on lung lipids and mechanical properties. Arch. Environ. Health 26: 156-160. 31 32 Arroyo, P. L.; Hatch-Pigott, V.; Mower, H. F.; Cooney, R. V. (1992) Mutagenicity of nitric 33 oxide and its inhibition by antioxidants. Mutat. Res. Lett. 281: 193-202. 34 Atkinson, R. W.; Anderson, H. R.; Strachan, D. P.; Bland, J. M.; Bremner, S. A.; Ponce de Leon, 35 A. (1999a) Short-term associations between outdoor air pollution and visits to accident and emergency departments in London for respiratory complaints. Eur. Respir. J. 13: 36 37 257-265. 38 Atkinson, R. W.; Bremner, S. A.; Anderson, H. R.; Strachan, D. P.; Bland, J. M.; Ponce de Leon, 39 A. (1999b) Short-term associations between emergency hospital admissions for 40 respiratory and cardiovascular disease and outdoor air pollution in London. Arch. 41 Environ. Health 54: 398-411.

1 2 3	Avissar, N. E.; Reed, C. K.; Cox, C.; Frampton, M. W.; Finkelstein, J. N. (2000) Ozone, but not nitrogen dioxide, exposure decreases glutathione peroxidases in epithelial lining fluid of human lung. Am. J. Respir. Crit. Care Med. 162: 1342-1347.
4 5 6	Avol, E. L.; Gauderman, W. J.; Tan, S. M.; London, S. J.; Peters, J. M. (2001) Respiratory effects of relocating to areas of differing air pollution levels. Am. J. Respir. Crit. Care Med. 164: 2067-2072.
7 8 9	Ayaz, K. L.; Csallany, A. S. (1978) Long-term NO ₂ exposure of mice in the presence and absence of vitamin E. II. Effect of glutathione peroxidase. Arch. Environ. Health 33: 292- 296.
10 11 12	 Azadniv, M.; Utell, M. J.; Morrow, P. E.; Gibb, F. R.; Nichols, J.; Roberts, N. J., Jr.; Speers, D. M.; Torres, A.; Tsai, Y.; Abraham, M. K.; Voter, K. Z.; Frampton, M. W. (1998) Effects of nitrogen dioxide exposure on human host defense. Inhalation Toxicol. 10: 585-602.
13 14	Azoulay, E.; Soler, P.; Blayo, M. C.; Basset, F. (1977) Nitric oxide effects on lung structure and blood oxygen affinity in rats. Bull. Eur. Physiopathol. Respir. 13: 629-644.
15 16	Azoulay, E.; Bouley, G.; Blayo, M. C. (1981) Effects of nitric oxide on resistance to bacterial infection in mice. J. Toxicol. Environ. Health 7: 873-882.
17 18	Azoulay-Dupuis, E.; Torres, M.; Soler, P.; Moreau, J. (1983) Pulmonary NO ₂ toxicity in neonate and adult guinea pigs and rats. Environ. Res. 30: 322-339.
19 20 21	Balabaeva, L.; Tabakova, S. (1985) Lipidnata peroksidatsiya v dvye pokoleniya zhenski beli plukhove, inkhalirani s azoten dvuokis [Lipid peroxidation in two progenies of female albino rats inhaling nitrogen dioxide]. Khig. Zdraveopaz. 28: 41-46.
22 23 24	Ballester, F.; Tenías, J. M.; Pérez-Hoyos, S. (2001) Air pollution and emergency hospital admissions for cardiovascular diseases in Valencia, Spain. J. Epidemiol. Community Health 55: 57-65.
25 26 27 28 29	 Ballester, F.; Sáez, M.; Pérez-Hoyos, S.; Iñíguez, C.; Gandarillas, A.; Tobías, A.; Bellido, J.; Taracido, M.; Arribas, F.; Daponte, A.; Alonso, E.; Cañada, A.; Guillén-Grima, F.; Cirera, L.; Pérez-Boillos, M. J.; Saurina, C.; Gómez, F.; Tenías, J. M. (2002) The EMECAM project: a multicentre study on air pollution and mortality in Spain: combined results for particulates and for sulfur dioxide. Occup. Environ. Med. 59: 300-308.
30 31 32 33 34	 Ballester, F.; Rodríguez, P.; Iñíguez, C.; Saez, M.; Daponte, A.; Galán, I.; Taracido, M.; Arribas, F.; Bellido, J.; Cirarda, F. B.; Cañada, A.; Guillén, J. J.; Guillén-Grima, F.; López, E.; Pérez-Hoyos, S.; Lertxundi, A.; Toro, S. (2006) Air pollution and cardiovascular admisisons association in Spain: results within the EMECAS project. J. Epidemiol. Community Health 60: 328-336.
35 36 37	 Barck, C.; Sandström, T.; Lundahl, J.; Halldén, G.; Svartengren, M.; Strand, V.; Rak, S.; Bylin, G. (2002) Ambient level of NO₂ augments the inflammatory response to inhaled allergen in asthmatics. Respir. Med. 96: 907-917.
38 39	Barck, C.; Lundahl, J.; Halldén, G.; Bylin, G. (2005a) Brief exposures to NO ₂ augment the allergic inflammation in asthmatics. Environ. Res. 97: 58-66.
40 41	Barck, C.; Lundahl, J.; Holmström, M.; Bylin, G. (2005b) Does nitrogen dioxide affect inflammatory markers after nasal allergen challenge? Am. J. Rhinol. 19: 560-566.

- 1 Barinaga, M. (1991) Is nitric oxide the "retrograde messenger"? Science 254: 1296-1297.
- Barnett, A. G.; Williams, G. M.; Schwartz, J.; Neller, A. H.; Best, T. L.; Petroeschevsky, A. L.;
 Simpson, R. W. (2005) Air pollution and child respiratory health: a case-crossover study
 in Australia and New Zealand. Am. J. Respir. Crit. Care Med. 171: 1272-1278.
- Barnett, A. G.; Williams, G. M.; Schwartz, J.; Best, T. L.; Neller, A. H.; Petroeschevsky, A. L.;
 Simpson, R. W. (2006) The effects of air pollution on hospitalization for cardiovascular
 disease in elderly people in Australian and New Zealand cities. Environ. Health Perspect.
 114: 1018-1023.
- Barth, P. J.; Müller, B. (1999) Effects of nitrogen dioxide exposure on Clara cell proliferation
 and morphology. Pathol. Res. Pract. 195: 487-493.
- Barth, P. J.; Müller, B.; Wagner, U.; Bittinger, A. (1994a) Assessment of proliferative activity in
 type II pneumocytes after inhalation of NO₂ by agnor-analysis. Exp. Toxicol. Pathol. 46:
 335-342.
- Barth, P. J.; Uhlarik, S.; Bittinger, A.; Wagner, U.; Rüschoff, J. (1994b) Diffuse alveolar damage
 in the rat lung after short and long term exposure to nitrogen dioxide. Pathol. Res. Pract.
 190: 33-41.
- Barth, P. J.; Müller, B.; Wagner, U.; Bittinger, A. (1995) Quantitative analysis of parenchymal
 and vascular alterations in NO2-induced lung injury in rats. Eur. Respir. J. 8: 1115-1121.
- Bateson, T. F.; Schwartz, J. (2004) Who is sensitive to the effects of particulate air pollution on
 mortality? A case-crossover analysis of effect modifiers. Epidemiology 15: 143-149.
- Bauer, M. A.; Utell, M. J.; Morrow, P. E.; Speers, D. M.; Gibb, F. R. (1986) Inhalation of 0.30
 ppm nitrogen dioxide potentiates exercise-induced bronchospasm in asthmatics. Am.
 Rev. Respir. Dis. 134: 1203-1208.
- Beckett, W. S.; Russi, M. B.; Haber, A. D.; Rivkin, R. M.; Sullivan, J. R.; Tameroglu, Z.;
 Mohsenin, V.; Leaderer, B. P. (1995) Effect of nitrous acid on lung function in
 asthmatics: a chamber study. Environ. Health Perspect. 103: 372-375.
- Beil, M.; Ulmer, W. T. (1976) Wirkung von NO₂ im MAK-Bereich auf Atemmechanik und
 bronchiale Acetylcholinempfindlichkeit bei Normalpersonen [Effect of NO₂ in workroom
 concentrations on respiratory mechanics and bronchial susceptibility to acetylcholine in
 normal persons]. Int. Arch. Occup. Environ. Health 38: 31-44.
- Belanger, K.; Beckett, W.; Triche, E.; Bracken, M.; Holford, T.; Ren, P.; McSharry, J.-E.; Gold,
 D.; Platts-Mills, T.; Leaderer, B. (2003) Symptoms of wheeze and persistent cough in the
 first year of life: associations with indoor allergens, air contaminants and maternal history
 of asthma. Am. J. Epidemiol. 158: 195-202.
- Belanger, K.; Gent, J. F.; Triche, E. W.; Bracken, M. B.; Leaderer, B. P. (2006) Association of
 indoor nitrogen dioxide exposure with respiratory symptoms in children with asthma.
 Am. J. Respir. Crit. Care Med. 173: 297-303.
- Bell, M. L.; Ebisu, K.; Belanger, K. (2007) Ambient air pollution and low birth weight in
 Connecticut and Massachusetts. Environ. Health Perspect. 115: 1118-1125.

2 of rats exposed to nitrogen dioxide and ozone. Inhalation Toxicol. 13: 69-84. 3 Bernard, N.; Saintot, M.; Astre, C.; Gerber, M. (1998) Personal exposure to nitrogen dioxide 4 pollution and effect on plasma antioxidants. Arch. Environ. Health 53: 122-128. 5 Biggeri, A.; Baccini, M.; Bellini, P.; Terracini, B. (2005) Meta-analysis of the Italian studies of 6 short-term effects of air pollution (MISA), 1990-1999. Int. J. Occup. Environ. Health 11: 7 107-122. 8 Bils, R. F. (1976) The connective tissues and alveolar walls in the lungs of normal and oxidant-9 exposed squirrel monkeys. J. Cell Biol. 70: 318. 10 Blaise, G. A.; Gauvin, D.; Gangal, M.; Authier, S. (2005) Nitric oxide, cell signaling and cell death. Toxicology 208: 177-192. 11 Blomberg, A.; Krishna, M. T.; Bocchino, V.; Biscione, G. L.; Shute, J. K.; Kelly, F. J.; Frew, A. 12 13 J.; Holgate, S. T.; Sandström, T. (1997) The inflammatory effects of 2 ppm NO₂ on the 14 airways of healthy subjects. Am. J. Respir. Crit. Care Med. 156: 418-424. 15 Blomberg, A.; Krishna, M. T.; Helleday, R.; Söderberg, M.; Ledin, M.-C.; Kelly, F. J.; Frew, A. J.; Holgate, S. T.; Sandström, T. (1999) Persistent airway inflammation but accomodated 16 17 antioxidant and lung function responses after repeated daily exposure to nitrogen dioxide. 18 Am. J. Respir. Crit. Care Med. 159: 536-543. 19 Boezen, M.; Schouten, J.; Rijcken, B.; Vonk, J.; Gerritsen, J.; Van Der Zee, S.; Hoek, G.; 20 Brunekreef, B.; Postma, D. (1998) Peak expiratory flow variability, bronchial 21 responsiveness, and susceptibility to ambient air pollution in adults. Am. J. Respir. Crit. 22 Care Med. 158: 1848-1854. 23 Borja-Aburto, V. H.; Castillejos, M.; Gold, D. R.; Bierzwinski, S.; Loomis, D. (1998) Mortality and ambient fine particles in southwest Mexico City, 1993-1995. Environ. Health 24 25 Perspect. 106: 849-855. 26 Boutin-Forzano, S.; Adel, N.; Gratecos, L.; Jullian, H.; Garnier, J. M.; Ramadour, M.; 27 Lanteaume, A.; Hamon, M.; Lafay, V.; Charpin, D. (2004) Visits to the emergency room 28 for asthma attacks and short-term variations in air pollution. A case-crossover study. 29 Respiration 71: 134-137. 30 Brady, T. C.; Crapo, J. D.; Mercer, R. R. (1998) Nitric oxide inhalation transiently elevates 31 pulmonary levels of DGMP, inos mrna, and tnf-alpha. Am. J. Physiol. 275: L509-L515. 32 Braga, A. L. F.; Saldiva, P. H. N.; Pereira, L. A. A.; Menezes, J. J. C.; Conceição, G. M. C.; Lin, 33 C. A.; Zanobetti, A.; Schwartz, J.; Dockery, D. W. (2001) Health effects of air pollution 34 exposure on children and adolescents in São Paulo, Brazil. Pediatr. Pulmonol. 31: 106-35 113. 36 Braner, M.; Henderson, S.; Kirkham, T.; Lee, K. S.; Rich, K.; Teschke, K. (2002) Review of the 37 health risks associated with nitrogen dioxide and sulfur dioxide in indoor air. Vancouver, BC, Canada: University of British Columbia, School of Occupational and Environmental 38 39 Hygiene. Available: http://www.cher.ubc.ca/PDFs/IAQNO2SO2full.pdf [18 July, 2007].

Bermüdez, E. (2001) Detection of poly(ADP-ribose) synthetase activity in alveolar macrophages

1

1 2 3	 Brauer, M.; Ryan, P. B.; Suh, H. H.; Koutrakis, P.; Spengler, J. D.; Leslie, N. P.; Billick, I. H. (1990) Measurements of nitrous acid inside two research houses. Environ. Sci. Technol. 24: 1521-1527.
4 5	Brauer, M.; Rasmussen, T. R.; Kjærgaard, S. K.; Spengler, J. D. (1993) Nitrous acid formation in an experimental exposure chamber. Indoor Air 3: 94-105.
6	 Brauer, M.; Hoek, G.; Van Vliet, P.; Meliefste, K.; Fischer, P. H.; Wijga, A.; Koopman, L. P.;
7	Neijens, H. J.; Gerritsen, J.; Kerkhof, M.; Heinrich, J.; Bellander, T.; Brunekreef, B.
8	(2002) Air pollution from traffic and the development of respiratory infections and
9	asthmatic and allergic symptoms in children. Am. J. Respir. Crit. Care Med. 166: 1092-
10	1098.
11	Brauer, M.; Hoek, G.; Smit, H. A.; De Jongste, J. C.; Gerritsen, J.; Postma, D. S.; Kerkhof, M.;
12	Brunekreef, B. (2007) Air pollution and development of asthma, allergy and infections in
13	a birth cohort. Eur. Respir. J. 29: 879-888.
14	Braun-Fahrländer, C.; Ackermann-Liebrich, U.; Schwartz, J.; Gnehm, H. P.; Rutishauser, M.;
15	Wanner, H. U. (1992) Air pollution and respiratory symptoms in preschool children. Am.
16	Rev. Respir. Dis. 145: 42-47.
17 18 19	Bremner, S. A.; Anderson, H. R.; Atkinson, R. W.; McMichael, A. J.; Strachan, D. P.; Bland, J. M.; Bower, J. S. (1999) Short term associations between outdoor air pollution and mortality in London 1992-4. Occup. Environ. Med. 56: 237-244.
20	 Brook, R. D.; Franklin, B.; Cascio, W.; Hong, Y.; Howard, G.; Lipsett, M.; Luepker, R.;
21	Mittleman, M.; Samet, J.; Smith, S. C., Jr.; Tager, I. (2004) Air pollution and
22	cardiovascular disease. A statement for healthcare professionals from the Expert Panel on
23	Population and Prevention Science of the American Heart Association. Circulation 109:
24	2655-2671.
25	Brown, S. K.; Mahoney, K. J.; Cheng, M. (2004) Room chamber assessment of the pollutant
26	emission properties of (nominally) low-emission unflued gas heaters. Indoor Air
27	14(suppl. 8): 84-91.
28 29 30	Burnett, R. T.; Cakmak, S.; Brook, J. R.; Krewski, D. (1997a) The role of particulate size and chemistry in the association between summertime ambient air pollution and hospitalization for cardiorespiratory diseases. Environ. Health Perspect. 105: 614-620.
31	Burnett, R. T.; Brook, J. R.; Yung, W. T.; Dales, R. E.; Krewski, D. (1997b) Association
32	between ozone and hospitalization for respiratory diseases in 16 Canadian cities. Environ.
33	Res. 72: 24-31.
34 35	Burnett, R. T.; Cakmak, S.; Brook, J. R. (1998) The effect of the urban ambient air pollution mix on daily mortality rates in 11 Canadian cities. Can. J. Public Health 89: 152-156.
36	Burnett, R. T.; Smith-Doiron, M.; Stieb, D.; Cakmak, S.; Brook, J. R. (1999) Effects of
37	particulate and gaseous air pollution on cardiorespiratory hospitalizations. Arch. Environ.
38	Health 54: 130-139.
39 40	Burnett, R. T.; Brook, J.; Dann, T.; Delocla, C.; Philips, O.; Cakmak, S.; Vincent, R.; Goldberg, M. S.; Krewski, D. (2000) Association between particulate- and gas-phase components of

1 2	urban air pollution and daily mortality in eight Canadian cities. In: Grant, L. D., ed. PM2000: particulate matter and health. Inhalation Toxicol. 12(suppl. 4): 15-39.
3 4 5 6	Burnett, R. T.; Goldberg, M. S. (2003) Size-fractionated particulate mass and daily mortality in eight Canadian cities. In: Revised analyses of time-series studies of air pollution and health. Special report. Boston, MA: Health Effects Institute; pp. 85-89. Available: http://www.healtheffects.org/news.htm [16 May, 2003].
7 8 9	 Burnett, R. T.; Stieb, D.; Brook, J. R.; Cakmak, S.; Dales, R.; Raizenne, M.; Vincent, R.; Dann, T. (2004) Associations between short-term changes in nitrogen dioxide and mortality in Canadian cities. Arch. Environ. Health 59: 228-236.
10 11 12	Busch, R. H.; Buschbom, R. L.; Cannon, W. C.; Lauhala, K. E.; Miller, F. J.; Graham, J. A.; Smith, L. G. (1986) Effects of ammonium nitrate aerosol exposure on lung structure of normal and elastase-impaired rats and guinea pigs. Environ. Res. 39: 237-252.
13 14	Bush, T.; Smith, S.; Stevenson, K.; Moorcroft, S. (2001) Validation of nitrogen dioxide diffusion tube methodology in the UK. Atmos. Environ. 35: 289-296.
15 16 17	Bylin, G.; Lindvall, T.; Rehn, T.; Sundin, B. (1985) Effects of short-term exposure to ambient nitrogen dioxide concentrations on human bronchial reactivity and lung function. Eur. J. Respir. Dis. 66: 205-217.
18 19	Cabral-Anderson, L. J.; Evans, M. J.; Freeman, G. (1977) Effects of NO ₂ on the lungs of aging rats: I. morphology. Exp. Mol. Pathol. 27: 353-365.
20 21 22 23	California Air Resources Board. (2007a) Review of the California ambient air quality standard for nitrogen dioxide. Staff report: initial statement of reasons for proposed rulemaking. Sacramento, CA: California Environmental Protection Agency, Air Resources Board. Available: http://www.arb.ca.gov/research/aaqs/no2-rs/no2-doc.htm [23 July, 2007].
24 25 26 27	California Air Resources Board. (2007b) Review of the California ambient air quality standard for nitrogen dioxide. Technical support document. Sacramento, CA: California Environmental Protection Agency, Air Resources Board. Available: http://www.arb.ca.gov/research/aaqs/no2-rs/no2-doc.htm [23 July, 2007].
28 29 30	Campbell, G. W.; Stedman, J. R.; Stevenson, K. (1994) A survey of nitrogen dioxide concentrations in the United Kingdom using diffusion tubes, July-December 1991. Atmos. Environ. 28: 477-486.
31 32	Carslaw, N. (2007) A new detailed chemical model for indoor air pollution. Atmos. Environ. 41: 1164-1179.
33 34	Carson, J. L.; Collier, A. M.; Hu, SC.; Delvin, R. B. (1993) Effect of nitrogen dioxide on human nasal epithelium. Am. J. Respir. Cell. Mol. Biol. 9: 264-270.
35 36	Case, G. D.; Dixon, J. S.; Schooley, J. C. (1979) Interactions of blood metalloproteins with nitrogen oxides and oxidant air pollutants. Environ. Res. 20: 43-65.
37 38	Castellsague, J.; Sunyer, J.; Sáez, M.; Antó, J. M. (1995) Short-term association between air pollution and emergency room visits for asthma in Barcelona. Thorax 50: 1051-1056.
39 40	Cavanagh, D. G.; Morris, J. B. (1987) Mucus protection and airway peroxidation following nitrogen dioxide exposure in the rat. J. Toxicol. Environ. Health 22: 313-328.

1 2 3 4	Centers for Disease Control and Prevention. (2005) Asthma prevalence, health care use and mortality: United States, 2003-05. Atlanta, GA: National Center for Health Statistics. Available: http://www.cdc.gov/nchs/products/pubs/pubd/hestats/ashtma03-05/asthma03- 05.htm [7 August, 2007].
5 6	Centers for Disease Control and Prevention. (2007a) Prevalence of heart disease — United States, 2005. Morb. Mortal. Wkly. Rep. MMWR 56: 113-118.
7 8	Centers for Disease Control and Prevention. (2007b) Prevalence of stroke United States, 2005. Morb. Mortal. Wkly. Rep. MMWR 56: 469-474.
9 10 11	Chan, CC.; Chuang, KJ.; Su, TC.; Lin, LY. (2005) Association between nitrogen dioxide and heart rate variability in a susceptible population. Eur. J. Cardiovasc. Prev. Rehabil. 12: 580-586.
12 13 14	Chan, CC.; Chuang, KJ.; Chien, LC.; Chen, WJ.; Chang, WT. (2006) Urban air pollution and emergency admissions for cerebrovascular diseases in Taipei, Taiwan. Eur. Heart J. 27: 1238-1244.
15 16 17	Chang, LY.; Graham, J. A.; Miller, F. J.; Ospital, J. J.; Crapo, J. D. (1986) Effects of subchronic inhalation of low concentrations of nitrogen dioxide. I. The proximal alveolar region of juvenile and adult rats. Toxicol. Appl. Pharmacol. 83: 46-61.
18 19 20	 Chang, LY.; Mercer, R. R.; Stockstill, B. L.; Miller, F. J.; Graham, J. A.; Ospital, J. J.; Crapo, J. D. (1988) Effects of low levels of NO₂ on terminal bronchiolar cells and its relative toxicity compared to O₃. Toxicol. Appl. Pharmacol. 96: 451-464.
21 22	Chang, CC.; Tsai, SS.; Ho, SC.; Yang, CY. (2005) Air pollution and hospital admissions for cardiovascular disease in Taipei, Taiwan. Environ. Res. 98: 114-119.
23 24	Chauhan, A. J.; Krishna, M. T.; Frew, A. J.; Holgate, S. T. (1998) Exposure to nitrogen dioxide (NO ₂) and respiratory disease risk. Rev. Environ. Health 13: 73-90.
25 26 27	 Chauhan, A. J.; Inskip, H. M.; Linaker, C. H.; Smith, S.; Schreiber, J.; Johnston, S. L.; Holgate, S. T. (2003) Personal exposure to nitrogen dioxide (NO₂) and the severity of virus-induced asthma in children. Lancet 361: 1939-1944.
28 29	Chiodi, H.; Mohler, J. G. (1985) Effects of exposure of blood hemoglobin to nitric oxide. Environ. Res. 37: 355-363.
30 31	Chow, C. K.; Tappel, A. L. (1972) An enzymatic protective mechanism against lipid peroxidation damage to lungs of ozone-exposed rats. Lipids 7: 518-524.
32 33	Chow, C. K.; Dillard, C. J.; Tappel, A. L. (1974) Glutathione peroxidase system and lysozyme in rats exposed to ozone or nitrogen dioxide. Environ. Res. 7: 311-319.
34 35 36	Clougherty, J. E.; Levy, J. I.; Kubzansky, L. D.; Ryan, P. B.; Suglia, S. F.; Canner, M. J.; Wright, R. J. (2007) Synergistic effects of traffic-related air pollution and exposure to violence on urban asthma etiology. Environ. Health Perspect. 115: 1140-1146.
37 38	Cocheo, V.; Boaretto, C.; Sacco, P. (1996) High uptake rate radial diffusive sampler suitable for both solvent and thermal desorption. Am. Ind. Hyg. Assoc. J. 57: 897-904.
39 40	Cockcroft, D. W.; Davis, B. E.; Todd, D. C.; Smycniuk, A. J. (2005) Methacholine challenge: comparison of two methods. Chest 127: 839-844.

1 Cockcroft, D. W.; Davis, B. E. (2006) Airway hyperresponsiveness as a determinant of the early 2 asthmatic response to inhaled allergen. J. Asthma 43: 175-178. 3 Code of Federal Regulations. (2002) Ambient air quality surveillance; appendix E - probe and 4 monitoring path citing criteria for ambient air quality monitoring. C. F. R. 40: §58. 5 Coffin, D. L.; Gardner, D. E. (1972) Interaction of biological agents and chemical air pollutants. 6 Ann. Occup. Hyg. 15: 219-234. 7 Coffin, D. L.; Gardner, D. E.; Sidorenko, G. I.; Pinigin, M. A. (1977) Role of time as a factor in 8 the toxicity of chemical compounds in intermittent and continuous exposures. Part II. 9 Effects of intermittent exposure. J. Toxicol. Environ. Health 3: 821-828. 10 Connell, D. P.; Withum, J. A.; Winter, S. E.; Statnick, R. M.; Bilonick,, R. A. (2005) The 11 Steubenville Comprehensive Air Monitoring Program (SCAMP): associations among 12 fine particulate matter, co-pollutants, and meteorological conditions. J. Air Waste 13 Manage. Assoc. 55: 481-496. 14 Connor, L. M.; Bidani, A.; Goerke, J.; Clements, J. A.; Postlethwait, E. M. (2001) NO₂ 15 interfacial transfer is reduced by phospholipid monolayers. J. Appl. Physiol. 91: 2024-16 2034. 17 Cotterill, A.; Kingham, S. (1997) Nitrogen dioxide in the home: cooking, double glazing, or 18 outdoor air? Indoor Built Environ. 6: 344-349. 19 Cox, R. M. (2003) The use of passive sampling to monitor forest exposure to O₃, NO₂, and SO₂: 20 a review and some case studies. Environ. Pollut. 126: 301-311. 21 Crapo, J. D.; Barry, B. E.; Chang, L.-Y.; Mercer, R. R. (1984) Alterations in lung structure 22 caused by inhalation of oxidants. J. Toxicol. Environ. Health 13: 301-321. 23 Crosley, D. R. (1996) NO_v blue ribbon panel. J. Geophys. Res. [Atmos.] 101: 2049-2052. 24 Cyrys, J.; Heinrich, J.; Richter, K.; Wolke, G.; Wichmann, H. E. (2000) Sources and 25 concentrations of indoor nitrogen dioxide in Hamburg (west Germany) and Erfurt (east 26 Germany). Sci. Total Environ. 250: 51-62. 27 Cyrys, J.; Stolzel, M.; Heinrich, J.; Kreyling, W. G.; Menzel, N.; Wittmaack, K.; Tuch, T.; 28 Wichmann, H.-E. (2003) Elemental composition and sources of fine and ultrafine 29 ambient particles in Erfurt, Germany. Sci. Total Environ. 305: 143-156. 30 Dab, W.; Medina, S.; Quénel, P.; Le Moullec, Y.; Le Tertre, A.; Thelot, B.; Monteil, C.; Lameloise, P.; Pirard, P.; Momas, I.; Ferry, R.; Festy, B. (1996) Short term respiratory 31 32 health effects of ambient air pollution: results of the APHEA project in Paris. In: St 33 Leger, S., ed. The APHEA project. Short term effects of air pollution on health: a 34 European approach using epidemiological time series data. J. Epidemiol. Commun. Health 50(suppl. 1): S42-S46. 35 36 DeMarco, V.; Skimming, J. W.; Ellis, T. M.; Cassin, S. (1996) Nitric oxide inhalation: effects on 37 the ovine neonatal pulmonary and systemic circulation. Reprod. Fertil. Dev. 8: 431-438. 38 Delfino, R. J. (2002) Evaluation of health effects of toxic air pollutants in a southern California 39 community: a pilot study. Sacramento, CA: California State Air Resources Board;

1 2	contract no. ARB-99-302. Available: ftp://ftp.arb.ca.gov/carbis/research/apr/past/99-302.pdf [18 December, 2003]. Available: NTIS, Springfield, VA; PM2003-107639.
3 4 5	Delfino, R. J.; Gone, H.; Linn, W. S.; Pellizzari, E. D.; Hu, Y. (2003a) Asthma symptoms in Hispanic children and daily ambient exposures to toxic and criteria air pollutants. Environ. Health Perspect. 111: 647-656.
6 7 8 9	Delfino, R. J.; Gong, H.; Linn, W. S.; Hu, Y.; Pellizzari, E. D. (2003b) Respiratory symptoms and peak expiratory flow in children with asthma in relation to volatile organic compounds in exhaled breath and ambient air. J. Exposure Anal. Environ. Epidemiol. 13: 348-363.
10 11 12	Dennekamp, M.; Howarth, S.; Dick, C. A. J.; Cherrie, J. W.; Donaldson, K.; Seaton, A. (2001) Ultrafine particles and nitrogen oxides generated by gas and electric cooking. Occup. Environ. Med. 58: 511-516.
13 14 15	Desqueyroux, H.; Pujet, JC.; Prosper, M.; Le Moullec, Y.; Momas, I. (2002) Effects of air pollution on adults with chronic obstructive pulmonary disease. Arch. Environ. Health 57: 554-560.
16 17 18 19	Devalia, J. L.; Campbell, A. M.; Sapsford, R. J.; Rusznak, C.; Quint, D.; Godard, P.; Bousquet, J. Davies, R. J. (1993a) Effect of nitrogen dioxide on synthesis of inflammatory cytokines expressed by human bronchial epithelial cells in vitro. Am. J. Respir. Cell. Mol. Biol. 9: 271-278.
20 21 22	Devalia, J. L.; Sapsford, R. J.; Cundell, D. R.; Rusznak, C.; Campbell, A. M.; Davies, R. J. (1993b) Human bronchial epithelial cell dysfunction following in vitro exposure to nitrogen dioxide. Eur. Respir. J. 6: 1308-1316.
23 24 25	Devalia, J. L.; Rusznak, C.; Herdman, M. J.; Trigg, C. J.; Tarraf, H.; Davies, R. J. (1994) Effect of nitrogen dioxide and sulphur dioxide on airway response of mild asthmatic patients to allergen inhalation. Lancet 344: 1668-1671.
26 27 28	Devlin, R. B.; Horstman, D. P.; Gerrity, T. R.; Becker, S.; Madden, M. C. (1999) Inflammatory response in humans exposed to 2.0 PPM nitrogen dioxide. Inhalation Toxicol. 11: 89- 109.
29 30	Dewanji, A.; Moolgavkar, S. H. (2000) A Poisson process approach for recurrent event data with environmental covariates. Environmetrics 11: 665-673.
31 32 33 34	 Dietert, R. R.; Etzel, R. A.; Chen, D.; Halonen, M.; Holladay, S. D.; Jarabek, A. M.; Landreth, K.; Peden, D. B.; Pinkerton, K.; Smialowicz, R. J.; Zoetis, T. (2000) Workshop to identify critical window of exposure for children's health: immune and respiratory systems work group summary. Environ. Health Perspect. Suppl. 108(3): 483-490.
35 36 37	Di Giovanni, V.; Cagiano, R.; Carratu, M. R.; De Salvia, M. A.; Giustino, A.; Cuomo, V. (1994) Alterations in the ontogeny of rat pup ultrasonic vocalization produced by prenatal exposure to nitrogen dioxide. Psychopharmacology 116: 423-427.
38 39 40	Dijkstra, L.; Houthuijs, D.; Brunekreef, B.; Akkerman, I.; Boleij, J. S. M. (1990) Respiratory health effects of the indoor environment in a population of Dutch children. Am. Rev. Respir. Dis. 142: 1172-1178.

1 Dimitroulopoulou, C.; Ashmore, M. R.; Byrne, M. A.; Kinnersley, R. P. (2001) Modelling of 2 indoor exposure to nitrogen dioxide in the UK. Atmos. Environ. 35: 269-279. 3 D'Ippoliti, D.; Forastiere, F.; Ancona, C.; Agabiti, N.; Fusco, D.; Michelozzi, P.; Perucci, C. A. 4 (2003) Air pollution and myocardial infarction in Rome: a case-crossover analysis. 5 Epidemiology 14: 528-535. 6 Dockery, D. W.; Speizer, F. E.; Stram, D. O.; Ware, J. H.; Spengler, J. D.; Ferris, B. G., Jr. 7 (1989) Effects of inhalable particles on respiratory health of children. Am. Rev. Respir. 8 Dis. 139: 587-594. 9 Dockery, D. W.; Pope, C. A., III; Xu, X.; Spengler, J. D.; Ware, J. H.; Fay, M. E.; Ferris, B. G., 10 Jr.; Speizer, F. E. (1993) An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 329: 1753-1759. 11 12 Dockery, D. W.; Brunekreef, B. (1996) Longitudinal studies of air pollution effects on lung 13 function. Am. J. Respir. Crit. Care Med. 154(suppl.): S250-S256. 14 Dockery, D. W.; Luttmann-Gibson, H.; Rich, D. Q.; Link, M. S.; Schwartz, J. D.; Gold, D. R.; 15 Koutrakis, P.; Verrier, R. L.; Mittleman, M. A. (2005) Particulate air pollution and 16 nonfatal cardiac events. Part II. Association of air pollution with confirmed arrhythmias 17 recorded by implanted defibrillators. Boston, MA: Health Effects Institute; research 18 report no. 124; pp. 83-126; discussion; pp. 127-148. Available: 19 http://pubs.healtheffects.org/ [7 June, 2007]. 20 Dominici, F.; McDermott, A.; Zeger, S. L.; Samet, J. M. (2002) On the use of generalized 21 additive models in time-series studies of air pollution and health. Am. J. Epidemiol. 156: 22 193-203. 23 Dominici, F.; McDermott, A.; Daniels, M.; Zeger, S. L.; Samet, J. M. (2003) Mortality among 24 residents of 90 cities. In: Revised analyses of time-series studies of air pollution and 25 health. Special report. Boston, MA: Health Effects Institute; pp. 9-24. Available: 26 http://www.healtheffects.org/Pubs/TimeSeries.pdf [12 May, 2004]. 27 Douglas, G. J.; Price, J. F.; Page, C. P. (1994) A method for the long-term exposure of rabbits to environmental pollutant gases. Eur. Respir. J. 7: 1516-1526. 28 29 Dowell, A. R.; Kilburn, K. H.; Pratt, P. C. (1971) Short-term exposure to nitrogen dioxide: 30 effects on pulmonary ultrastructure, compliance, and the surfactant system. Arch. Intern. 31 Med. 128: 74-80. 32 Drechsler-Parks, D. M. (1995) Cardiac output effects of O₃ and NO₂ exposure in healthy older adults. Toxicol. Ind. Health 11: 99-109. 33 34 Drozdz, M.; Kucharz, E.; Ludyga, K.; Molska-Drozdz, T. (1976) Studies on the effect of long-35 term exposure to nitrogen dioxide on serum and liver proteins level and enzyme activity in guinea pigs. Eur. J. Toxicol. 9: 287-293. 36 37 Dunlea, E. J.; Herndon, S. C.; Nelson, D. D.; Volkamer, R. M.; San Martini, F.; Sheehy, P. M.; 38 Zahniser, M. S.; Shorter, J. H.; Wormhoudt, J. C.; Lamb, B. K.; Allwine, E. J.; Gaffney, 39 J. S.; Marley, N. A.; Grutter, M.; Marquez, C.; Blanco, S.; Cardenas, B.; Retama, A.; 40 Ramon Villegas, C. R.; Kolb, C. E.; Molina, L. T.; Molina, M. J. (2007) Evaluation of

nitrogen dioxide chemiluminescence monitors in a polluted urban environment. Atmos. 1 2 Chem. Phys. 7: 2691-2704. 3 Dupuy, P. M.; Shore, S. A.; Drazen, J. M.; Frostell, C.; Hill, W. A.; Zapol, W. M. (1992) 4 Bronchodilator action of inhaled nitric oxide in guinea pigs. J. Clin. Invest. 90: 421-428. 5 Dutton, S. J.; Hannigan, M. P.; Miller, S. L. (2001) Indoor pollutant levels from the use of 6 unvented natural gas fireplaces in Boulder, Colorado. J. Air Waste Manage. Assoc. 51: 7 1654-1661. 8 Ehrlich, R. (1966) Effect of nitrogen dioxide on resistance to respiratory infection. Bacteriol. 9 Rev. 30: 604-614. 10 Ehrlich, R. (1980) Interaction between environmental pollutants and respiratory infections. Environ. Health Perspect. 35: 89-100. 11 12 Ehrlich, R.; Henry, M. C. (1968) Chronic toxicity of nitrogen dioxide: I. effect on resistance to 13 bacterial pneumonia. Arch. Environ. Health 17: 860-865. 14 Ehrlich, R.; Silverstein, E.; Maigetter, R.; Fenters, J. D.; Gardner, D. (1975) Immunologic 15 response in vaccinated mice during long-term exposure to nitrogen dioxide. Environ. Res. 16 10: 217-223. 17 Ehrlich, R.; Findlay, J. C.; Fenters, J. D.; Gardner, D. E. (1977) Health effects of short-term 18 inhalation of nitrogen dioxide and ozone mixtures. Environ. Res. 14: 223-231. 19 Ehrlich, R.; Findlay, J. C.; Gardner, D. E. (1979) Effects of repeated exposures to peak 20 concentrations of nitrogen dioxide and ozone on resistance to streptococcal pneumonia. J. Toxicol. Environ. Health 5: 631-642. 21 22 Ekwo, E. E.; Weinberger, M. M.; Lachenbruch, P. A.; Huntley, W. H. (1983) Relationship of 23 parental smoking and gas cooking to respiratory disease in children. Chest 84: 662-668. 24 Erbas, B.; Hyndman, R. J. (2005) Sensitivity of the estimated air pollution-respiratory 25 admissions relationship to statistical model choice. Int. J. Environ. Health Res. 15: 437-26 448. 27 Erbas, B.; Kelly, A.-M.; Physick, B.; Code, C.; Edwards, M. (2005) Air pollution and childhood 28 asthma emergency hospital admissions: estimating intra-city regional variations. Int. J. 29 Environ. Health Res. 15: 11-20. 30 Evans, M. J.; Stephens, R. J.; Cabral, L. J.; Freeman, G. (1972) Cell renewal in the lungs of rats exposed to low levels of NO2. Arch. Environ. Health 24: 180-188. 31 32 Evans, M. J.; Cabral, L. J.; Stephens, R. J.; Freeman, G. (1973a) Cell division of alveolar 33 macrophages in rat lung following exposure to NO₂. Am. J. Pathol. 70: 199-208. 34 Evans, M. J.; Cabral, L. J.; Stephens, R. J.; Freeman, G. (1973b) Renewal of alveolar epithelium 35 in the rat following exposure to NO₂. Am. J. Pathol. 70: 175-190. 36 Evans, M. J.; Cabral, L. C.; Stephens, R. J.; Freeman, G. (1974) Acute kinetic response and 37 renewal of the alveolar epithelium following injury by nitrogen dioxide. Chest 65(suppl.): 38 62S-65S. 39 Evans, H. L.; Laties, V. G.; Weiss, B. (1975) Behavioral effects of mercurv and methylmercurv. 40 Fed. Proc. 34: 1858-1867.

1 2 3	Evans, M. J.; Johnson, L. V.; Stephens, R. J.; Freeman, G. (1976) Renewal of the terminal bronchiolar epithelium in the rat following exposure to NO ₂ or O ₃ . Lab. Invest. 35: 246-257.
4 5	Evans, M. J.; Cabral-Anderson, L. J.; Freeman, G. (1977) Effects of NO2 on the lungs of aging rats: II. cell proliferation. Exp. Mol. Pathol. 27: 366-376.
6 7 8	Evans, J. N.; Hemenway, D. R.; Kelley, J. (1989) Early markers of lung injury. Cambridge, MA: Health Effects Institute; research report no. 29. Available from: NTIS, Springfield, VA; PB91-171983.
9 10	Ewetz, L. (1993) Absorption and metabolic fate of nitrogen oxides. Scand. J. Work Environ. Health 19 [suppl. 2]: 21-27.
11 12	Fairley, D. (1999) Daily mortality and air pollution in Santa Clara County, California: 1989- 1996. Environ. Health Perspect. 107: 637-641.
13 14 15	Farahani, H.; Hasan, M. (1992) Nitrogen dioxide induced changes in level of free fatty acids, triglyceride, esterified fatty acid, ganglioside and lipase activity in the guinea pig brain. J. Environ. Sci. Health B 27: 53-71.
16 17 18 19	Farhat, S. C. L.; Paulo, R. L. P.; Shimoda, T. M.; Conceicao, G. M. S.; Lin, C. A.; Braga, A. L. F.; Warth, M. P. N.; Saldiva, P. H. N. (2005) Effect of air pollution on pediatric respiratory emergency room visits and hospital admissions. Braz. J. Med. Biol. Res. 38: 227-235.
20 21	Farrow, A.; Greenwood, R.; Preece, S.; Golding, J. (1997) Nitrogen dioxide, the oxides of nitrogen, and infants' health symptoms. Arch. Environ. Health 52: 189-194.
22 23	Febo, A.; Perrino, C. (1991) Prediction and experimental evidence for high air concentration of nitrous acid in indoor environments. Atmos. Environ. Part A 25: 1055-1061.
24 25	Federal Register. (1971) National primary and secondary ambient air quality standards. F. R. (April 30) 36: 8186-8201.
26 27	Federal Register. (1984) Proposed reaffirmation of the National Ambient Air Quality Standards for Nitrogen Dioxide. F. R. 49 (February 23): 6866-6879.
28 29	Federal Register. (1987) Air quality criteria for carbon monoxide; air quality criteria for oxides of nitrogen. F. R. 52 (July 22): 27580.
30 31	Federal Register. (1991) Draft criteria document for oxides of nitrogen. F. R. 56 (November 25): 59285.
32 33	Federal Register. (1995) National ambient air quality standards for nitrogen dioxide: proposed decision. F. R. 60 (October 11): 52874-52889.
34 35	Federal Register. (2005) Air quality criteria for oxides of nitrogen. F. R. 70 (December 9): 73236-73237.
36 37	Federal Register. (2007) Workshop on assessment of health science for the review of the NAAQS for nitrogen (NO _x) and sulfur oxides (SO _x). F. R. 72 (February 9): 6238.
38	Fehls, A. O. S.; Cohn, Z. A. (1986) The alveolar macrophage. J. Appl. Physiol. 60: 353-369.

1 2 3 4 5	 Fehsenfeld, F. C.; Dickerson, R. R.; Hübler, G.; Luke, W. T.; Nunnermacker, L. J.; Williams, E. J.; Roberts, J. M.; Calvert, J. G.; Curran, C. M.; Delany, A. C.; Eubank, C. S.; Fahey, D. W.; Fried, A.; Gandrud, B. W.; Langford, A. O.; Murphy, P. C.; Norton, R. B.; Pickering, K. E.; Ridley, B. A. (1987) A ground-based intercomparison of NO, NO_x, and NO_y measurement techniques. J. Geophys. Res. [Atmos.] 92: 14,710-14,722.
6	Fels, A. O. S.; Cohn, Z. A. (1986) The alveolar macrophage. J. Appl. Physiol. 60: 353-369.
7 8 9	Fenters, J. D.; Findlay, J. C.; Port, C. D.; Ehrlich, R.; Coffin, D. L. (1973) Chronic exposure to nitrogen dioxide: immunologic, physiologic, and pathologic effects in virus-challenged squirrel monkeys. Arch. Environ. Health 27: 85-89.
10 11 12 13	 Filleul, L.; Rondeau, V.; Vandentorren, S.; Le Moual, N.; Cantagrel, A.; Annesi-Maesano, I.; Charpin, D.; Declercq, C.; Neukirch, F.; Paris, C.; Vervloet, D.; Brochard, P.; Tessier, J. F.; Kauffmann, F.; Baldi, I. (2005) Twenty five year mortality and air pollution: results from the French PAARC survey. Occup. Environ. Med. 62: 453-460.
14 15	Finlayson-Pitts, B. J.; Pitts, J. N., Jr. (2000) Chemistry of the upper and lower atmosphere: theory, experiments and applications. San Diego, CA: Academic Press.
16 17	Folinsbee, L. J. (1992) Does nitrogen dioxide exposure increase airways responsiveness? Toxicol. Ind. Health 8: 273-283.
18 19	Folinsbee, L. J.; Horvath, S. M.; Bedi, J. F.; Delehunt, J. C. (1978) Effect of 0.62 ppm NO ₂ on cardiopulmonary function in young male nonsmokers. Environ. Res. 15: 199-205.
20 21	Forsberg, B.; Stjernberg, N.; Linné, R.; Segerstedt, B.; Wall, S. (1998) Daily air pollution levels and acute asthma in southern Sweden. Eur. Respir. J. 12: 900-905.
22 23 24	Fortmann, R.; Kariher, P.; Clayton, R. (2001) Indoor air quality: residential cooking exposures. Final report. Sacramento, CA: State of California Air Resources Board; ARB Contract No. 97-330. Available: http://arb.ca.gov/research/abstracts/97-330.htm [22 May, 2007].
25 26 27	Frampton, M. W.; Smeglin, A. M.; Roberts, N. J., Jr.; Finkelstein, J. N.; Morrow, P. E.; Utell, M. J. (1989) Nitrogen dioxide exposure in vivo and human alveolar macrophage inactivation of influenza virus in vitro. Environ. Res. 48: 179-192.
28 29 30	Frampton, M. W.; Morrow, P. E.; Cox, C.; Gibb, F. R.; Speers, D. M.; Utell, M. J. (1991) Effects of nitrogen dioxide exposure on pulmonary function and airway reactivity in normal humans. Am. Rev. Respir. Dis. 143: 522-527.
31 32 33 34	 Frampton, M. W.; Boscia, J.; Roberts, N. J., Jr.; Azadniv, M.; Torres, A.; Cox, C.; Morrow, P. E.; Nichols, J.; Chalupa, D.; Frasier, L. M.; Gibb, F. R.; Speers, D. M.; Tsai, Y.; Utell, M. J. (2002) Nitrogen dioxide exposure: effects on airway and blood cells. Am. J. Physiol. 282: L155-L165.
35 36 37	Frampton, M. W.; Pietropaoli, A. P.; Morrow, P. E.; Utell, M. J. (2006) Human clinical studies of airborne pollutants. In: Gardner, D. E. Toxicology of the lung. Boca Raton, FL: CRC Press; pp. 29-82. (Target organ toxicology series).
38 39 40	Fratacci, M. D.; Frostell, C. G.; Chen, T. Y.; Wain, J. C.; Robinson, D. R.; Zapol, W. M. (1991) Inhaled nitric oxide. A selective pulmonary vasodilator of heparin-protamine vasoconstriction in sheep. Anesthesiology 75: 990-999.

1	Freeman, B. A.; Mudd, J. B. (1981) Reaction of ozone with sulfhydryls of human erythrocytes.
2	Arch. Biochem. Biophys. 208: 212-220.
3 4	Freeman, G.; Furiosi, N. J.; Haydon, G. B. (1966) Effects of continuous exposure of 0.8 ppm NO ₂ on respiration of rats. Arch. Environ. Health 13: 454-456.
5 6 7	Freeman, G.; Stephens, R. J.; Crane, S. C.; Furiosi, N. J. (1968) Lesion of the lung in rats continuously exposed to two parts per million of nitrogen dioxide. Arch. Environ. Health 17: 181-192.
8	Freeman, G.; Crane, S. C.; Furiosi, N. J.; Stephens, R. J.; Evans, M. J.; Moore, W. D. (1972)
9	Covert reduction in ventilatory surface in rats during prolonged exposure to subacute
10	nitrogen dioxide. Am. Rev. Respir. Dis. 106: 563-579.
11 12	Fujimaki, H.; Nohara, O. (1994) Changes in the response of lung mast cells isolated from rats and guinea pigs exposed to nitrogen dioxide. Inhalation Toxicol. 6: 515-520.
13 14	Fujimaki, H.; Shimizu, F.; Kubota, K. (1982) Effect of subacute exposure to NO ₂ on lymphocytes required for antibody responses. Environ. Res. 29: 280-286.
15	Fung, K. Y.; Luginaah, I.; Gorey, K. M.; Webster, G. (2005) Air pollution and daily hospital
16	admissions for cardiovascular diseases in Windsor, Ontario. Can. J. Public Health 96: 29-
17	33.
18	Fung, K. Y.; Khan, S.; Krewski, D.; Chen, Y. (2006) Association between air pollution and
19	multiple respiratory hospitalizations among the elderly in Vancouver, Canada. Inhalation
20	Toxicol. 18: 1005-1011.
21	Furiosi, N. J.; Crane, S. C.; Freeman, G. (1973) Mixed sodium chloride aerosol and nitrogen
22	dioxide in air: biological effects on monkeys and rats. Arch. Environ. Health 27: 405-
23	408.
24	Fusco, D.; Forastiere, F.; Michelozzi, P.; Spadea, T.; Ostro, B.; Arcà, M.; Perucci, C. A. (2001)
25	Air pollution and hospital admissions for respiratory conditions in Rome, Italy. Eur.
26	Respir. J. 17: 1143-1150.
27 28	Gair, A. J.; Penkett, S. A. (1995) The effects of wind speed and turbulence on the performance of diffusion tube samplers. Atmos. Environ. 29: 2529-2533.
29	Gair, A. J.; Penkett, S. A.; Oyola, P. (1991) Development of a simple passive technique for the
30	determination of nitrogen-dioxide in remote continental locations. Atmos. Environ. Part
31	A 25: 1927-1939.
32 33	Galán, I.; Tobías, A.; Banegas, J. R.; Aránguez, E. (2003) Short-term effects of air pollution on daily asthma emergency room admissions. Eur. Respir. J. 22: 802-808.
34	García-Algar, Ó.; Zapater, M.; Figueroa, C.; Vall, O.; Basagaña, X.; Sunyer, J.; Freixa, A.;
35	Guardino, X.; Pichini, S. (2003) Sources and concentrations of indoor nitrogen dioxide in
36	Barcelona, Spain. J. Air Waste Manage. Assoc. 53: 1312-1317.
37	García Algar, Ó.; Pichini, S.; Basagaña, X.; Puig, C.; Vall, O.; Torrent, M.; Harris, J.; Sunyer, J.;
38	Cullinan, P. (2004) Concentrations and determinants of NO ₂ in homes of Ashford, UK
39	and Barcelona and Menorca, Spain. Indoor Air 14: 298-304.

1 2 3	García-Aymerich, J.; Tobías, A.; Antó, J. M.; Sunyer, J. (2000) Air pollution and mortality in a cohort of patients with chronic obstructive pulmonary disease: a time series analysis. J. Epidemiol. Community Health 54: 73-74.
4 5 6	Gardiner, T. H.; Schanker, L. S. (1976) Effect of oxygen toxicity and nitric acid-induced lung damage on drug absorption from the rat lung. Res. Commun. Chem. Pathol. Pharmacol. 15: 107-120.
7 8 9	Gardner, D. E. (1980) Influence of exposure patterns of nitrogen dioxide on susceptibility to infectious respiratory disease. In: Lee, S. D., ed. Nitrogen oxides and their effects on health. Ann Arbor, MI: Ann Arbor Science Publishers, Inc.; pp. 267-288.
10 11	Gardner, D. E. (1982) Use of experimental airborne infections for monitoring altered host defenses. Environ. Health Perspect. 43: 99-107.
12 13 14	Gardner, D. E.; Coffin, D. L.; Pinigin, M. A.; Sidorenko, G. I. (1977a) Role of time as a factor in the toxicity of chemical compounds in intermittent and continuous exposures. Part I. Effects of continuous exposure. J. Toxicol. Environ. Health 3: 811-820.
15 16 17 18 19 20 21	 Gardner, D. E.; Miller, F. J.; Blommer, E. J.; Coffin, D. L. (1977b) Relationships between nitrogen dioxide concentration, time, and level of effect using an animal infectivity model. In: Dimitriades, B., ed. International conference on photochemical oxidant pollution and its control: proceedings, v. I; September 1976; Raleigh, NC. Research Triangle Park, NC: U.S. Environmental Protection Agency, Environmental Sciences Research Laboratory; pp. 513-525; EPA report no. EPA-600/3-77-001a. Available from: NTIS, Springfield, VA; PB-264232. (Ecological research series).
22 23	Gardner, D. E.; Miller, F. J.; Blommer, E. J.; Coffin, D. L. (1979) Influence of exposure mode on the toxicity of NO ₂ . Environ. Health Perspect. 30: 23-29.
24 25 26 27 28	 Gardner, D. E.; Miller, F. J.; Illing, J. W.; Graham, J. A. (1982) Non-respiratory function of the lungs: host defenses against infection. In: Schneider, T.; Grant, L., eds. Air pollution by nitrogen oxides: proceedings of the US-Dutch international symposium; May; Maastricht, The Netherlands. Amsterdam, The Netherlands: Elsevier Scientific Publishing Company; pp. 401-415. (Studies in environmental science 21).
29 30 31	Garrett, M. H.; Hooper, M. A.; Hooper, B. M.; Abramson, M. J. (1998) Respiratory symptoms in children and indoor exposure to nitrogen dioxide and gas stoves. Am. J. Respir. Crit. Care Med. 158: 891-895.
32 33	Garrett, M. H.; Hooper, M. A.; Hooper, B. M. (1999) Nitrogen dioxide in Australian homes: levels and sources. J. Air Waste Manage. Assoc. 49: 76-81.
34 35	Garthwaite, J. (1991) Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci. 14: 60-67.
36 37 38 39	Gauderman, W. J.; Avol, E.; Gilliland, F.; Vora, H.; Thomas, D.; Berhane, K.; McConnell, R.; Kuenzli, N.; Lurmann, F.; Rappaport, E.; Margolis, H.; Bates, D.; Peters, J. (2004) The effect of air pollution on lung development from 10 to 18 years of age. N. Engl. J. Med. 351: 1057-1067.
1 2 3	Gauderman, W. J.; Avol, E.; Lurmann, F.; Kuenzli, N.; Gilliland, F.; Peters, J.; McConnell, R. (2005) Childhood asthma and exposure to traffic and nitrogen dioxide. Epidemiology 16: 737-743.
----------------------	---
4 5 6	Gauderman, W. J.; Vora, H.; McConnell, R.; Berhane, K.; Gilliland, F.; Thomas, D.; Lurmann, F.; Avol, E.; Kunzli, N. (2007) Effect of exposure to traffic on lung development from 10 to 18 years of age: a cohort study. Lancet 369: 571-577.
7 8 9 10	Gauvin, S.; Le Moullec, Y.; Bremont, F.; Momas, I.; Balducci, F.; Ciognard, F.; Poilve, MP.; Zmirou, D.; VESTA Investigators. (2001) Relationships between nitrogen dioxide personal exposure and ambient air monitoring measurements among children in three French metropolitan areas: VESTA study. Arch. Environ. Health 56: 336-341.
11 12 13	Gavras, J. B.; Frampton, M. W.; Ryan, D. H.; Levy, P. C.; Looney, R. J.; Cox, C.; Morrow, P. E.; Utell, M. J. (1994) Expression of membrane antigens on human alveolar macrophages after exposure to nitrogen dioxide. Inhalation Toxicol. 6: 633-646.
14 15 16	Gehring, U.; Cyrys, J.; Sedlmeir, G.; Brunekreef, B.; Bellander, T.; Fischer, P.; Bauer, C. P.;Reinhardt, D.; Wichmann, H. E.; Heinrich, J. (2002) Traffic-related air pollution andrespiratory health during the first 2 yrs. of life. Eur. Respir. J. 19: 690-698.
17 18 19	Gehring, U.; Heinrich, J.; Krämer, U.; Grote, V.; Hochadel, M.; Sugiri, D.; Kraft, M.; Rauchfuss, K.; Eberwein, H. G.; Wichmann, HE. (2006) Long-term exposure to ambient air pollution and cardiopulmonary mortality in women. Epidemiology 17: 545-551.
20 21 22	 Gilbert, N. L.; Gauvin, D.; Guay, M.; Héroux, MÈ.; Dupuis, G.; Legris, M.; Chan, C. C.; Dietz, R. N.; Lévesque, B. (2006) Housing characteristics and indoor concentrations of nitrogen dioxide and formaldehyde in Quebec City, Canada. Environ. Res. 102: 1-8.
23 24 25	Gilbert, N. L.; Goldberg, M. S.; Beckerman, B.; Brook, J. R.; Jerrett, M. (2005) Assessing spatial variability of ambient nitrogen dioxide in Montréal, Canada, with a land-use regression model. J. Air Waste Manage. Assoc. 55: 1059-1063.
26 27 28	Gilliland, F. D.; McConnell, R.; Peters, J.; Gong, H, Jr. (1999) A theoretical basis for investigation ambient air pollution and children's respiratory health. Environ. Health Perspect. 107(suppl. 3): 403-407.
29 30 31 32	Gilliland, F. D.; Berhane, K.; Rappaport, E. B.; Thomas, D. C.; Avol, E.; Gauderman, W. J.; London, S. J.; Margolis, H. G.; McConnell, R.; Islam, K. T.; Peters, J. M. (2001) The effects of ambient air pollution on school absenteeism due to respiratory illnesses. Epidemiology 12: 43-54.
33 34 35	 Gilliland, F. D.; Rappaport, E. B.; Berhane, K.; Islam, T.; Dubeau, L.; Gauderman, W. J.; McConnell, R. (2002) Effects of glutathione S-Transferase P1, M1, and T1 on acute respiratory illness in school children. Am. J. Respir. Crit. Care Med. 166: 346-351.
36 37	Gilmour, M. I.; Park, P.; Selgrade, M. K. (1996) Increased immune and inflammatory responses to dust mite antigen in rats exposed to 5 ppm NO ₂ . Fundam. Appl. Toxicol. 31: 65-70.
38 39	Giordano, A. M.; Morrow, P. E. (1972) Chronic low-level nitrogen dioxide exposure and mucociliary clearance. Arch. Environ. Health 25: 443-449.

1	Girman, J. R.; Apte, M. G.; Traynor, G. W.; Allen, J. R.; Hollowell, C. D. (1982) Pollutant
2	emission rates from indoor combustion appliances and sidestream cigarette smoke.
3	Environ. Int. 8: 213-221.
4 5 6	 Goings, S. A. J.; Kulle, T. J.; Bascom, R.; Sauder, L. R.; Green, D. J.; Hebel, J. R.; Clements, M. L. (1989) Effect of nitrogen dioxide exposure on susceptibility to influenza A virus infection in healthy adults. Am. Rev. Respir. Dis. 139: 1075-1081.
7	 Goldberg, M. S.; Burnett, R. T. (2003) Revised analysis of the Montreal time-series study. In:
8	Revised analyses of time-series studies of air pollution and health. Special report. Boston,
9	MA: Health Effects Institute; pp. 113-132. Available:
10	http://www.healtheffects.org/Pubs/TimeSeries.pdf [18 October, 2004].
11 12	Goldstein, E.; Eagle, M. C.; Hoeprich, P. D. (1973) Effect of nitrogen dioxide on pulmonary bacterial defense mechanisms. Arch. Environ. Health 26: 202-204.
13 14	Goldstein, E.; Warshauer, D.; Lippert, W.; Tarkington, B. (1974) Ozone and nitrogen dioxide exposure: murine pulmonary defense mechanisms. Arch. Environ. Health 28: 85-90.
15 16 17	Goldstein, B. D.; Hamburger, S. J.; Falk, G. W.; Amoruso, M. A. (1977) Effect of ozone and nitrogen dioxide on the agglutination of rat alveolar macrophages by concanavalin A. Life Sci. 21: 1637-1644.
18	Gong, H., Jr., Linn, W. S.; Clark, K. W.; Anderson, K. R.; Geller, M. D.; Sioutas, C. (2005)
19	Respiratory responses to exposures with fine particulates and nitrogen dioxide in the
20	elderly with and without COPD. Inhalation Toxicol. 17: 123-132.
21	Gonzales, M.; Qualls, C.; Hudgens, E.; Neas, L. (2005) Characterization of a spatial gradient of
22	nitrogen dioxide across a United States-Mexico border city during winter. Sci. Total
23	Environ. 337: 163-173.
24 25	Gooch, P. C.; Luippold, H. E.; Creasia, D. A.; Brewen, J. G. (1977) Observations on mouse chromosomes following nitrogen dioxide inhalation. Mutat. Res. 48: 117-119.
26	Görsdorf, S.; Appel, K. E.; Engeholm, C.; Obe, G. (1990) Nitrogen oxide induces DNA single-
27	strand breaks in cultured Chinese hamster cells. Carcinogenesis 11: 37-41.
28	Goss, C. H.; Newsom, S. A.; Schildcrout, J. S.; Sheppard, L.; Kaufman, J. D. (2004) Effect of
29	ambient air pollution on pulmonary exacerbations and lung function in cystic fibrosis.
30	Am. J. Respir. Crit. Care Med. 169: 816-821.
31 32 33 34	 Graham, J. A.; Gardner, D. E.; Blommer, E. J.; House, D. E.; Ménache, M. G.; Miller, F. J. (1987) Influence of exposure patterns of nitrogen dioxide and modifications by ozone on susceptibility to bacterial infectious disease in mice. J. Toxicol. Environ. Health 21: 113-125.
35 36	Green, N. D.; Schneider, S. L. (1978) Effects of NO ₂ on the response of baboon alveolar macrophages to migration inhibitory factor. J. Toxicol. Environ. Health 22: 655-662.
37	Greenberg, S. D.; Gyorkey, F.; Jenkins, D. E.; Gyorkey, P. (1971) Alveolar epithelial cells
38	following exposure to nitric acid: electron microscopic study in rats. Arch. Environ.
39	Health 22: 655-662.

2 intermittent subacute exposure to low-level nitrogen dioxide. J. Toxicol. Environ. Health 3 11:405-414. 4 Hackney, J. D.; Thiede, F. C.; Linn, W. S.; Pedersen, E. E.; Spier, C. E.; Law, D. C.; Fischer, D. 5 A. (1978) Experimental studies on human health effects of air pollutants. IV. Short-term 6 physiological and clinical effects of nitrogen dioxide exposure. Arch. Environ. Health 33: 7 176-181. 8 Hackney, J. D.; Linn, W. S.; Avol, E. L.; Shamoo, D. A.; Anderson, K. R.; Solomon, J. C.; 9 Little, D. E.; Peng, R.-C. (1992) Exposures of older adults with chronic respiratory illness 10 to nitrogen dioxide: a combined laboratory and field study. Am. Rev. Respir. Dis. 146: 11 1480-1486. 12 Hajat, S.; Haines, A.; Goubet, S. A.; Atkinson, R. W.; Anderson, H. R. (1999) Association of air 13 pollution with daily GP consultations for asthma and other lower respiratory conditions in 14 London. Thorax 54: 597-605. Harré, E. S. M.; Price, P. D.; Ayrey, R. B.; Toop, L. J.; Martin, I. R.; Town, G. I. (1997) 15 16 Respiratory effects of air pollution in chronic obstructive pulmonary disease: a three 17 month prospective study. Thorax 52: 1040-1044. 18 Hasselblad, V.; Eddy, D. M.; Kotchmar, D. J. (1992) Synthesis of environmental evidence: 19 nitrogen dioxide epidemiology studies. J. Air Waste Manage. Assoc. 42: 662-671. 20 Hatch, G. E.; Slade, R.; Selgrade, M. K.; Stead, A. G. (1986) Nitrogen dioxide exposure and 21 lung antioxidants in ascorbic acid-deficient guinea pigs. Toxicol. Appl. Pharmacol. 82: 22 351-359. 23 Hayden, K. L.; Anlauf, K. G.; Hastie, D. R.; Bottenheim, J. W. (2003) Partitioning of reactive 24 atmospheric nitrogen oxides at an elevated site in southern Quebec, Canada. J. Geophys. 25 Res. [Atmos.] 108(D19): 10.1029/2002JD003188. 26 Hazenkamp-von Arx, M. E.; Götschi, T.; Ackermann-Liebrich, U.; Bono, R.; Burney, P.; Cyrys, 27 J.; Jarvis, D.; Lillienberg, L.; Luczynska, C.; Maldonado, J. A.; Jaén, A.; de Marco, R.; Mi, Y.; Modig, L.; Bayer-Oglesby, L.; Payo, F.; Soon, A.; Sunyer, J.; Villani, S.; Weyler, 28 29 J.; Künzli, N. (2004) PM_{2.5} and NO₂ assessment in 21 European study centres of ECRHS 30 II: annual means and seasonal differences. Atmos. Environ. 38: 1943-1953. 31 Hazucha, M. J.; Ginsberg, J. F.; McDonnell, W. F.; Haak, E. D., Jr.; Pimmel, R. L.; Salaam, S. 32 A.; House, D. E.; Bromberg, P. A. (1983) Effects of 0.1 ppm nitrogen dioxide on airways 33 of normal and asthmatic subjects. J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 34 54: 730-739. 35 Hazucha, M. J.; Folinsbee, L. J.; Seal, E.; Bromberg, P. A. (1994) Lung function response of 36 healthy women after sequential exposures to NO₂ and O₃. Am. J. Respir. Crit. Care Med. 150: 642-647. 37 38 Heal, M. R.; O'Donoghue, M. A.; Cape, J. N. (1999) Overestimation of urban nitrogen dioxide 39 by passive diffusion tubes: a comparative exposure and model study. Atmos. Environ. 33: 40 513-524.

Gregory, R. E.; Pickrell, J. A.; Hahn, F. F.; Hobbs, C. H. (1983) Pulmonary effects of

1

1	Helleday, R.; Sandström, T.; Stjernberg, N. (1994) Differences in bronchoalveolar cell response
2	to nitrogen dioxide exposure between smokers and nonsmokers. Eur. Respir. J. 7: 1213-
3	1220.
4	Helleday, R.; Huberman, D.; Blomberg, A.; Stjernberg, N.; Sandström, T. (1995) Nitrogen
5	dioxide exposure impairs the frequency of the mucociliary activity in healthy subjects.
6	Eur. Respir. J. 8: 1664-1668.
7 8 9	 Henneberger, A.; Zareba, W.; Ibald-Mulli, A.; Rückerl, R.; Cyrys, J.; Couderc, JP.; Mykins, B.; Woelke, G.; Wichmann, HE.; Peters, A. (2005) Repolarization changes induced by air pollution in ischemic heart disease patients. Environ. Health Perspect. 113: 440-446.
10	Henry, M. C.; Findlay, J.; Spangler, J.; Ehrlich, R. (1970) Chronic toxicity of NO ₂ in squirrel
11	monkeys: III. effect on resistance to bacterial and viral infection. Arch. Environ. Health
12	20: 566-570.
13 14	Hibbs, J. B.; Taintor, R. R.; Vavrin, Z.; Rachlin, E. M. (1988) Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. 157: 87-94.
15	Higgins, B. G.; Francis, H. C.; Yates, C. J.; Warburton, C. J.; Fletcher, A. M.; Reid, J. A.;
16	Pickering, C. A. C.; Woodcock, A. A. (1995) Effects of air pollution on symptoms and
17	peak expiratory flow measurements in subjects with obstructive airways disease. Thorax
18	50: 149-155.
19	Higgins, B. G.; Francis, H. C.; Yates, C.; Warburton, C. J.; Fletcher, A. M.; Pickering, C. A. C.;
20	Woodcock, A. A. (2000) Environmental exposure to air pollution and allergens and peak
21	flow changes. Eur. Respir. J. 16: 61- 66.
22 23 24	 Hiltermann, T. J. N.; Stolk, J.; Van der Zee, S. C.; Brunekreef, B.; De Bruijne, C. R.; Fischer, P. H.; Ameling, C. B.; Sterk, P. J.; Hiemstra, P. S.; Van Bree, L. (1998) Asthma severity and susceptibility to air pollution. Eur. Respir. J. 11: 686-693.
25 26 27 28	 Hinwood, A. L.; De Klerk, N.; Rodriguez, C.; Jacoby, P.; Runnion, T.; Rye, P.; Landau, L.; Murray, F.; Feldwick, M.; Spickett, J. (2006) The relationship between changes in daily air pollution and hospitalizations in Perth, Australia 1992-1998: a case-crossover study. Int. J. Environ. Health Res. 16: 27-46.
29	Hirsch, T.; Weiland, S. K.; Von Mutius, E.; Safeca, A. F.; Grafe, H.; Csaplovics, E.; Duhme, H.;
30	Keil, U.; Leupold, W. (1999) Inner city air pollution and respiratory health and atopy in
31	children. Eur. Respir. J. 14: 669-677.
32 33 34	Hochadel, M.; Heinrich, J.; Gehring, U.; Morgenstern, V.; Kuhlbusch, T.; Link, E.; Wichmann, HE.; Krämer, U. (2006) Predicting long-term average concentrations of traffic-related air pollutants using GIS-based information. Atmos. Environ. 40: 542-553.
35	Hochscheid, R.; Schuchmann, U.; Kotte, E.; Kranz, S.; Heinrichs, S.; Müller, B. (2005) NO ₂ -
36	induced acute and chronic lung injury cause imbalance of glutathione metabolism in type
37	II pneumocytes. Med. Sci. Monit. 11: BR273-279.
38	Hoek, G. (2003) Daily mortality and air pollution in The Netherlands. In: Revised analyses of
39	time-series studies of air pollution and health. Special report. Boston, MA: Health Effects
40	Institute; pp. 133-141. Available: http://www.healtheffects.org/Pubs/TimeSeries.pdf [12
41	May, 2004].

1 2	Hoek, G.; Brunekreef, B. (1994) Effects of low-level winter air pollution concentrations on respiratory health of Dutch children. Environ. Res. 64: 136-150.
3 4	Hoek, G.; Brunekreef, B.; Verhoeff, A.; Van Wijnen, J.; Fischer, P. (2000) Daily mortality and air pollution in the Netherlands. J. Air Waste Manage. Assoc. 50: 1380-1389.
5 6 7	Hoek, G.; Brunekreef, B.; Fischer, P.; Van Wijnen, J. (2001) The association between air pollution and heart failure, arrhythmia, embolism, thrombosis, and other cardiovascular causes of death in a time series study. Epidemiology 12: 355-357.
8 9 10	Hoek, G.; Brunekreef, B.; Goldbohm, S.; Fischer, P.; Van den Brandt, P. A. (2002) Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet 360: 1203-1209.
11 12 13	Hogman, M.; Frostell, C.; Arnberg, H.; Hedenstierna, G. (1993) Inhalation of nitric oxide modulates methacholine-induced bronchoconstriction in the rabbit. Eur. Respir. J. 6: 170- 180.
14 15 16	Holguín, F.; Téllez-Rojo, M. M.; Hernández, M.; Cortez, M.; Chow, J. C.; Watson, J. G.; Mannino, D.; Romieu, I. (2003) Air pollution and heart rate variability among the elderly in Mexico City. Epidemiology 14: 521-527.
17 18 19	Holopainen, R.; Aho, H.; Laine, J.; Halkola, L.; Kääpä, P. (1999) Nitric oxide inhalation inhibits pulmonary apoptosis but not inflammatory injury in porcine meconium aspiration. Acta Paediatr. 88: 1147-1155.
20 21 22	Holroyd, K. J.; Eleff, S. M.; Zhang, LY.; Jakab, G. J.; Kleeberger, S. R. (1997) Genetic modeling of susceptibility to nitrogen dioxide-induced lung injury in mice. Am. J. Physiol. 273: L595-L602.
23 24	Holt, P. G.; Finlay-Jones, L. M.; Keast, D.; Papadimitrou, J. M. (1979) Immunological function in mice chronically exposed to nitrogen oxides (NO _x). Environ. Res. 19: 154-162.
25 26 27	 Hooftman, R. N.; Kuper, C. F.; Appelman, L. M. (1988) Comparative sensitivity of histo- pathology and specific lung parameters in the detection of lung injury. J. Appl. Toxicol. 8: 59-65.
28 29 30 31	 Horowitz, L. W.; Fiore, A. M.; Milly, G. P.; Cohen, R. C.; Perring, A.; Wooldridge, P. J.; Hess, P. G.; Emmons, L. K.; Lamarque, J. F. (2007) Observational constraints on the chemistry of isoprene nitrates over the eastern United States. J. Geophys. Res. (Atmos.) 112(D12S08): 10.1029/2006JD007747.
32 33	Hurford, W. E. (1997) The biologic basis for inhaled nitric oxide. Respir. Care Clin. N. Am. 3: 357-369.
34 35 36	Ichinose, T.; Sagai, M. (1982) Studies on biochemical effects of nitrogen dioxide: III. changes of the antioxidative protective systems in rat lungs and of lipid peroxidation by chronic exposure. Toxicol. Appl. Pharmacol. 66: 1-8.
37 38	Ichinose, T.; Sagai, M. (1989) Biochemical effects of combined gases of nitrogen dioxide and ozone. III. Synergistic effects on lipid peroxidation and antioxidative protective systems

in the lungs of rats and guinea pigs. Toxicology 59: 259-270.

1 Ichinose, T.; Sagai, M. (1992) Combined exposure to NO₂, O₃ and H₂SO₄-aerosol and lung 2 tumor formation in rats. Toxicology 74: 173-184. 3 Ichinose, T.; Sagai, M.; Kubota, K. (1983) [Changes of lipid peroxidation and antioxidative 4 protective systems in lungs of rats exposed acutely, subacutely and chronically to 5 nitrogen dioxide]. Taiki Osen Gakkaishi 18: 132-146. 6 Ichinose, T.; Fujii, K.; Sagai, M. (1991) Experimental studies on tumor promotion by nitrogen 7 dioxide. Toxicology 67: 211-225. 8 Ichinose, F.; Adrie, C.; Hurford, W. E.; Zapol, W. M. (1995) Prolonged pulmonary vasodilator 9 action of inhaled nitric oxide by Zaprinast in awake lambs. J. Appl. Physiol. 78: 1288-10 1295. 11 Ignarro, L. J. (1989) Biological actions and properties of endothelium-derived nitric oxide 12 formed and released from artery and vein. Circ. Res. 65: 1-21. 13 Illing, J. W.; Miller, F. J.; Gardner, D. E. (1980) Decreased resistance to infection in exercised 14 mice exposed to NO₂ and O₃. J. Toxicol. Environ. Health 6: 843-851. 15 Inoue, H.; Fukunaga, A.; Okubo, S. (1981) Mutagenic effects of nitrogen dioxide combined with methylurea and ethylurea in Drosophila melanogaster. Mutat. Res. 88: 281-290. 16 17 Iqbal, Z. M. (1984) In-vivo nitrosation of amines in mice by inhaled nitrogen dioxide and 18 inhibition of biosynthesis of N-nitrosamines. In: O'Neill, I. K.; Von Borstel, R. C.; Miller, 19 C. T.; Long, J.; Bartsch, H., eds. N-nitroso compounds: occurrence, biological effects and 20 relevance to human cancer: proceedings of the VIIIth international symposium on Nnitroso compounds; September 1983; Banff, Canada. Lyon, France: International Agency 21 22 for Research on Cancer; pp. 291-300. (IARC scientific publications no. 57). 23 Iqbal, Z. M.; Dahl, K.; Epstein, S. S. (1980) Role of nitrogen dioxide in the biosynthesis of nitrosamines in mice. Science (Washington, DC) 207: 1475-1477. 24 25 Iqbal, Z. M.; Dahl, K.; Epstein, S. S. (1981) Biosynthesis of dimethylnitrosamine in 26 dimethylamine-treated mice after exposure to nitrogen dioxide. JNCI J. Natl. Cancer Inst. 27 67: 137-141. 28 Islam, T.; Gauderman, W. J.; Berhane, K.; McConnell, R.; Avol, E.; Peters, J. M.; Gilliland, F. 29 D. (2007) The relationship between air pollution, lung function and asthma in 30 adolescents. Thorax: 10.1136/thx.2007.078964. 31 Isomura, K.; Chikahira, M.; Teranishi, K.; Hamada, K. (1984) Induction of mutations and chromosome aberrations in lung cells following in vivo exposure of rats to nitrogen 32 33 oxides. Mutat. Res. 136: 119-125. 34 Ito, K. (1971) [Effect of nitrogen dioxide inhalation on influenza virus infection in mice]. 35 Nippon Eiseigaku Zasshi 26: 304-314. 36 Ito, K. (2003) Associations of particulate matter components with daily mortality and morbidity 37 in Detroit, Michigan. In: Revised analyses of time-series studies of air pollution and health. Special report. Boston, MA: Health Effects Institute; pp. 143-156. Available: 38 39 http://www.healtheffects.org/Pubs/TimeSeries.pdf [12 May, 2004].

1 2 3 4	Ito, K. (2004) Revised ozone risk estimates for daily mortality and hospitalizations in Detroit, Michigan [personal communication with attachments to Jee Young Kim]. New York, NY: New York University School of Medicine, Nelson Institute of Environmental Medicine; October 31.
5 6	Jacob, D. J. (2000) Heterogeneous chemistry and tropospheric ozone. Atmos. Environ. 34: 2131-2159.
7 8	Jacobson, M. Z. (2002) Atmospheric pollution: history, science, and regulation. New York, NY: Cambridge University Press.
9 10	Jaffe, D. H.; Singer, M. E.; Rimm, A. A. (2003) Air pollution and emergency department visits for asthma among Ohio Medicaid recipients, 1991-1996. Environ. Res. 91: 21-28.
11 12	Jakab, G. J. (1987) Modulation of pulmonary defense mechanisms by acute exposures to nitrogen dioxide. Environ. Res. 42: 215-228.
13 14 15	Jalaludin, B. B.; O'Toole, B. I.; Leeder, S. R. (2004) Acute effects of urban ambient air pollution on respiratory symptoms, asthma medication use, and doctor visits for asthma in a cohort of Australian children. Environ Res. 95: 32-42.
16 17 18 19	Jalaludin, B.; Morgan, G.; Lincoln, D.; Sheppeard, V.; Simpson, R.; Corbett, S. (2006) Associations between ambient air pollution and daily emergency department attendances for cardiovascular disease in the elderly (65+ years), Sydney, Australia. J. Exposure Sci. Environ. Epidemiol. 16: 225-237.
20 21	Jarvis, D. L.; Leaderer, B. P.; Chinn, S.; Burney, P. G. (2005) Indoor nitrous acid and respiratory symptoms and lung function in adults. Thorax 60: 474-479.
22 23 24 25	Jenkins, H. S.; Devalia, J. L.; Mister, R. L.; Bevan, A. M.; Rusznak, C.; Davies, R. J. (1999) The effect of exposure to ozone and nitrogen dioxide on the airway response of atopic asthmatics to inhaled allergen: dose- and time-dependent effects. Am. J. Respir. Crit. Care Med. 160: 33-39.
26 27	Jerrett, M. (2007) Does traffic-related air pollution contribute to respiratory disease formation in children? Eur. Respir. J. 29: 825-826.
28 29 30	Jet Propulsion Laboratory. (2006) Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation number 15. Pasadena, CA: California Institute of Technology. JPL publication 06-2.
31 32 33	Jiang, B. H.; Maruyama, J.; Yokochi, A.; Amano, H.; Mitani, Y.; Maruyama, K. (2002) Correlation of inhaled nitric-oxide induced reduction of pulmonary artery pressure and vascular changes. Eur. Respir. J. 20: 52-58.
34 35	Jörres, R.; Magnussen, H. (1990) Airways response of asthmatics after a 30 min exposure, at resting ventilation, to 0.25 ppm NO ₂ or 0.5 ppm SO ₂ . Eur. Respir. J. 3: 132-137.
36 37	Jörres, R.; Magnussen, H. (1991) Effect of 0.25 ppm nitrogen dioxide on the airway response to methacholine in asymptomatic asthmatic patients. Lung 169: 77-85.
38 39 40	Jörres, R.; Nowak, D.; Grimminger, F.; Seeger, W.; Oldigs, M.; Magnussen, H. (1995) The effect of 1 ppm nitrogen dioxide on bronchoalveolar lavage cells and inflammatory mediators in normal and asthmatic subjects. Eur. Respir. J. 8: 416-424.

1 Just, J.; Ségala, C.; Sahraoui, F.; Priol, G.; Grimfeld, A.; Neukirch, F. (2002) Short-term health 2 effects of particulate and photochemical air pollution in asthmatic children. Eur. Respir. 3 J. 20: 899-906. 4 Karr, C.; Lumley, T.; Shepherd, K.; Davis, R.; Larson, T.; Ritz, B.; Kaufman, J. (2006) A case-5 crossover study of wintertime ambient air pollution and infant bronchiolitis. Environ. 6 Health Perspect. 114: 277-281. 7 Katsouyanni, K.; Schwartz, J.; Spix, C.; Touloumi, G.; Zmirou, D.; Zanobetti, A.; Wojtyniak, B.; Vonk, J. M.; Tobias, A.; Pönkä, A.; Medina, S.; Bachárová, L.; Andersen, H. R. (1996) 8 9 Short term effects of air pollution on health: a European approach using epidemiology 10 time series data: the APHEA protocol. In: St Leger, S., ed. The APHEA project. Short 11 term effects of air pollution on health: a European approach using epidemiological time 12 series data. J. Epidemiol. Community Health 50(suppl. 1): S12-S18. 13 Katsouyanni, K.; Touloumi, G.; Samoli, E.; Gryparis, A.; Le Tertre, A.; Monopolis, Y.; Rossi, 14 G.; Zmirou, D.; Ballester, F.; Boumghar, A.; Anderson, H. R.; Wojtyniak, B.; Paldy, A.; Braunstein, R.; Pekkanen, J.; Schindler, C.; Schwartz, J. (2001) Confounding and effect 15 modification in the short-term effects of ambient particles on total mortality: results from 16 17 29 European cities within the APHEA2 project. Epidemiology 12: 521-531. 18 Katsouyanni, K.; Touloumi, G.; Samoli, E.; Petasakis, Y.; Analitis, A.; Le Tertre, A.; Rossi, G.; 19 Zmirou, D.; Ballester, F.; Boumghar, A.; Anderson, H. R.; Wojtyniak, B.; Paldy, A.; 20 Braunstein, R.; Pekkanen, J.; Schindler, C.; Schwartz, J. (2003) Sensitivity analysis of 21 various models of short-term effects of ambient particles on total mortality in 29 cities in 22 APHEA2. In: Revised analyses of time-series studies of air pollution and health. Special 23 report. Boston, MA: Health Effects Institute; pp. 157-164. Available: 24 http://www.healtheffects.org/Pubs/TimeSeries.pdf [18 October, 2004]. 25 Katsuki, S.; Arnold, W.; Mittal, C.; Murad, F. (1977) Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and 26 27 comparison to the effects of sodium azide and hydroxylamine. J. Cyclic Nucleotide Res. 28 3:23-35. 29 Kauffmann, F.; Post Genome Respiratory Epidemiology Group. (2004) Post-genome respiratory 30 epidemiology: a multidisciplinary challenge. Eur. Respir. J. 24: 471-480. 31 Kawamoto, T.; Matsuno, K.; Arashidani, K.; Yoshikawa, M.; Kayama, F.; Kodama, Y. (1993) 32 Personal exposure to nitrogen dioxide from indoor heaters and cooking stoves. Arch. 33 Environ. Contam. Toxicol. 25: 534-538. 34 Keller, M. D.; Lanese, R. R.; Mitchell, R. I.; Cote, R. W. (1979a) Respiratory illness in 35 households using gas and electricity for cooking: I. survey of incidence. Environ. Res. 36 19: 495-503. 37 Keller, M. D.; Lanese, R. R.; Mitchell, R. I.; Cote, R. W. (1979b) Respiratory illness in 38 households using gas and electricity for cooking: II. symptoms and objective findings. 39 Environ. Res. 19: 504-515. 40 Kelly, F. J.; Tetley, T. D. (1997) Nitrogen dioxide depletes uric acid and ascorbic acid but not 41 glutathione from lung lining fluid. Biochem. J. 325: 95-99.

- Kelly, F. J.; Blomberg, A.; Frew, A.; Holgate, S. T.; Sandstrom, T. (1996) Antioxidant kinetics
 in lung lavage fluid following exposure of humans to nitrogen dioxide. Am. J. Respir.
 Crit. Care Med. 154: 1700-1705.
- Kelly, F. J.; Dunster, C.; Mudway, I. (2003) Air pollution and the elderly: oxidant/antioxidant
 issues worth consideration. Eur. Respir. J. Suppl. 40: 70S-75S.
- Kelsall, J. E.; Samet, J. M.; Zeger, S. L.; Xu, J. (1997) Air pollution and mortality in
 Philadelphia, 1974-1988. Am. J. Epidemiol. 146: 750-762.
- Kerr, H. D.; Kulle, T. J.; McIlhany, M. L.; Swidersky, P. (1979) Effects of nitrogen dioxide on
 pulmonary function in human subjects: an environmental chamber study. Environ. Res.
 19: 392-404.
- Khoury, M. J.; Davis, R.; Gwinn, M.; Lindegren, M. L.; Yoon, P. (2005) Do we need genomic
 research for the prevention of common diseases with environmental causes? Am. J.
 Epidemiol. 161: 799-805.
- Kim, S. U.; Koenig, J. Q.; Pierson, W. E.; Hanley, Q. S. (1991) Acute pulmonary effects of
 nitrogen dioxide exposure during exercise in competitive athletes. Chest 99: 815-819.
- Kim, J. J.; Smorodinsky, S.; Lipsett, M.; Singer, B. C.; Hodgson, A. T.; Ostro, B. (2004a)
 Traffic-related air pollution near busy roads: the East Bay children's Respiratory Health
 Study. Am. J. Respir. Crit. Care Med. 170: 520-526.
- Kim, S.-Y.; Lee, J.-T.; Hong, Y.-C.; Ahn, K.-J.; Kim, H. (2004b) Determining the threshold
 effect of ozone on daily mortality: an analysis of ozone and mortality in Seoul, Korea,
 1995-1999. Environ. Res. 94: 113-119.
- Kim, E.; Hopke, P. K.; Pinto, J. P.; Wilson, W. E. (2005) Spatial variability of fine particle mass,
 components, and source contributions during the regional air pollution study in St. Louis.
 Environ. Sci. Technol. 39: 4172-4179.
- Kim, D.; Sass-Kortsak, A.; Purdham, J. T.; Dales, R. E.; Brook, J. R. (2006) Associations
 between personal exposures and fixed-site ambient measurements of fine particulate
 matter, nitrogen dioxide, and carbon monoxide in Toronto, Canada. J. Exposure Sci.
 Environ. Epidemiol. 16: 172-183.
- Kinney, P. L.; Özkaynak, H. (1991) Associations of daily mortality and air pollution in Los
 Angeles County. Environ. Res. 54: 99-120.
- Kirby, C.; Fox, M.; Waterhouse, J.; Drye, T. (2001) Influences of environmental parameters on
 the accuracy of nitrogen dioxide passive diffusion tubes for ambient measurement. J.
 Environ. Monit. 3: 150-158.
- Kita, H.; Omichi, S. (1974) [Effects of air pollutants on cilial movement in airway]. Nippon
 Eiseigaku Zasshi 29: 100.
- Kitabatake, M.; Yamamoto, H.; Yuan, P. F.; Manjurul, H.; Murase, S.; Yamauchi, T. (1995)
 Effects of exposure to NO₂ or SO₂ on bronchopulmonary reaction induced by *Candida albicans* in guinea pigs. J. Toxicol. Environ. Health 45: 75-82.

1 Kleeberger, S. R.; Zhang, L. Y.; Jakab, G. J. (1997) Differential susceptibility to oxidant 2 exposure in inbred strains of mice: nitrogen dioxide versus ozone. Inhalation Toxicol. 9: 3 601-621. Kleinman, M. T.; Mautz, W. J. (1991) The effects of exercise on dose and dose distribution of 4 5 inhaled automotive pollutants. Cambridge, MA: Health Effects Institute; research report 6 no. 45. 7 Kleinman, M. T.; Bailey, R. M.; Linn, W. S.; Anderson, K. R.; Whynot, J. D.; Shamoo, D. A.; 8 Hackney, J. D. (1983) Effects of 0.2 ppm nitrogen dioxide on pulmonary function and 9 response to bronchoprovocation in asthmatics. J. Toxicol. Environ. Health 12: 815-826. Klepeis, N. E.; Nelson, W. C.; Ott. W. R.; Robinson, J. P. Tsang, A. M.; Switzer, P.; Behar, J. 10 V.; Hern, S. C.; Engelmann, W. H. (2001) The National Human Activity Pattern Survey 11 12 (NHAPS): a resource for assessing exposure to environmental pollutants. J. Exposure 13 Anal. Environ. Epidemiol. 11: 231-252. 14 Kobayashi, T.; Miura, T. (1995) Concentration- and time-dependent increase in specific airway 15 resistance after induction of airway hyperresponsiveness by subchronic exposure of 16 guinea pigs to nitrogen dioxide. Fundam. Appl. Toxicol. 25: 154-158. 17 Kodama, Y.; Arashidani, K.; Tokui, N.; Kawamoto, T.; Matsuno, K.; Kunugita, N.; Minakawa, 18 N. (2002) Environmental NO₂ concentration and exposure in daily life along main roads 19 in Tokyo. Environ. Res. A 89: 236-244. 20 Koenig, J. Q.; Covert, D. S.; Morgan, M. S.; Horike, M.; Horike, N.; Marshall, S. G.; Pierson, 21 W. E. (1985) Acute effects of 0.12 ppm ozone or 0.12 ppm nitrogen dioxide on 22 pulmonary function in healthy and asthmatic adolescents. Am. Rev. Respir. Dis. 132: 23 648-651. 24 Koenig, J. Q.; Pierson, W. E.; Marshall, S. G.; Covert, D. S.; Morgan, M. S.; Van Belle, G. 25 (1988) The effects of ozone and nitrogen dioxide on lung function in healthy and 26 asthmatic adolescents. Cambridge, MA: Health Effects Institute; research report no. 14. 27 Available from: NTIS, Springfield, VA; PB88-234455. 28 Koenig, J. Q.; Covert, D. S.; Pierson, W. E.; Hanley, Q. S.; Rebolledo, V.; Dumler, K.; 29 McKinney, S. E. (1994) Oxidant and acid aerosol exposure in healthy subjects and subjects with asthma. Part I: effects of oxidants, combined with sulfuric or nitric acid, on 30 31 the pulmonary function of adolescents with asthma. Cambridge, MA: Health Effects 32 Institute; pp. 1-36; research report no. 70. 33 Kon, K.; Maeda, N.; Shiga, T. (1977) Effect of nitric oxide on the oxygen transport of human 34 erythrocytes. J. Toxicol. Environ. Health 2: 1109-1113. 35 Kosaka, H.; Oda, Y.; Uozumi, M. (1985) Induction of *umuC* gene expression by nitrogen dioxide in Salmonella typhimurium. Mutat. Res. 142: 99-102. 36 37 Kosaka, H.; Yamamoto, K.; Oda, Y.; Uozumi, M. (1986) Induction of SOS functions by nitrogen dioxide in Escherichia coli with different DNA-repair capacities. Mutat. Res. 162: 1-5. 38 39 Kosaka, H.; Uozumi, M.; Nakajima, T. (1987) Induction of SOS functions in Escherichia coli 40 and biosynthesis of nitrosamine in rabbits by nitrogen dioxide. Environ. Health Perspect. 73: 153-156. 41

1 2 3	Kosmider, S.; Luciak, M.; Zajusz, K.; Misiewicz, A.; Szygula, J. (1973) Badania nad rozedmotworczym dzialaniem tlenkow azotu [Studies on emphysogenic action of nitrogen oxides]. Patol. Pol. 24: 107-125.
4 5 6	Kousa, A.; Monn, C.; Rotko, T.; Alm, S.; Oblesby, L.; Jantunen, M. J. (2001) Personal exposures to NO ₂ in the <i>EXPOLIS</i> -study: relation to residential indoor, outdoor and workplace concentrations in Basel, Helsinki and Prague. Atmos. Environ. 35: 3405-3412.
7 8	Krämer, U.; Koch, T.; Ranft, U.; Ring, J.; Behrendt, H. (2000) Traffic-related air pollution is associated with atopy in children living in urban areas. Epidemiology 11: 64-70.
9 10 11 12 13 14	Krewski, D.; Burnett, R. T.; Goldberg, M. S.; Hoover, K.; Siemiatycki, J.; Jerrett, M.; Abrahamowicz, M.; White, W. H. (2000) Reanalysis of the Harvard Six Cities study and the American Cancer Society study of particulate air pollution and mortality: a special report of the Institute's Particle Epidemiology Reanalysis Project. Cambridge, MA: Health Effects Institute. Available: http://pubs.healtheffects.org/view.php?id=6 [6 March, 2007].
15 16	Kripke, B. J.; Sherwin, R. P. (1984) Nitrogen dioxide exposure - influence on rat testes. Anesth. Analg. (NY) 63: 526-528.
17 18	Krishna, M. T.; Chauhan, A. J.; Frew, A. J.; Holgate, S. T. (1998) Toxicological mechanisms underlying oxidant pollutant-induced airway injury. Rev. Environ. Health 13: 59-71.
19 20	Krupa, S. V.; Legge, A. H. (2000) Passive sampling of ambient, gaseous air pollutants: an assessment from an ecological perspective. Environ. Pollut. 107: 31-45.
21 22 23	Kubota, K.; Murakami, M.; Takenaka, S.; Kawai, K.; Kyono, H. (1987) Effects of long-term nitrogen dioxide exposure on rat lung: morphological observations. Environ. Health Perspect. 73: 157-169.
24 25	Kulkarni, M. M.; Patil, R. S. (2002) An empirical model to predict indoor NO ₂ concentrations. Atmos. Environ. 36: 4777-4785.
26 27 28	Kumae, T.; Arakawa, H. (2006) Comparison of effects of <i>in vivo</i> nitrogen dioxide exposure starting from different periods on alveolar macrophage activity, assessed by a chemiluminescence technique in Brown-Norway rats. Luminescence 21: 226-232.
29 30 31 32	 Kunimoto, M.; Mochitate, K.; Kaya, K.; Miura, T.; Kubota, K. (1984) Effects of nitrogen dioxide on red blood cells of rats: alterations of cell membrane components and populational changes of red blood cells during <i>in vivo</i> exposure to NO₂. Environ. Res. 33: 361-369.
33 34	Künzli, N.; Tager, I. B. (1997) The semi-individual study in air pollution epidemiology: a valid design as compared to ecologic studies. Environ. Health Perspect. 105: 1078-1083.
35 36 37	Kwon, HJ.; Cho, SH.; Nyberg, F.; Pershagen, G. (2001) Effects of ambient air pollution on daily mortality in a cohort of patients with congestive heart failure. Epidemiology 12: 413-419.
38 39	Kyono, H.; Kawai, K. (1982) Morphometric study on age-dependent pulmonary lesions in rats exposed to nitrogen dioxide. Ind. Health 20: 73-99.

1 2	Lafuma, C.; Harf, A.; Lange, F.; Bozzi, L.; Poncy, J. L.; Bignon, J. (1987) Effect of low-level NO ₂ chronic exposure on elastase-induced emphysema. Environ. Res. 43: 75-84.
3	Lagorio, S.; Forastiere, F.; Pistelli, R.; Iavarone, I.; Michelozzi, P.; Fano, V.; Marconi, A.;
4	Ziemacki, G.; Ostro, B. D. (2006) Air pollution and lung function among susceptible
5	adult subjects: a panel study. Environ. Health 5: 11. Available:
6	http://www.ehjournal.net/content/5/1/11 [16 January, 2006].
7	Lai, H. K.; Kendall, M.; Ferrier, H.; Lindup, I.; Alm, S.; Hänninen, O.; Jantunen, M.; Mathys, P.;
8	Colvile, R.; Ashmore, M. R.; Cullinan, P.; Nieuwenhuijsen, M. J. (2004) Personal
9	exposures and microenvironment concentrations of PM _{2.5} , VOC, NO ₂ and CO in Oxford,
10	UK. Atmos. Environ. 38: 6399-6410.
11	Lal, S.; Patil, R. S. (2001) Monitoring of atmospheric behaviour of NOx from vehicular traffic.
12	Environ. Monit. Assess. 68: 37-50.
13 14 15 16 17	 Lanki, T.; Pekkanen, J.; Aalto, P.; Elosua, R.; Berglind, N.; D'Ippoliti, D.; Kulmala, M.; Nyberg, F.; Peters, A.; Picciotto, S.; Salomaa, V.; Sunyer, J.; Tiittanen, P.; Von Klot, S.; Forastiere, F.; for the HEAPSS Study Group. (2006) Associations of traffic-related air pollutants with hospitalisation for first acute myocardial infarction: the HEAPSS study. Occup. Environ. Med. 63: 844-851.
18	La Rovere, M. T.; Pinna, G. D.; Maestri, R.; Mortara, A.; Capomolla, S.; Febo, O.; Ferrari, R.;
19	Franchini, M.; Gnemmi, M.; Opasich, C.; Riccardi, P. G.; Traversi, E.; Cobelli, F. (2003)
20	Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart
21	failure patients. Circulation 107: 565-570.
22	Last, J. A.; Gerriets, J. E.; Hyde, D. M. (1983) Synergistic effects on rat lungs of mixtures of
23	oxidant air pollutants (ozone or nitrogen dioxide) and respirable aerosols. Am. Rev.
24	Respir. Dis. 128: 539-544.
25	Leaderer, B. P.; Zagraniski, R. T.; Berwick, M.; Stolwijk, J. A. J. (1986) Assessment of exposure
26	to indoor air contaminants from combustion sources: methodology and application. Am.
27	J. Epidemiol. 124: 275-289.
28	Lee, K.; Yanagisawa, Y.; Spengler, J. D.; Billick, I. H. (1995) Classification of house
29	characteristics based on indoor nitrogen dioxide concentrations. Environ. Int. 21: 277-
30	282.
31	Lee, K.; Yanagisawa, Y.; Spengler, J. D.; Fukumura, Y.; Billick, I. H. (1996) Classification of
32	house characteristics in a Boston residential nitrogen dioxide characterization study.
33	Indoor Air 6: 211-216.
34	Lee, K.; Levy, J. I.; Yanagisawa, Y.; Spengler, J. D.; Billick, I. H. (1998) The Boston Residential
35	Nitrogen Dioxide Characterization Study: classification and prediction of indoor NO ₂
36	exposure. J. Air Waste Manage. Assoc. 48: 736-742.
37	Lee, K.; Yang, W.; Bofinger, N. D. (2000) Impact of microenvironmental nitrogen dioxide
38	concentrations on personal exposures in Australia. J. Air Waste Manage. Assoc. 50:
39	1739-1744.

1	Lee, K.; Xue, J.; Geyh, A. S.; Özkaynak, H.; Leaderer, B. P.; Weschler, C. J.; Spengler, J. D.
2	(2002) Nitrous acid, nitrogen dioxide, and ozone concentrations in residential
3	environments. Environ. Health Perspect. 110: 145-150.
4	Lee, JT.; Kim, H.; Cho, YS.; Hong, YC.; Ha, EH.; Park, H. (2003a) Air pollution and
5	hospital admissions for ischemic heart diseases among individuals 64+ years of age
6	residing in Seoul, Korea. Arch. Environ. Health 58: 617-623.
7 8 9	Lee, B. E.; Ha, E. H.; Park, H. S.; Kim, Y. J.; Hong, Y. C.; Kim, H.; Lee, J. T. (2003b) Exposure to air pollution during different gestational phases contributes to risks of low birth weight. Hum. Reprod. 18: 638-643.
10	Lee, YL.; Lin, YC.; Lee, YC.; Wang, JY.; Hsiue, TR.; Guo, Y. L. (2004) Glutathione S-
11	transferase P1 gene polymorphism and air pollution as interactive risk factors for
12	childhood asthma. Clin. Exp. Allergy 34: 1707-1713.
13 14	Lee, S. L.; Wong, W. H. S.; Lau, Y. L. (2006) Association between air pollution and asthma admission among children in Hong Kong. Clin. Exp. Allergy 36: 1138-1146.
15	Lefkowitz, S. S.; McGrath, J. J.; Lefkowitz, D. L. (1986) Effects of NO ₂ on immune responses.
16	J. Toxicol. Environ. Health 17: 241-248.
17 18 19	Lehnert, B. E.; Archuleta, D. C.; Ellis, T.; Session, W. S.; Lehnert, N. M.; Gurley, L. R.; Stavert, D. M. (1994) Lung injury following exposure of rats to relatively high mass concentrations of nitrogen dioxide. Toxicology 89: 239-277.
20	Le Tertre, A.; Quenel, P.; Eilstein, D.; Medina, S.; Prouvost, H.; Pascal, L.; Boumghar, A.;
21	Saviuc, P.; Zeghnoun, A.; Filleul, L.; Declercq, C.; Cassadou, S.; Le Goaster, C. (2002)
22	Short-term effects of air pollution on mortality in nine French cities: a quantitative
23	summary. Arch. Environ. Health 57: 311-319.
24	Levesque, B.; Allaire, S.; Gauvin, D.; Koutrakis, P.; Gingras, S.; Rhainds, M.; Prud'Homme, H.;
25	Duchesne, JF. (2001) Wood-burning appliances and indoor air quality. Sci. Total
26	Environ. 281: 47-62.
27	Levy, J. I.; Lee, K.; Yanagisawa, Y.; Hutchinson, P.; Spengler, J. D. (1998a) Determinants of
28	nitrogen dioxide concentrations in indoor ice skating rinks. Am. J. Public Health 88:
29	1781-1786.
30	Levy, J. I.; Lee, K.; Spengler, J. D.; Yanagisawa, Y. (1998b) Impact of residential nitrogen
31	dioxide exposure on personal exposure: an international study. J. Air Waste Manage.
32	Assoc. 48: 553-560.
33 34	Lewné, M.; Nise, G.; Lind, M. L.; Gustavsson, P. (2006) Exposure to particles and nitrogen dioxide among taxi, bus and lorry drivers. Int. Arch. Occup. Environ. Health 79: 220-226.
35	Li, YF.; Gauderman, W. J.; Avol, E.; Dubeau, L.; Gilliland, F. D. (2006) Associations of tumor
36	necrosis factor G-308A with childhood asthma and wheezing. Am. J. Respir. Crit. Care
37	Med. 173: 970-976.
38	Liang, KY.; Zeger, S. L. (1986) Longitudinal data analysis using generalized linear models.
39	Biometrika 73: 13-22.

1	Liao, D.; Duan, Y.; Whitsel, E. A.; Zheng, ZJ.; Heiss, G.; Chinchilli, V. M.; Lin, HM. (2004)
2	Association of higher levels of ambient criteria pollutants with impaired cardiac
3	autonomic control: a population-based study. Am. J. Epidemiol. 159: 768-777.
4	Liard, R.; Zureik, M.; Le Moullec, Y.; Soussan, D.; Glorian, M.; Grimfeld, A.; Neukirch, F.
5	(1999) Use of personal passive samplers for measurement of NO ₂ , NO, and O3 levels in
6	panel studies. Environ. Res. 81: 339-348.
7	Lin, M.; Chen, Y.; Burnett, R. T.; Villeneuve, P. J.; Krewski, D. (2003) Effect of short-term
8	exposure to gaseous pollution on asthma hospitalisation in children: a bi-directional case-
9	crossover analysis. J. Epidemiol. Community Health 57: 50-55.
10	Lin, M.; Chen, Y.; Villeneuve, P. J.; Burnett, R. T.; Lemyre, L.; Hertzman, C.; McGrail, K. M.;
11	Krewski, D. (2004) Gaseous air pollutants and asthma hospitalization of children with
12	low household income in Vancouver, British Columbia, Canada. Am. J. Epidemiol. 159:
13	294-303.
14	Linaker, C. H.; Chauhan, A. J.; Inskip, H.; Frew, A. J.; Sillence, A.; Coggon, D.; Holgate, S. T.
15	(1996) Distribution and determinants of personal exposure to nitrogen dioxide in school
16	children. Occup. Environ. Med. 53: 200-203.
17	Linaker, C. H.; Chauhan, A. J.; Inskip, H. M.; Holgate, S. T.; Coggon, D. (2000) Personal
18	exposures of children to nitrogen dioxide relative to concentrations in outdoor air. Occup.
19	Environ. Med. 57: 472-476.
20	Linn, W. S.; Solomon, J. C.; Trim, S. C.; Spier, C. E.; Shamoo, D. A.; Venet, T. G.; Avol, E. L.;
21	Hackney, J. D. (1985a) Effects of exposure to 4 ppm nitrogen dioxide in healthy and
22	asthmatic volunteers. Arch. Environ. Health 40: 234-239.
23 24 25	Linn, W. S.; Shamoo, D. A.; Spier, C. E.; Valencia, L. M.; Anzar, U. T.; Venet, T. G.; Avol, E. L.; Hackney, J. D. (1985b) Controlled exposure of volunteers with chronic obstructive pulmonary disease to nitrogen dioxide. Arch. Environ. Health 40: 313-317.
26	Linn, W. S.; Shamoo, D. A.; Avol, E. L.; Whynot, J. D.; Anderson, K. R.; Venet, T. G.;
27	Hackney, J. D. (1986) Dose-response study of asthmatic volunteers exposed to nitrogen
28	dioxide during intermittent exercise. Arch. Environ. Health 41: 292-296.
29	Linn, W. S.; Shamoo, D. A.; Anderson, K. R.; Peng, RC.; Avol, E. L.; Hackney, J. D.; Gong,
30	H., Jr. (1996) Short-term air pollution exposures and responses in Los Angeles area
31	schoolchildren. J. Exposure Anal. Environ. Epidemiol. 6: 449-472.
32	Linn, W. S.; Szlachcic, Y.; Gong, H., Jr.; Kinney, P. L.; Berhane, K. T. (2000) Air pollution and
33	daily hospital admissions in metropolitan Los Angeles. Environ. Health Perspect. 108:
34	427-434.
35	 Lipfert, F. W.; Perry, H. M., Jr.; Miller, J. P.; Baty, J. D.; Wyzga, R. E.; Carmody, S. E. (2000a)
36	The Washington University-EPRI veterans' cohort mortality study: preliminary results.
37	In: Grant, L. D., ed. PM2000: particulate matter and health. Inhalation Toxicol. 12(suppl.
38	4): 41-73.
39 40 41	Lipfert, F. W.; Morris, S. C.; Wyzga, R. E. (2000b) Daily mortality in the Philadelphia metropolitan area and size-classified particulate matter. J. Air Waste Manage. Assoc. 50: 1501-1513.

1 2 3	Lipfert, F. W.; Perry, H. M., Jr.; Miller, J. P.; Baty, J. D.; Wyzga, R. E.; Carmody, S. E. (2003) Air pollution, blood pressure, and their long-term associations with mortality. Inhalation Toxicol. 15: 493-512.
4 5 6	Lipfert, F. W.; Wyzga, R. E.; Baty, J. D.; Miller, J. P. (2006a) Traffic density as a surrogate measure of environmental exposures in studies of air pollution health effects: long-term mortality in a cohort of US veterans. Atmos. Environ. 40: 154-169.
7 8 9	Lipfert, F. W.; Baty, J. D.; Miller, J. P.; Wyzga, R. E. (2006b) PM _{2.5} constituents and related air quality variables as predictors of survival in a cohort of U.S. military veterans. Inhalation Toxicol. 18: 645-657.
10 11 12	Lippmann, M.; Ito, K.; Nádas, A.; Burnett, R. T. (2000) Association of particulate matter components with daily mortality and morbidity in urban populations. Cambridge, MA: Health Effects Institute; research report no. 95.
13 14 15	Liu, S.; Krewski, D.; Shi, Y.; Chen, Y.; Burnett, R. T. (2003) Association between gaseous ambient air pollutants and adverse pregnancy outcomes in Vancouver, Canada. Environ. Health Perspect. 111: 1773-1778.
16 17 18	Llorca, J.; Salas, A.; Prieto-Salceda, D.; Chinchon-Bengoechea, V.; Delgado-Rodríguez, M. (2005) Nitrogen dioxide increases cardiorespiratory admissions in Torrelavega (Spain). J. Environ. Health 68: 30-35.
19 20	Loomis, D.; Castillejos, M.; Gold, D. R.; McDonnell, W.; Borja-Aburto, V. H. (1999) Air pollution and infant mortality in Mexico City. Epidemiology 10: 118-123.
21 22 23	Luginaah, I. N.; Fung, K. Y.; Gorey, K. M.; Webster, G.; Wills, C. (2005) Association of ambient air pollution with respiratory hospitalization in a government designated "area of concern": the case of Windsor, Ontario. Environ. Health Perspect. 113: 290-296.
24 25 26	Luttmann-Gibson, H.; Suh, H. H.; Coull, B. A.; Dockery, D. W.; Sarnet, S. E.; Schwartz, J.; Stone, P. H.; Gold, D. R. (2006) Short-term effects of air pollution on heart rate variability in senior adults in Steubenville, Ohio. J. Occup. Environ. Med. 48: 780-788.
27 28	Ma, TH.; Anderson, V. A.; Shmed, I. (1982) Environmental clastogens detected by meiotic pollen mother cells of Tradescantia. Environ. Sci. Res. 25: 141-157.
29 30	Mage, D.; Wilson, W.; Hasselblad, V.; Grant, L. (1999) Assessment of human exposure to ambient particulate matter. J. Air Waste Manage. Assoc. 49: 1280-1291.
31 32 33	Maigetter, R. Z.; Fenters, J. D.; Findlay, J. C.; Ehrlich, R.; Gardner, D. E. (1978) Effect of exposure to nitrogen dioxide on T and B cells in mouse spleens. Toxicol. Lett. 2: 157-161.
34 35 36 37	Mann, J. K.; Tager, I. B.; Lurmann, F.; Segal, M.; Quesenberry, C. P., Jr.; Lugg, M. M.; Shan, J.; Van den Eeden, S. K. (2002) Air pollution and hospital admissions for ischemic heart disease in persons with congestive heart failure or arrhythmia. Environ. Health Perspect. 110: 1247-1252.
38 39 40	Mannes, T.; Jalaludin, B.; Morgan, G.; Lincoln, D.; Sheppeard, V.; Corbett, S. (2005) Impact of ambient air pollution on birth weight in Sydney, Australia. Occup. Environ. Med. 62: 524-530.

Maples, K. R.; Sandstrom, T.; Su, YF.; Henderson, R. F. (1991) The nitric oxide/heme protein complex as a biologic marker of exposure to nitrogen dioxide in humans, rats, and in vitro models. Am. J. Respir. Cell Mol. Biol. 4: 538-543.
Margolis, P. A.; Greenberg, R. A.; Keyes, L. L.; Lavange, L. M.; Chapman, R. S.; Denny, F. W.; Bauman, K. E.; Boat, B. W. (1992) Lower respiratory illness in infants and low socioeconomic status. Am. J. Public Health 82: 1119-1126.
Martin, R. V.; Jacob, D. J.; Chance, K. V.; Kurosu, T. P.; Palmer, P. I.; Evans, M. J. (2003) Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns. J. Geophys. Res. [Atmos.] 108(D17): 10.1029/2003JD003453.
McClenny, W. A.; Williams, E. J.; Cohen, R. C.; Stutz, J. (2002) Preparing to measure the effects of the NO _x SIP Call—methods for ambient air monitoring of NO, NO ₂ , NO _y , and individual NO _z species. J. Air Waste Manage. Assoc. 52: 542-562.
McConnell, R.; Berhane, K.; Gilliland, F.; Molitor, J.; Thomas, D.; Lurmann, F.; Avol, E.; Gauderman, W. J.; Peters, J. M. (2003) Prospective study of air pollution and bronchitic symptoms in children with asthma. Am. J. Respir. Crit. Care Med. 168: 790-797.
McConnell, R.; Berhane, K.; Yao, L.; Jerrett, M.; Lurmann, F.; Gilliland, F.; Kunzli, N.; Gauderman, J.; Avol, E.; Thomas, D.; Peters, J. (2006) Traffic, susceptibility, and childhood asthma. Environ. Health Perspect. 114: 766-772.
Melia, R. J. W.; Du Ve Florey, C.; Altman, D. G.; Swan, A. V. (1977) Association between gas cooking and respiratory disease in children. Br. Med. J. 2: 149-152.
Melia, R. J. W.; Du Ve Florey, C.; Chinn, S. (1979) The relation between respiratory illness in primary schoolchildren and the use of gas for cooking: I - results from a national survey. Int. J. Epidemiol. 8: 333-338.
Melia, R. J. W.; Du Ve Florey, C.; Morris, R. W.; Goldstein, B. D.; Clark, D.; John, H. H. (1982a) Childhood respiratory illness and the home environment. I. Relations between nitrogen dioxide, temperature and relative humidity. Int. J. Epidemiol. 11: 155-163.
Melia, R. J. W.; Du Ve Florey, C.; Morris, R. W.; Goldstein, B. D.; John, H. H.; Clark, D.; Craighead, I. B.; Mackinlay, J. C. (1982b) Childhood respiratory illness and the home environment: II. association between respiratory illness and nitrogen dioxide, temperature and relative humidity. Int. J. Epidemiol. 11: 164-169.
Melia, R. J. W.; Chinn, S.; Rona, R. J. (1990) Indoor levels of NO2 associated with gas cookers and kerosene heaters in inner city areas of England. Atmos. Environ. Part B 24: 177-180.
Menzel, D. B. (1976) The role of free radicals in the toxicity of air pollutants (nitrogen oxides and ozone). In: Pryor, W. A., ed. Free radicals in biology: v. II. New York, NY: Academic Press, Inc.; pp. 181-202.
Mercer, R. R. (1999) Morphometric analysis of alveolar responses of F344 rats to subchronic inhalation of nitric oxide. Cambridge, MA: Health Effects Institute; research report no. 88.
Mercer, R. R.; Costa, D. L.; Crapo, J. D. (1995) Effects of prolonged exposure to low doses of nitric oxide or nitrogen dioxide on the alveolar septa of the adult rat lung. Lab. Invest. 73: 20-28.

4 Metzger, K. B.; Tolbert, P. E.; Klein, M.; Peel, J. L.; Flanders, W. D.; Todd, K. H.; Mulholland, 5 J. A.; Ryan, P. B.; Frumkin, H. (2004) Ambient air pollution and cardiovascular 6 emergency department visits. Epidemiology 15: 46-56. 7 Migliaretti, G.; Cavallo, F. (2004) Urban air pollution and asthma in children. Pediatr. Pulmonol. 8 38: 198-203. 9 Migliaretti, G.; Cadum, E.; Migliore, E.; Cavallo, F. (2005) Traffic air pollution and hospital 10 admission for asthma: a case-control approach in a Turin (Italy) population. Int. Arch. Occup. Environ. Health. 78: 164-169. 11 12 Miller, F. J.; Overton, J. H.; Myers, E. T.; Graham, J. A. (1982) Pulmonary dosimetry of nitrogen dioxide in animals and man. In: Schneider, T.; Grant, L., eds. Air pollution by nitrogen 13 14 oxides: proceedings of the US-Dutch international symposium; May; Maastricht, The 15 Netherlands. Amsterdam, The Netherlands: Elsevier Scientific Publishing Company; pp. 16 377-386. (Studies in environmental science 21). 17 Miller, F. J.; Graham, J. A.; Raub, J. A.; Illing, J. W.; Ménache, M. G.; House, D. E.; Gardner, D. E. (1987) Evaluating the toxicity of urban patterns of oxidant gases. II. Effects in mice 18 19 from chronic exposure to nitrogen dioxide. J. Toxicol. Environ. Health 21: 99-112. 20 Miller, K. A.; Siscovick, D. S.; Sheppard, L.; Shepherd, K.; Sullivan J. H.; Anderson, G. L.; 21 Kaufman, J. D. (2007) Long-term exposure to air pollution and incidence of cardiovascular events in women. N. Engl. J. Med. 356: 447-458. 22 23 Millstein, J.; Gilliland, F.; Berhane, K.; Gauderman, W. J.; McConnell, R.; Avol, E.; Rappaport, E. B.; Peters, J. M. (2004) Effects of ambient air pollutants on asthma medication use and 24 25 wheezing among fourth-grade school children from 12 Southern California communities 26 enrolled in The Children's Health Study. Arch. Environ. Health 59: 505-514. 27 Mink, S. N.; Coalson, J. J.; Whitley, L.; Greville, H.; Jadue, C. (1984) Pulmonary function tests 28 in the detection of small airway obstruction in a canine model of bronchiolitis obliterans. 29 Am. Rev. Respir. Dis. 130: 1125-1133. 30 Mirvish, S. S.; Issenberg, P.; Sams, J. P. (1981) N-nitrosomorpholine synthesis in rodents 31 exposed to nitrogen dioxide and morpholine. In: Scanlan, R. A.; Tannenbaum, S. R., eds. 32 N-nitroso compounds: based on a symposium cosponsored by the Divisions of 33 Agricultural and Food Chemistry and Pesticide Chemistry at the 181st meeting of the 34 American Chemical Society; March-April; Atlanta, GA. Washington, DC: American 35 Chemical Society; pp. 181-191. (ACS symposium series 174). Mirvish, S. S.; Sams, J. P.; Issenberg, P. (1983) The nitrosating agent in mice exposed to 36 37 nitrogen dioxide: improved extraction method and localization in the skin. Cancer Res. 43: 2550-2554. 38 39 Mirvish, S. S.; Babcook, D. M.; Deshpande, A. D.; Nagel, D. L. (1986) Identification of 40 cholesterol as a mouse skin lipid that reacts with nitrogen dioxide to yield a nitrosating agent, and of cholesteryl nitrite as the nitrosating agent produced in a chemical system 41 42 from cholesterol. Cancer Lett. (Shannon, Irel.) 31: 97-104.

Mersch, J.; Dyce, B. J.; Haverback, B. J.; Sherwin, R. P. (1973) Diphosphoglycerate content of

red blood cells: measurements in guinea pigs exposed to 0.4 ppm nitrogen dioxide. Arch.

1

2

3

Environ. Health 27: 94-95.

1 2 3	Mirvish, S. S.; Ramm, M. D.; Sams, J. P.; Babcook, D. M. (1988) Nitrosamine formation from amines applied to the skin of mice after and before exposure to nitrogen dioxide. Cancer Res. 48: 1095-1099.
4 5 6	Miyanishi, K.; Kinouchi, T.; Kataoka, K.; Kanoh, T.; Ohnishi, Y. (1996) <i>In vivo</i> formation of mutagens by intraperitoneal administration of polycyclic aromatic hydrocarbons in animals during exposure to nitrogen dioxide. Carcinogenesis 17: 1483-1490.
7 8	Mochitate, K.; Miura, T. (1984) In vivo effect of nitrogen dioxide on the activities of glycolytic enzymes in red blood cells of rats. Toxicol. Lett. 22: 315-321.
9 10	Mochitate, K.; Kaya, K.; Miura, T.; Kubota, K. (1984) In vivo effects of nitrogen dioxide on membrane constituents in lung and liver of rats. Environ. Res. 33: 17-28.
11 12	Mochitate, K.; Miura, T.; Kubota, K. (1985) An increase in the activities of glycolytic enzymes in rat lungs produced by nitrogen dioxide. J. Toxicol. Environ. Health 15: 323-331.
13 14	Mochitate, K.; Takahashi, Y.; Ohsumi, T.; Miura, T. (1986) Activation and increment of alveolar macrophages induced by nitrogen dioxide. J. Toxicol. Environ. Health 17: 229-239.
15 16 17	 Modig, L.; Sunesson, AL.; Levin, JO.; Sundgren, M.; Hagenbjörk-Gustafsson, A.; Forsberg, B. (2004) Can NO₂ be used to indicate ambient and personal levels of benzene and 1,3-butadiene in air? J. Environ. Monit. 6: 957-962.
18 19 20	Mohsenin, V. (1987a) Effect of vitamin C on NO ₂ -induced airway hyperresponsiveness in normal subjects: a randomized double-blind experiment. Am. Rev. Respir. Dis. 136: 1408-1411.
21 22	Mohsenin, V. (1987b) Airway responses to nitrogen dioxide in asthmatic subjects. J. Toxicol. Environ. Health 22: 371-380.
23 24	Mohsenin, V. (1988) Airway responses to 2.0 ppm nitrogen dioxide in normal subjects. Arch. Environ. Health 43: 242-246.
25 26 27	Mohsenin, V.; Gee, J. B. L. (1987) Acute effect of nitrogen dioxide exposure on the functional activity of alpha-1-protease inhibitor in bronchoalveolar lavage fluid of normal subjects. Am. Rev. Respir. Dis. 136: 646-650.
28 29 30 31	Molitor, J.; Jerrett, M.; Chang, CC.; Molitor, NT.; Gauderman, J.; Berhane, K.; McConnell, R.; Lurmann, F.; Wu, J.; Winer, A.; Thomas, D. (2007) Assessing uncertainty in spatial exposure models for air pollution health effects assessment. Environ. Health Perspect. 115: 1147-1153.
32 33	Moncada, S. (1992) Nitric oxide gas: mediator, modulator, and pathophysiologic entity. J. Lab. Clin. Med. 120: 187-191.
34 35	Moncada, S.; Palmer, R. M. J.; Higgs, E. A. (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43: 109-142.
36 37 38 39	 Monn, C.; Fuchs, A.; Högger, D.; Junker, M.; Kogelschatz, D.; Roth, N.; Wanner, HU. (1997) Particulate matter less than 10 μm (PM₁₀) and fine particles less than 2.5 μm (PM_{2.5}): relationships between indoor, outdoor and personal concentrations. Sci. Total Environ. 208: 15-21.

1 Monn, C.; Brändli, O.; Schindler, C.; Ackermann-Liebrich, U.; Leuenberger, P.; SAPALDIA 2 team. (1998) Personal exposure to nitrogen dioxide in Switzerland. Sci. Total Environ. 3 215: 243-251. 4 Moolgavkar, S. H. (2000) Air pollution and hospital admissions for diseases of the circulatory 5 system in three U.S. metropolitan areas. J. Air Waste Manage Assoc. 50: 1199-1206. 6 Moolgavkar, S. H. (2003) Air pollution and daily deaths and hospital admissions in Los Angeles 7 and Cook counties. In: Revised analyses of time-series studies of air pollution and health. 8 Special report. Boston, MA: Health Effects Institute; pp. 183-198. Available: 9 http://www.healtheffects.org/news.htm [16 May, 2003]. Moolgavkar, S. H.; Luebeck, E. G. (1996) A critical review of the evidence on particulate air 10 pollution and mortality. Epidemiology 7: 420-428. 11 12 Morgan, G.; Corbett, S.; Wlodarczyk, J. (1998) Air pollution and hospital admissions in Sydney, 13 Australia, 1990 to 1994. Am. J. Public Health 88: 1761-1766. 14 Morgan, G.; Corbett, S.; Wlodarczyk, J.; Lewis, P. (1998) Air pollution and daily mortality in 15 Sydney, Australia, 1989 through 1993. Am. J. Public Health 88: 759-764. 16 Morris, R. D.; Naumova, E. N.; Munasinghe, R. L. (1995) Ambient air pollution and 17 hospitalization for congestive heart failure among elderly people in seven large US cities. 18 Am. J. Public Health 85: 1361-1365. 19 Morrow, P. E.; Utell, M. J. (1989) Responses of susceptible subpopulations to nitrogen dioxide. 20 Cambridge, MA: Health Effects Institute; research report no. 23. 21 Morrow, P. E.; Utell, M. J.; Bauer, M. A.; Smeglin, A. M.; Frampton, M. W.; Cox, C.; Speers, 22 D. M.; Gibb, F. R. (1992) Pulmonary performance of elderly normal subjects and 23 subjects with chronic obstructive pulmonary disease exposed to 0.3 ppm nitrogen 24 dioxide. Am. Rev. Respir. Dis. 145: 291-300. 25 Mortimer, K. M.; Neas, L. M.; Dockery, D. W.; Redline, S.; Tager, I. B. (2002) The effect of air 26 pollution on inner-city children with asthma. Eur. Respir. J. 19: 699-705. 27 Moseler, M.; Hendel-Kramer, A.; Karmaus, W.; Forster, J.; Weiss, K.; Urbanek, R.; Kuehr, J. 28 (1994) Effect of moderate NO₂ air pollution on the lung function of children with 29 asthmatic symptoms. Environ. Res. 67: 109-124. 30 Mosqueron, L.; Momas, I.; Le Moullec, Y. (2002) Personal exposure of Paris office workers to 31 nitrogen dioxide and fine particles. Occup. Environ. Med. 59: 550-555. 32 Mukala, K.; Pekkanen, J.; Tiittanen, P.; Alm, S.; Salonen, R. O.; Tuomisto, J. (1999) Personally 33 measured weekly exposure to NO_2 and respiratory health among preschool children. Eur. 34 Respir. J. 13: 1411-1417. 35 Mukala, K.; Alm, S.; Tiittanen, P.; Salonen, R. O.; Jantunen, M.; Pekkanen, J. (2000) Nitrogen dioxide exposure assessment and cough among preschool children. Arch. Environ. 36 37 Health. 55: 431-438. 38 Muller, B.; Schafer, H.; Barth, P.; Von Wichert, P. (1994) Lung surfactant components in 39 bronchoalveolar lavage after inhalation of NO₂ as markers of altered surfactant 40 metabolism. Lung 172: 61-72.

1 Muller, B.; Garn, H.; Hochscheid, R. (2003) Impaired recycling of surfactant-like liposomes in 2 type II pneumocytes from injured lungs. Thorax 58: 127-134. 3 Murphy, S. D.; Ulrich, C. E.; Frankowitz, S. H.; Xintaras, C. (1964) Altered function in animals 4 inhaling low concentrations of ozone and nitrogen dioxide. Am. Ind. Hyg. Assoc. J. 25: 5 246-253. 6 Nadziejko, C. E.; Nansen, L.; Mannix, R. C.; Kleinman, M. T.; Phalen, R. F. (1992) Effect of 7 nitric acid vapor on the response to inhaled ozone. Inhalation Toxicol. 4: 343-358. 8 Næss, Ø.; Nafstad, P.; Aamodt, G.; Claussen, B.; Rosland, P. (2007) Relation between 9 concentration of air pollution and cause-specific mortality: four-year exposures to 10 nitrogen dioxide and particulate matter pollutants in 470 neighborhoods in Oslo, Norway. Am. J. Epidemiol. 165: 435-443. 11 12 Nafstad, P.; Håheim, L. L.; Oftedal, B.; Gram, F.; Holme, I.; Hjermann, I.; Leren, P. (2003) 13 Lung cancer and air pollution: a 27 year follow up of 16,209 Norwegian men. Thorax 58: 14 1071-1076. 15 Nafstad, P.; Håheim, L. L.; Wisloff, T.; Gram, F.; Oftedal, B.; Holme, I.; Hjermann, I.; Leren, P. 16 (2004) Urban air pollution and mortality in a cohort of Norwegian men. Environ. Health 17 Perspect. 112: 610-605. 18 Nakai, S.; Nitta, H.; Maeda, K. (1995) Respiratory health associated with exposure to automobile 19 exhaust II. Personal NO₂ exposure levels according to distance from the roadside. J. 20 Exposure Anal. Environ. Epidemiol. 5: 125-136. 21 Nakajima, T.; Kusumoto, S. (1968) [Effect of nitrogen dioxide exposure on the contents of 22 reduced glutathione in mouse lung]. Osaka-Furitsu Koshu Eisei Kenkyusho Kenkyu 23 Hokoku Rodo Eisei Hen 6: 17-21. 24 Nakajima, T.; Oda, H.; Kusumoto, S.; Nogami, H. (1980) Biological effects of nitrogen dioxide 25 and nitric oxide. In: Lee, S. D., ed. Nitrogen oxides and their effects on health. Ann 26 Arbor, MI: Ann Arbor Science Publishers, Inc.; pp. 121-141. 27 National Research Council. (1986) Environmental tobacco smoke: measuring exposures and 28 assessing health effects. Washington, DC: National Academy Press. 29 National Research Council. (2004) Research priorities for airborne particulate matter. IV. 30 Continuing research progress. Washington, DC: National Academies Press. Available: 31 http://www.nap.edu/catalog.php?record id=10957 [1 August, 2007]. 32 Nazaroff, W. W.; Cass, G. R. (1986) Mathematical modeling of chemically reactive pollutants in 33 indoor air. Environ. Sci. Technol. 20: 924-934. 34 Nazaroff, W. W.: Weschler, C. J. (2004) Cleaning products and air fresheners: exposure to 35 primary and secondary air pollutants. Atmos. Environ. 38: 2841-2865. 36 Neas, L. M.; Dockery, D. W.; Ware, J. H.; Spengler, J. D.; Speizer, F. E.; Ferris, B. G., Jr. (1991) Association of indoor nitrogen dioxide with respiratory symptoms and pulmonary 37 function in children. Am. J. Epidemiol. 134: 204-219. 38 39 Nerriere, E.; Zmirou-Navier, D.; Blanchard, O.; Momas, I.; Ladner, J.; Le Moullec, Y.; 40 Personnaz, M.-B.; Lameloise, P.; Delmas, V.; Target, A.; Desqueyroux, H. (2005) Can

1 2 3	we use fixed ambient air monitors to estimate population long-term exposure to air pollutants? The case of spatial variability in the Genotox ER study. Environ. Res. 97: 32-42.
4 5	Ng, T. P.; Seet, C. S. R.; Tan, W. C.; Foo, S. C. (2001) Nitrogen dioxide exposure from domestic gas cooking and airway response in asthmatic women. Thorax 56: 596-601.
6 7 8	Nguyen, T.; Brunson, D.; Crespi, C. L.; Penman, B. W.; Wishnok, J. S.; Tannenbaum, S. R. (1992) DNA damage and mutation in human cells exposed to nitric oxide <i>in vitro</i> . Proc. Natl. Acad. Sci. 89: 3030-3034.
9 10 11	 Nicolai, T.; Carr, D.; Weiland, S. K.; Duhme, H.; Von Ehrenstein, O.; Wagner, C.; Von Mutius, E. (2003) Urban traffic and pollutant exposure related to respiratory outcomes and atopy in a large sample of children. Eur. Respir. J. 21: 956-963.
12 13 14 15 16	 Nieding, G. von; Wagner, H. M. (1977) Experimental studies on the short-term effect of air pollutants on pulmonary function in man: two-hour exposure to NO₂, O₃ and SO₂ alone and in combination. In: Kasuga, S.; Suzuki, N.; Yamada, T.; Kimura, G.; Inagaki, K.; Onoe, K., eds. Proceedings of the fourth international clean air congress; May; Tokyo, Japan. Tokyo, Japan: Japanese Union of Air Pollution Prevention Associations; pp. 5-8.
17 18 19	 Nieding, G. von; Wagner, H. M.; Krekeler, H.; Loellgen, H.; Fries, W.; Beuthan, A. (1979) Controlled studies of human exposure to single and combined action of NO₂, O₃, and SO₂. Int. Arch. Occup. Environ. Health 43: 195-210.
20 21 22 23	 Nieding, G. von; Wagner, H. M.; Casper, H.; Beuthan, A.; Smidt, U. (1980) Effect of experimental and occupational exposure to NO₂ in sensitive and normal subjects. In: Lee, S. D., ed. Nitrogen oxides and their effects on health. Ann Arbor, MI: Ann Arbor Science Publishers, Inc.; pp. 315-331.
24 25 26	Nitschke, M.; Pilotto, L. S.; Attewell, R. G.; Smith, B. J.; Pisaniello, D.; Martin, J.; Ruffin, R. E.; Hiller, J. E. (2006) A cohort study of indoor nitrogen dioxide and house dust mite exposure in asthmatic children. J. Occup. Environ. Med. 48: 462-469.
27 28 29 30 31	 Nunnermacker, L. J.; Imre, D.; Daum, P. H.; Kleinman, L.; Lee, YN.; Lee, J. H.; Springston, S. R.; Newman, L.; Weinstein-Lloyd, J.; Luke, W. T.; Banta, R.; Alvarez, R.; Senff, C.; Sillman, S.; Holdren, M.; Keigley, G. W.; Zhou, X. (1998) Characterization of the Nashville urban plume on July 3 and July 18, 1995. J. Geophys. Res. [Atmos.] 103: 28,129-28,148.
32 33	Nyberg, F.; Gustavsson, P.; Järup, L.; Bellander, T.; Berglind, N.; Jakobsson, R.; Pershagen, G. (2000) Urban air pollution and lung cancer in Stockholm. Epidemiology 11: 487-495.
34 35	Oda, H.; Kusumoto, S.; Nakajima, T. (1975) Nitrosyl-hemoglobin formation in the blood of animals exposed to nitric oxide. Arch. Environ. Health 30: 453-456.
36 37	Oda, H.; Nogami, H.; Kusumoto, S.; Nakajima, T.; Kurata, A.; Imai, K. (1976) [Long-term exposure to nitric oxide in mice]. Taiki Osen Kenkyu 11: 150-160.
38 39	Oda, H.; Nogami, H.; Nakajima, T. (1979) Alteration of hemoglobin reacted with nitrogen oxides in vitro. J. Toxicol. Sci. 4: 299-300.
40 41	Oda, H.; Nogami, H.; Kusumoto, S.; Nakajima, T.; Kurata, A. (1980a) Lifetime exposure to 2.4 ppm nitric oxide in mice. Environ. Res. 22: 254-263.

1 Oda, H.; Nogami, H.; Nakajima, T. (1980b) Reaction of hemoglobin with nitric oxide and 2 nitrogen dioxide in mice. J. Toxicol. Environ. Health 6: 673-678. 3 Oftedal, B.; Nafstad, P.; Magnus, P.; Bjørkly, S.; Skrondal, A. (2003) Traffic related air pollution 4 and acute hospital admission for respiratory diseases in Drammen, Norway 1995-2000. 5 Eur. J. Epidemiol. 18: 671-675. 6 Ogawa & Company. (2007) Ambient air passive sampler for NO-NO₂, NO_x, SO₂, O₃, NH₃. 7 Pompano Beach, FL. Available: http://www.ogawausa.com/passive.html [18 July, 2007]. 8 Ogston, S. A.; Du Ve Florey, C.; Walker, C. H. M. (1985) The Tayside infant morbidity and 9 mortality study: effect on health of using gas for cooking. Br. Med. J. 290: 957-960. 10 Ohashi, Y.; Nakai, Y.; Sugiura, Y.; Ohno, Y.; Okamoto, H.; Tanaka, A.; Kakinoki, Y.; Hayashi, M. (1994) Nitrogen dioxide-induced eosinophilia and mucosal injury in the nose of the 11 12 guinea pig. Acta Oto Laryngol. 114: 547-551. 13 Ohyama, K.; Ito, T.; Kanisawa, M. (1999) The roles of diesel exhaust particle extracts and the 14 promotive effects of NO₂ and/or SO₂ exposure on rat lung tumorigenesis. Cancer Lett. 15 139: 189-197. 16 Ostro, B.; Lipsett, M.; Mann, J.; Braxton-Owens, H.; White, M. (2001) Air pollution and 17 exacerbation of asthma in African-American children in Los Angeles. Epidemiology 12: 18 200-208. 19 Ott, W.; Wallace, L.; Mage, D. (2000) Predicting particulate (PM_{10}) personal exposure 20 distributions using a random component superposition statistical model. J. Air Waste 21 Manage. Assoc. 50: 1390-1406. 22 Overton, J. H., Jr. (1984) Physicochemical processes and the formulation of dosimetry models. 23 In: Miller, F. J.; Menzel, D. B., eds. Fundamentals of extrapolation modeling of inhaled 24 toxicants: ozone and nitrogen dioxide. Washington, DC: Hemisphere Publishing 25 Corporation; pp. 93-114. 26 Overton, J. H.; Graham, R. C. (1995) Simulation of the uptake of a reactive gas in a rat 27 respiratory tract model with an asymmetric tracheobronchial region patterned on 28 complete conducting airway cast data. Comput. Biomed. Res. 28: 171-190. 29 Overton, J. H.; Graham, R. C.; Menache, M. G.; Mercer, R. R.; Miller, F. J. (1996) Influence of 30 tracheobronchial region expansion and volume on reactive gas uptake and interspecies 31 dose extrapolations. Inhalation Toxicol. 8: 723-745. 32 Pagani, P.; Romano, M.; Erroi, A.; Ferro, M.; Salmona, M. (1994) Biochemical effects of acute 33 and subacute nitrogen dioxide exposure in rat lung and bronchoalveolar lavage fluid. 34 Arch. Environ. Contam. Toxicol. 27: 426-430. 35 Palmes, E. D.; Gunnison, A. F.; DiMattio, J.; Tomczyk, C. (1976) Personal sampler for nitrogen dioxide. Am. Ind. Hyg. Assoc. J. 37: 570-577. 36 37 Pantazopoulou, A.; Katsouyanni, K.; Kourea-Kremastinou, J.; Trichopoulos, D. (1995) Shortterm effects of air pollution on hospital emergency outpatient visits and admissions in the 38 39 greater Athens, Greece area. Environ. Res. 69: 31-36.

1	Park, JH.; Spengler, J. D.; Yoon, DW.; Dumyahn, T.; Lee, K.; Ozkaynak, H. (1998)
2	Measurement of air exchange rate of stationary vehicles and estimation of in-vehicle
3	exposure. J. Exposure Anal. Environ. Epidemiol. 8: 65-78.
4 5	Park, H.; Lee, B.; Ha, EH.; Lee, JT.; Kim, H.; Hong, YC. (2002) Association of air pollution with school absenteeism due to illness. Arch. Pediatr. Adolesc. Med. 156: 1235-1239.
6	Park, J. W.; Lim, Y. H.; Kyung, S. Y.; An, C. H.; Lee, S. P.; Jeong, S. H.; Ju, SY. (2005a)
7	Effects of ambient particulate matter on peak expiratory flow rates and respiratory
8	symptoms of asthmatics during Asian dust periods in Korea. Respirology 10: 470-476.
9	Park, S. K.; O'Neill, M. S.; Vokonas, P. S.; Sparrow, D.; Schwartz, J. (2005b) Effects of air
10	pollution on heart rate variability: the VA normative aging study. Environ. Health
11	Perspect. 113: 304-309.
12 13	Parrish, D. D.; Fehsenfeld, F. C. (2000) Methods for gas-phase measurements of ozone, ozone precursors and aerosol precursors. Atmos. Environ. 34: 1921-1957.
14	Pathmanathan, S.; Krishna, M. T.; Blomberg, A.; Helleday, R.; Kelly, F. J.; Sandström, T.;
15	Holgate, S. T.; Wilson, S. J.; Frew, A. J. (2003) Repeated daily exposure to 2 ppm
16	nitrogen dioxide upregulates the expression of IL-5, IL-10, IL-13, and ICAM-1 in the
17	bronchial epithelium of healthy human airways. Occup. Environ. Med. 60: 892-896.
18	Pattemore, P. K.; Asher, M. I.; Harrison, A. C.; Mitchell, E. A.; Rea, H. H.; Stewart, A. W.
19	(1990) The interrelationship among bronchial hyperresponsiveness, the diagnosis of
20	asthma, and asthma symptoms. Am. Rev. Respir. Dis. 142: 549-554.
21	Peacock, J. L.; Symonds, P.; Jackson, P.; Bremner, S. A.; Scarlett, J. F.; Strachan, D. P.;
22	Anderson, H. R. (2003) Acute effects of winter air pollution on respiratory function in
23	schoolchildren in southern England. Occup. Environ. Med. 60: 82-89.
24 25 26	Peel, J. L.; Tolbert, P. E.; Klein, M.; Metzger, K. B.; Flanders, W. D.; Knox, T.; Mulholland, J. A.; Ryan, P. B.; Frumkin, H. (2005) Ambient air pollution and respiratory emergency department visits. Epidemiology 16: 164-174.
27	Peel, J. L.; Metzger, K. B.; Klein, M.; Flanders, W. D.; Mulholland, J. A.; Tolbert, P. E. (2006)
28	Ambient air pollution and cardiovascular emergency department visits in potentially
29	sensitive groups. Am. J. Epidemiol. 165: 625-633.
30	Pekkanen, J.; Brunner, E. J.; Anderson, H. R.; Tiittanen, P.; Atkinson, R. W. (2000) Daily
31	concentrations of air pollution and plasma fibrinogen in London. Occup. Environ. Med.
32	57: 818-822.
33 34 35 36 37 38	 Pekkanen, J.; Peters, A.; Hoek, G.; Tiittanen, P.; Brunekreef, B.; de Hartog, J.; Heinrich, J.; Ibald-Mulli, A.; Kreyling, W. G.; Lanki, T.; Timonen, K. L.; Vanninen, E. (2002) Particulate air pollution and risk of ST-segment depression during repeated submaximal exercise tests among subjects with coronary heart disease: the exposure and risk assessment for fine and ultrafine particles in ambient air (ULTRA) study. Circulation 106: 933-938.
39	Peng. R. D.; Dominici, F.; Louis, T. A. (2006) Model choice in time series studies of air

40 pollution and mortality. J. R. Stat. Soc. Ser. A 169: 179-203.

1	Pereira, L. A. A.; Loomis, D.; Conceição, G. M. S.; Braga, A. L. F.; Arcas, R. M.; Kishi, H. S.;
2	Singer, J. M.; Böhm, G. M.; Saldiva, P. H. N. (1998) Association between air pollution
3	and intrauterine mortality in São Paulo, Brazil. Environ. Health Perspect. 106: 325-329.
4	Peters, J. M.; Avol, E.; Navidi, W.; London, S. J.; Gauderman, W. J.; Lurmann, F.; Linn, W. S.;
5	Margolis, H.; Rappaport, E.; Gong, H., Jr.; Thomas, D. C. (1999) A study of twelve
6	southern California communities with differing levels and types of air pollution. I.
7	Prevalence of respiratory morbidity. Am. J. Respir. Crit. Care Med. 159: 760-767.
8	Peters, A.; Liu, E.; Verrier, R. L.; Schwartz, J.; Gold, D. R.; Mittleman, M.; Baliff, J.; Oh, J. A.;
9	Allen, G.; Monahan, K.; Dockery, D. W. (2000) Air pollution and incidence of cardiac
10	arrhythmia. Epidemiology 11: 11-17.
11 12 13	Peters, A.; Von Klot, S.; Heier, M.; Trentinaglia, I.; Hormann, A.; Wichmann, H. E.; Lowel, H. (2004) Exposure to traffic and the onset of myocardial infarction. N. Engl. J. Med. 351: 1721-1730.
14	Pilotto, L. S.; Douglas, R. M.; Attewell, R. G.; Wilson, S. R. (1997a) Respiratory effects
15	associated with indoor nitrogen dioxide exposure in children. Int. J. Epidemiol. 26: 788-
16	796.
17 18	Pilotto, L. S.; Douglas, R. M.; Samet, J. M. (1997b) Nitrogen dioxide, gas heating and respiratory illness. Med. J. Aust. 167: 295-296.
19	Pilotto, L. S.; Nitschke, M.; Smith, B. J.; Pisaniello, D.; Ruffin, R. E.; McElroy, H. J.; Martin, J.;
20	Hiller, J. E. (2004) Randomized controlled trial of unflued gas heater replacement on
21	respiratory health of asthmatic schoolchildren. Int. J. Epidemiol. 33: 208-214.
22 23	Pino, P.; Walter, T.; Oyarzun, M.; Villegas, R.; Romieu, I. (2004) Fine particulate matter and wheezing illnesses in the first year of life. Epidemiology 15: 702-708.
24 25	Pinto, J. P.; Lefohn, A. S.; Shadwick, D. S. (2004) Spatial variability of PM _{2.5} in urban areas in the United States. J. Air Waste Manage. Assoc. 54: 440-449.
26	Plaisance, H.; Piechocki-Minguy, A.; Garcia-Fouque, S.; Galloo, J. C. (2004) Influences of
27	meteorological factors on the NO ₂ measurements by passive diffusion tube. Atmos.
28	Environ. 38: 573-580.
29	Plunkett, L. M.; Turnbull, D.; Rodricks, J. V. (1992) Differences between adults and children
30	affecting exposure assessment. In: Guzelian, P. S.; Henry, D. J.; Olin, S. S., eds.
31	Similarities and differences between children and adults: implications for risk
32	assessment. Washington, DC: ILSI Press, pp. 79-96.
33	Poloniecki, J. D.; Atkinson, R. W.; Ponce de Leon, A.; Anderson, H. R. (1997) Daily time series
34	for cardiovascular hospital admissions and previous day's air pollution in London, UK.
35	Occup. Environ. Med. 54: 535-540.
36 37 38 39 40	 Ponce de Leon, A.; Anderson, H. R.; Bland, J. M.; Strachan, D. P.; Bower, J. (1996) Effects of air pollution on daily hospital admissions for respiratory disease in London between 1987-88 and 1991-92. In: St Leger, S., ed. The APHEA project. Short term effects of air pollution on health: a European approach using epidemiological time series data. J. Epidemiol. Community Health 50(suppl. 1): S63-S70.

1 2	Pönkä, A.; Virtanen, M. (1994) Chronic bronchitis, emphysema, and low-level air pollution in Helsinki, 1987-1989. Environ. Res. 65: 207-217.
3 4 5 6	 Pönkä, A.; Virtanen, M. (1996) Asthma and ambient air pollution in Helsinki. In: St Leger, S., ed. The APHEA project. Short term effects of air pollution on health: a European approach using epidemiological time series data. J. Epidemiol. Community Health 50(suppl. 1): S59-S62.
7 8 9	Ponsonby, AL.; Glasgow, N.; Gatenby, P.; Mullins, R.; McDonald, T.; Hurwitz, M.; Pradith, B.; Attewell, R. (2001) The relationship between low level nitrogen dioxide exposure and child lung function after cold air challenge. Clin. Exp. Allergy 31: 1205-1212.
10 11 12	Pope, C. A., III; Thun, M. J.; Namboodiri, M. M.; Dockery, D. W.; Evans, J. S.; Speizer, F. E.; Heath, C. W., Jr. (1995) Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am. J. Respir. Crit. Care Med. 151: 669-674.
13 14 15	Pope, C. A., III; Burnett, R. T.; Thun, M. J.; Calle, E. E.; Krewski, D.; Ito, K.; Thurston, G. D. (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA J. Am. Med. Assoc. 287: 1132-1141.
16 17	Port, C. D.; Ketels, K. V.; Coffin, D. L.; Kane, P. (1977) A comparative study of experimental and spontaneous emphysema. J. Toxicol. Environ. Health 2: 589-604.
18 19 20	Posin, C.; Clark, K.; Jones, M. P.; Patterson, J. V.; Buckley, R. D.; Hackney, J. D. (1978) Nitrogen dioxide inhalation and human blood biochemistry. Arch. Environ. Health 33: 318-324.
21 22	Postlethwait, E. M.; Bidani, A. (1989) Pulmonary disposition of inhaled NO ₂ -nitrogen in isolated rat lungs. Toxicol. Appl. Pharmacol. 98: 303-312.
23 24	Postlethwait, E. M.; Bidani, A. (1990) Reactive uptake governs the pulmonary air space removal of inhaled nitrogen dioxide. J. Appl. Physiol. 68: 594-603.
25 26	Postlethwait, E. M.; Bidani, A. (1994) Mechanisms of pulmonary NO ₂ absorption. Toxicology 89: 217-237.
27 28	Postlethwait, E. M.; Mustafa, M. G. (1981) Fate of inhaled nitrogen dioxide in isolated perfused rat lung. J. Toxicol. Environ. Health 7: 861-872.
29 30	Postlethwait, E. M.; Mustafa, M. G. (1989) Effect of altered dose rate on NO ₂ uptake and transformation in isolated lungs. J. Toxicol. Environ. Health 26: 497-507.
31 32	Postlethwait, E. M.; Langford, S. D.; Bidani, A. (1991) Transfer of NO ₂ through pulmonary epithelial lining fluid. Toxicol. Appl. Pharmacol. 109: 464-471.
33 34	Postlethwait, E. M.; Langford, S. D.; Bidani, A. (1992) Kinetics of NO ₂ air space absorption in isolated rat lungs. J. Appl. Physiol. 73: 1939-1945.
35 36	Postlethwait, E. M.; Langford, S. D.; Jacobson, L. M.; Bidani, A. (1995) NO ₂ reactive absorption substrates in rat pulmonary surface lining fluids. Free Radical Biol. Med. 19: 553-563.
37 38 39 40	Poynter, M. E.; Persinger, R. L.; Irvin, C. G.; Butnor, K. J.; Van Hirtum, H.; Blay, W.; Heintz, N. H.; Robbins, J.; Hemenway, D.; Taatjes, D. J.; Janssen-Heininger, Y. (2006) Nitrogen dioxide enhances allergic airway inflammation and hyperresponsiveness in the mouse. Am. J. Physiol. 290: L144-L152.

1 2 3	Prescott, G. J.; Cohen, G. R.; Elton, R. A.; Fowkes, F. G. R.; Agius, R. M. (1998) Urban air pollution and cardiopulmonary ill health: a 14.5 year time series study. Occup. Environ. Med. 55: 697-704.
4	Proust, B.; Lacroix, G.; Robidel, F.; Marliere, M.; Lecomte, A.; Vargaftig, B. B. (2002)
5	Interference of a short-term exposure to nitrogen dioxide with allergic airways responses
6	to allergenic challenges in BALB/c mice. Mediators Inflammation 11: 251-260.
7	Raaschou-Nielsen, O.; Skov, H.; Lohse, C.; Thomsen, B. L.; Olsen, J. H. (1997) Front-door
8	concentrations and personal exposures of Danish children to nitrogen dioxide. Environ.
9	Health Perspect. 105: 964-970.
10	Rajini, P.; Gelzleichter, T. R.; Last, J. A.; Witschi, H. (1993) Alveolar and airway cell kinetics in
11	the lungs of rats exposed to nitrogen dioxide, ozone, and a combination of the two gases.
12	Toxicol. Appl. Pharmacol. 121: 186-192.
13	Ramirez-Aguilar, M.; Cicero-Fernandez, P.; Winer, A. M.; Romieu, I.; Meneses-Gonzales, F.;
14	Hernandez-Avila, M. (2002) Measurements of personal exposure to nitrogen dioxide in
15	four Mexican cities in 1996. J. Air Waste Manage. Assoc. 52: 50-57.
16 17	Ramsay, T. O.; Burnett, R. T.; Krewski, D. (2003) The effect of concurvity in generalized additive models linking mortality to ambient particulate matter. Epidemiology 14: 18-23.
18	Ranzi, A.; Gambini, M.; Spattini, A.; Galassi, C.; Sesti, D.; Bedeschi, M.; Messori, A.; Baroni,
19	A.; Cavagni, G.; Lauriola, P. (2004) Air pollution and respiratory status in asthmatic
20	children: hints for a locally based preventive strategy. AIRE study. Eur. J. Epidemiol. 19:
21	567-576.
22	Rasmussen, T. R.; Kjærgaard, S. K.; Tarp, U.; Pedersen, O. F. (1992) Delayed effects of NO ₂
23	exposure on alveolar permeability and glutathione peroxidase in healthy humans. Am.
24	Rev. Respir. Dis. 146: 654-659.
25 26	Rasmussen, T. R.; Brauer, M.; Kjærgaard, S. (1995) Effects of nitrous acid exposure on human mucous membranes. Am. J. Respir. Crit. Care Med. 151: 1504-1511.
27 28	Raw, G. J.; Coward, S. K. D.; Brown, V. M.; Crump, D. R. (2004) Exposure to air pollutants in English homes. J. Exposure Anal. Environ. Epidemiol. 14(suppl. 1): S85-S94.
29	Rehn, T.; Svartengren, M.; Philipson, K.; Camner, P. (1982) Mukociliaer transport i lunga och
30	naesa samt luftvaegsmotstand efter exponering foer kvaevedioxid [Mucociliary transport
31	in the lung and nose after exposure to nitrogen dioxide]. Vallingby, Sweden: Swedish
32	State Power Board; project KHM technical report no. 40.
33 34 35 36	 Restrepo, C.; Zimmerman, R.; Thurston, G.; Clemente, J.; Gorczynski, J.; Zhong, M.; Blaustein, M.; Chen, L. C. (2004) A comparison of ground-level air quality data with New York State Department of Environmental Conservation monitoring stations data in South Bronx, New York. Atmos. Environ. 38: 5295-5304.
37	Rich, D. Q.; Schwartz, J.; Mittleman, M. A.; Link, M.; Luttmann-Gibson, H.; Catalano, P. J.;
38	Speizer, F. E.; Dockery, D. W. (2005) Association of short-term ambient air pollution
39	concentrations and ventricular arrhythmias. Am. J. Epidemiol. 161: 1123-1132.
40 41	Rich, D. Q.; Kim, M. H.; Turner, J. R.; Mittleman, M. A.; Schwartz, J.; Catalano, P. J.; Dockery, D. W. (2006a) Association of ventricular arrhythmias detected by implantable

1 2	cardioverter defibrillator and ambient air pollutants in the St Louis, Missouri metropolitan area. Occup. Environ. Med. 63: 591-596.
3 4 5 6	Rich, D. Q.; Mittleman, M. A.; Link, M. S.; Schwartz, J.; Luttmann-Gibson, H.; Catalano, P. J.; Speizer, F. E.; Gold, D. R.; Dockery, D. W. (2006b) Increased risk of paroxysmal atrial fibrillation episodes associated with acute increases in ambient air pollution. Environ. Health Perspect. 114: 120-123.
7 8 9	Richters, A.; Damji, K. S. (1988) Changes in T-lymphocyte subpopulations and natural killer cells following exposure to ambient levels of nitrogen dioxide. J. Toxicol. Environ. Health 25: 247-256.
10 11 12	Richters, A.; Damji, K. S. (1990) The relationship between inhalation of nitrogen dioxide, the immune system, and progression of a spontaneously occurring lymphoma in AKR mice.J. Environ. Pathol. Toxicol. Oncol. 10: 225-230.
13 14	Richters, A.; Kuraitis, K. (1981) Inhalation of NO ₂ and blood borne cancer cell spread to the lungs. Arch. Environ. Health 36: 36-39.
15 16	Richters, A.; Kuraitis, K. (1983) Air pollutants and the facilitation of cancer metastasis. Environ. Health Perspect. 52: 165-168.
17 18	Richters, A.; Richters, V. (1983) A new relationship between air pollutant inhalation and cancer. Arch. Environ. Health 38: 69-75.
19 20	Richters, A.; Richters, V.; Alley, W. P. (1985) The mortality rate from lung metastases in animals inhaling nitrogen dioxide (NO ₂). J. Surg. Oncol. 28: 63-66.
21 22 23	Riediker, M.; Williams, R.; Devlin, R.; Griggs, T.; Bromberg, P. (2003) Exposure to particulate matter, volatile organic compounds, and other air pollutants inside patrol cars. Environ. Sci. Technol. 37: 2084-2093.
24 25 26 27 28	 Riesenfeld, E.; Chalupa, D.; Gibb, F. R.; Oberdörster, G.; Gelein, R.; Morrow, P. E.; Utell, M. J.; Frampton, M. W. (2000) Ultrafine particle concentrations in a hospital. In: Phalen, R. F., ed. Inhalation toxicology: proceedings of the third colloquium on particulate air pollution and human health (second special issue); June, 1999; Durham, NC. Inhalation Toxicol. 12(suppl. 2): 83-94.
29 30 31	Rigas, M. L.; Ben-Jebria, A.; Ultman, J. S. (1997) Longitudinal distribution of ozone absorption in the lung: effects of nitrogen dioxide, sulfur dioxide, and ozone exposures. Arch. Environ. Health 52: 173-178.
32 33 34	Ristovski, Z. D.; Tass, I.; Morawska, L.; Saxby, W. (2000) Investigation into the emission of fine particles, formaldehyde, oxides of nitrogen and carbon monoxide from natural gas heaters. J. Aerosol. Sci. 31(suppl. 1): S490-S491.
35 36	Ritz, B.; Yu, F.; Chapa, G.; Fruin, S. (2000) Effect of air pollution on preterm birth among children born in Southern California between 1989 and 1993. Epidemiology 11: 502-511.
37 38	Roberts, S. (2004) Biologically plausible particulate air pollution mortality concentration- response functions. Environ. Health Perspect. 112: 309-313.

- Roberts, S. (2006) A new model for investigating the mortality effects of multiple air pollutants
 in air pollution mortality time-series studies. J. Toxicol. Environ. Health Part A 69: 417 435.
- Robison, T. W.; Murphy, J. K.; Beyer, L. L.; Richters, A.; Forman, H. J. (1993) Depression of
 stimulated arachidonate metabolism and superoxide production in rat alveolar
 macrophages following in vivo exposure to 0.5 ppm NO2. J. Toxicol. Environ. Health 38:
 273-292.
- Rodgers, M. O.; Davis, D. D. (1989) A UV-photofragmentation/laser-induced fluorescence
 sensor for the atmospheric detection of HONO. Environ. Sci. Technol. 23: 1106-1112.
- Roemer, W.; Hoek, G.; Brunekreef, B.; Haluszka, J.; Kalandidi, A.; Pekkanen, J. (1998) Daily
 variations in air pollution and respiratory health in a multicentre study: the PEACE
 project. Eur. Respir. J. 12: 1354-1361.
- Roemer, W.; Clench-Aas, J.; Englert, N.; Hoek, G.; Katsouyanni, K.; Pekkanen, J.; Brunekreef,
 B. (1999) Inhomogeneity in response to air pollution in European children (PEACE
 project). Occup. Environ. Med. 56: 86-92.
- Roger, L. J.; Horstman, D. H.; McDonnell, W.; Kehrl, H.; Ives, P. J.; Seal, E.; Chapman, R.;
 Massaro, E. (1990) Pulmonary function, airway responsiveness, and respiratory
 symptoms in asthmatics following exercise in NO₂. Toxicol. Ind. Health 6: 155-171.
- Rogge, W. F.; Hildemann, L. M.; Mazurek, M. A.; Cass, G. R.; Simoneit, B. R. T. (1993)
 Sources of fine organic aerosol. 5. Natural gas home appliances. Environ. Sci. Technol.
 27: 2736-2744.
- Rojas-Bracho, L.; Suh, H. H.; Oyola, P.; Koutrakis, P. (2002) Measurements of children's
 exposures to particles and nitrogen dioxide in Santiago, Chile. Sci. Total Environ. 287:
 249-264.
- Rombout, P. J. A.; Dormans, J. A. M. A.; Marra, M.; Van Esch, G. J. (1986) Influence of
 exposure regimen on nitrogen dioxide-induced morphological changes in the rat lung.
 Environ. Res. 41: 466-480.
- Romieu, I.; Sienra-Monge, J. J.; Ramírez-Aguilar, M.; Moreno-Macías, H.; Reyes-Ruiz, N. I.;
 Estela del Rio-Navarro, B.; Hernández-Avila, M.; London, S. J. (2004) Genetic
 polymorphism of *GSTM1* and antioxidant supplementation influence lung function in
 relation to ozone exposure in asthmatic children in Mexico City. Thorax 59: 8-10.
- Romieu, I.; Ramírez-Aguilar, M.; Sienra-Monge, J. J.; Moreno-Macías, H.; Del Rio-Navarro, B.
 E.; David, G.; Marzec, J.; Hernández-Avila, M.; London, S. (2006) *GSTM1* and *GSTP1*and respiratory health in asthmatic children exposed to ozone. Eur. Respir. J. 28: 953959.
- Rondeau, V.; Berhane, K.; Thomas, D. C. (2005) A three-level model for binary time-series data:
 the effects of air pollution on school absences in the southern California Children's
 Health Study. Stat. Med. 24: 1103-1115.
- Roorda-Knape, M. C.; Janssen, N. A. H.; De Hartog, J. J.; Van Vliet, P. H. N.; Harssema, H.;
 Brunekreef, B. (1998) Air pollution from traffic in city districts near major motorways.
 Atmos. Environ. 32: 1921-1930.

1 2 3	Rose, R. M.; Pinkston, P.; Skornik, W. A. (1989) Altered susceptibility to viral respiratory infection during short-term exposure to nitrogen dioxide. Cambridge, MA: Health Effects Institute; research report no. 24. Available from: NTIS, Springfield, VA; PB90-111139.
4 5 6	Rotko, T.; Kousa, A.; Alm, S.; Jantunen, M. (2001) Exposures to nitrogen dioxide in <i>EXPOLIS</i> -Helsinki: microenvironment, behavioral and sociodemographic factors. J. Exposure Anal. Environ. Epidemiol. 11: 216-223.
7 8 9	Roy-Burman, P.; Pattengale, P. K.; Sherwin, R. P. (1982) Effect of low levels of nitrogen dioxide inhalation on endogenous retrovirus gene expression. Exp. Mol. Pathol. 36: 144- 155.
10 11 12	 Rubenchik, B. L.; Glavin, A. A.; Galenko, P. M.; Kilkichko, A. A.; Olenick, I. O.; Artemov, K. V. (1995) Gaseous nitrogen dioxide increases the endogenous synthesis of carcinogenic <i>N</i>-nitrosodimethylamine in animals. J. Environ. Pathol. Toxicol. Oncol. 14: 111-115.
13 14 15	Rubenstein, I.; Bigby, B. G.; Reiss, T. F.; Boushey, H. A., Jr. (1990) Short-term exposure to 0.3 ppm nitrogen dioxide does not potentiate airway responsiveness to sulfur dioxide in asthmatic subjects. Am. Rev. Respir. Dis. 141: 381-385.
16 17 18	Rubenstein, I.; Reiss, T. F.; Bigby, B. G.; Stites, D. P.; Boushey, H. A., Jr. (1991) Effects of 0.60 PPM nitrogen dioxide on circulating and bronchoalveolar lavage lymphocyte phenotypes in healthy subjects. Environ. Res. 55: 18-30.
19 20 21 22	Rudell, B.; Blomberg, A.; Helleday, R.; Ledin, MC.; Lundbäck, B.; Stjernberg, N.; Hörstedt, P.; Sandström, T. (1999) Bronchoalveolar inflammation after exposure to diesel exhaust: comparison between unfiltered and particle trap filtered exhaust. Occup. Environ. Med. 56: 527-534.
23 24 25	Ruidavets, JB.; Cassadou, S.; Cournot, M.; Bataille, V.; Meybeck, M.; Ferrières, J. (2005) Increased resting heart rate with pollutants in a population based study. J. Epidemiol. Community Health 59: 685-693.
26 27	Rusznak, C.; Devalia, J. L.; Davies, R. J. (1996) Airway response of asthmatic subjects to inhaled allergen after exposure to pollutants. Thorax 51: 1105-1108.
28 29 30 31	Sabin, L. D.; Kozawa, K.; Behrentz, E.; Winer, A. M.; Fitz, D. R.; Pankratz, D. V.; Colome, S. D.; Fruin, S. A. (2005) Analysis of real-time variables affecting children's exposure to diesel-related pollutants during school bus commutes in Los Angeles. Atmos. Environ. 39: 5243-5254.
32 33 34	Saez, M.; Tobías, A.; Muñoz, P.; Campbell, M. J. (1999) A GEE moving average analysis of the relationship between air pollution and mortality for asthma in Barcelona, Spain. Stat. Med. 18: 2077-2086.
35 36 37 38 39	Saez, M.; Ballester, F.; Barceló, M. A.; Pérez-Hoyos, S.; Bellido, J.; Tenías, J. M.; Ocaña, R.; Figueiras, A.; Arribas, F.; Aragonés, N.; Tobías, A.; Cirera, L.; Cañada, A.; on behalf of the EMECAM Group. (2002) A combined analysis of the short-term effects of photochemical air pollutants on mortality within the EMECAM project. Environ. Health Perspect. 110: 221-228.
40 41	Sagai, M.; Ichinose, T.; Kubota, K. (1984) Studies on the biochemical effects of nitrogen dioxide. IV. Relation between the change of lipid peroxidation and the antioxidative

1 protective system in rat lungs upon life span exposure to low levels of NO₂. Toxicol. 2 Appl. Pharmacol. 73: 444-456. 3 Sagai, M.; Arakawa, K.; Ichinose, T.; Shimojo, N. (1987) Biochemical effects on combined 4 gases of nitrogen dioxide and ozone. I. Species differences of lipid peroxides and 5 phospholipids in lungs. Toxicology 46: 251-265. 6 Salam, M. T.; Millstein, J.; Li, Y.-F.; Lurmann, F. W.; Margolis, H. G.; Gilliland, F. D. (2005) 7 Birth outcomes and prenatal exposure to ozone, carbon monoxide, and particulate matter: 8 results from the Children's Health Study. Environ. Health Perspect. 113: 1638-1644. 9 Samet, J. M.; Bell, M. L. (2004) Commentary: nitrogen dioxide and asthma redux. Int. J. 10 Epidemiol. 33: 215-216. Samet, J. M.; Utell, M. J. (1990) The risk of nitrogen dioxide: what have we learned from 11 12 epidemiological and clinical studies? Toxicol. Ind. Health 6: 247-262. 13 Samet, J. M.; Lambert, W. E.; Skipper, B. J.; Cushing, A. H.; McLaren, L. C.; Schwab, M.; 14 Spengler, J. D. (1992) A study of respiratory illnesses in infants and nitrogen dioxide 15 exposure. Arch. Environ. Health 47: 57-63. 16 Samet, J. M.; Lambert, W. E.; Skipper, B. J.; Cushing, A. H.; Hunt, W. C.; Young, S. A.; 17 McLaren, L. C.; Schwab, M.; Spengler, J. D. (1993) Health outcomes. In: Nitrogen 18 dioxide and respiratory illness in children, part I. Cambridge, MA: Health Effects 19 Institute; pp. 1-32; Research Report no. 58. 20 Samet, J. M.; Lambert, W. E.; Skipper, B. J.; Cushing, A. H.; Hunt, W. C.; Young, S. A.; 21 McLaren, L. C.; Schwab, M.; Spengler, J. D. (1993) Nitrogen dioxide and respiratory 22 illnesses in infants. Am. Rev. Respir. Dis. 148: 1258-1265. 23 Samet, J. M.; Zeger, S. L.; Dominici, F.; Curriero, F.; Coursac, I.; Dockery, D. W.; Schwartz, J.; Zanobetti, A. (2000) The national morbidity, mortality, and air pollution study. Part II: 24 25 morbidity, mortality, and air pollution in the United States. Cambridge, MA: Health 26 Effects Institute; research report no. 94, part II. 27 Samoli, E.; Analitis, A.; Touloumi, G.; Schwartz, J.; Anderson, H. R.; Sunyer, J.; Bisanti, L.; 28 Zmirou, D.; Vonk, J. M.; Pekkanen, J.; Goodman, P.; Paldy, A.; Schindler, C.; 29 Katsouyanni, K. (2005) Estimating the exposure-response relationships between 30 particulate matter and mortality within the APHEA multicity project. Environ. Health 31 Perspect. 113: 88-95. 32 Samoli, E.; Aga, E.; Touloumi, G.; Nisiotis, K.; Forsberg, B.; Lefranc, A.; Pekkanen, J.; Wojtyniak, B.; Schindler, C.; Niciu, E.; Brunstein, R.; Dodič Fikfak, M.; Schwartz, J.; 33 34 Katsouyanni, K. (2006) Short-term effects of nitrogen dioxide on mortality: an analysis 35 within the APHEA project. Eur. Respir. J. 27: 1129-1137. 36 Sandström, T.; Andersson, M. C.; Kolmodin-Hedman, B.; Stjernberg, N.; Angström, T. (1990) Bronchoalveolar mastocytosis and lymphocytosis after nitrogen dioxide exposure in man: 37 38 a time-kinetic study. Eur. Respir. J. 3: 138-143. Sandström, T.; Stjernberg, N.; Eklund, A.; Ledin, M.-C.; Bjermer, L.; Kolmodin-Hedman, B.; 39 40 Lindström, K.; Rosenhall, L.; Angström, T. (1991) Inflammatory cell response in

1 bronchoalveolar lavage fluid after nitrogen dioxide exposure of healthy subjects: a dose-2 response study. Eur. Respir. J. 4: 332-339. 3 Sandström, T.; Helleday, R.; Bjermer, L.; Stjernberg, N. (1992a) Effects of repeated exposure to 4 ppm nitrogen dioxide on bronchoalveolar lymphocyte subsets and macrophages in 4 5 healthy men. Eur. Respir. J. 5: 1092-1096. 6 Sandström, T.; Ledin, M.-C.; Thomasson, L.; Helleday, R.; Stjernberg, N. (1992b) Reductions in 7 lymphocyte subpopulations after repeated exposure to 1.5 ppm nitrogen dioxide. Br. J. 8 Ind. Med. 49: 850-854. 9 Santiago, L. Y.; Hann, M. C.; Ben-Jebria, A.; Ultman, J. S. (2001) Ozone adsorption in the 10 human nose during unidirectional airflow. J. Appl. Physiol. 91: 725-732. 11 Sarnat, J. A.; Schwartz, J.; Catalano, P. J.; Suh, H. H. (2001) Gaseous pollutants in particulate 12 matter epidemiology: confounders or surrogates? Environ. Health Perspect. 109: 1053-13 1061. 14 Sarnat, J. A.; Brown, K. W.; Schwartz, J.; Coull, B. A.; Koutrakis, P. (2005) Ambient gas 15 concentrations and personal particulate matter exposures: implications for studying the 16 health effects of particles. Epidemiology 16: 385-395. 17 Sarnat, S. E.; Suh, H. H.; Coull, B. A.; Schwartz, J.; Stone, P. H.; Gold, D. R. (2006) Ambient 18 particulate air pollution and cardiac arrhythmia in a panel of older adults in Steubenville, 19 Ohio. Occup. Environ. Med. 63: 700-706. 20 Sarwar, G.; Corsi, R.; Allen, D.; Weschler, C. (2002a) Production and levels of selected indoor 21 radicals: a modeling assessment. In: Proceedings of 9th International Conference on 22 Indoor Air Quality and Climate, Indoor Air 2002; June-July; Monterey, CA. 23 Sarwar, G.; Corsi, R.; Kumura, Y.; Allen, D.; Weschler, C. J. (2002b) Hydroxyl radicals in indoor environments. Atmos. Environ. 36: 3973-3988. 24 25 Sasaki, Y.; Endo, R.; Koido, Y. (1980) Direct mutagens in the gaseous component of automobile 26 exhaust detected with Bacillus subtilis spores. Mutat. Res. 79: 181-184. 27 Scarlett, J. F.; Abbott, K. J.; Peacock, J. L.; Strachan, D. P.; Anderson, H. R. (1996) Acute 28 effects of summer air pollution on respiratory function in primary school children in 29 southern England. Thorax 51: 1109-1114. 30 Schairer, L. A.; Van't Hof, J.; Hayes, C. G.; Burton, R. M.; de Serres, F. J. (1979) Measurement 31 of biological activity of ambient air mixtures using a mobile laboratory for in situ 32 exposures: preliminary results from the Tradescantia plant test system. Environ. Sci. Res. 419-440. 33 34 Schildcrout, J. S.; Sheppard, L.; Lumley, T.; Slaughter, J. C.; Koenig, J. Q.; Shapiro, G. G. 35 (2006) Ambient air pollution and asthma exacerbations in children: an eight-city analysis. 36 Am. J. Epidemiol. 164: 505-517. 37 Schindler, C.; Ackermann-Liebrich, U.; Leuenberger, P.; Monn, C.; Rapp, R.; Bolognini, G.; 38 Bongard, J.-P.; Brändli, O.; Domenighetti, G.; Karrer, W.; Keller, R.; Medici, T. G.; 39 Perruchoud, A. P.; Schöni, M. H.; Tschopp, J.-M.; Villiger, B.; Zellweger, J.-P.; 40 SAPALDIA Team. (1998) Associations between lung function and estimated average 41 exposure to NO₂ in eight areas of Switzerland. Epidemiology 9: 405-411.

Schindler, C.; Künzli, N.; Bongard, JP.; Leuenberger, P.; Karrer, W.; Rapp, R.; Monn, C.; Ackermann-Liebrich, U.; Swiss Study on Air Pollution and Lung Diseases in Adults Investigators. (2001) Short-term variation in air pollution and in average lung function among never-smokers. Am. J. Respir. Crit. Care Med. 163: 356-361.
Schlesinger, R. B. (1987a) Effects of intermittent inhalation exposures to mixed atmospheres of NO ₂ and H ₂ SO ₄ on rabbit alveolar macrophages. J. Toxicol. Environ. Health 22: 301-312.
Schlesinger, R. B. (1987b) Intermittent inhalation of nitrogen dioxide: effects on rabbit alveolar macrophages. J. Toxicol. Environ. Health 21: 127-139.
Schlesinger, R. B. (2000) Properties of ambient PM responsible for human health effects: coherence between epidemiology and toxicology. In: Phalen, R. F., ed. Inhalation toxicology: proceedings of the third colloquium on particulate air pollution and human health (first special issue); June, 1999; Durham, NC. Inhalation Toxicol. 12(suppl. 1): 23- 25.
Schlesinger, R. B.; Gearhart, J. M. (1987) Intermittent exposures to mixed atmospheres of nitrogen dioxide and sulfuric acid: effect on particle clearance from the respiratory region of rabbit lungs. Toxicology 44: 309-319.
Schlesinger, R. B.; Driscoll, K. E.; Vollmuth, T. A. (1987) Effect of repeated exposures to nitrogen dioxide and sulfuric acid mist alone or in combination on mucociliary clearance from the lungs of rabbits. Environ. Res. 44: 294-301.
Schlesinger, R. B.; Driscoll, K. E.; Gunnison, A. F.; Zelikoff, J. T. (1990) Pulmonary arachidonic acid metabolism following acute exposures to ozone and nitrogen dioxide. J. Toxicol. Environ. Health 31: 275-290.
Schlesinger, R. B.; El-Fawal, H. A. N.; Zelikoff, J. T.; Gorczynski, J. E.; McGovern, T.; Nadziejko, C. E.; Chen, L. C. (1994) Pulmonary effects of repeated episodic exposures to nitric acid vapor alone and in combination with ozone. Inhalation Toxicol. 6: 21-41.
 Schouten, J. P.; Vonk, J. M.; de Graaf, A. (1996) Short term effects of air pollution on emergency hospital admissions for respiratory disease: results of the APHEA project in two major cities in The Netherlands, 1977-89. In: St Leger, S., ed. The APHEA project. Short term effects of air pollution on health: a European approach using epidemiological time series data. J. Epidemiol. Community Health 50(suppl. 1): S22-S29.
Schwartz, J. (1989) Lung function and chronic exposure to air pollution: a cross-sectional analysis of NHANES II. Environ. Res. 50: 309-321.
Schwartz, J. (1997) Air pollution and hospital admissions for cardiovascular disease in Tucson. Epidemiology 8: 371-377.
Schwartz, J. (2006) Comments on the paper by Peng, Dominici and Louis [(2006) Model choice in time series studies of air pollution and mortality. J. R. Stat. Soc. Ser. A 169: 179-203].J. R. Stat. Soc. Ser. A 169: 198-200.
Schwartz, J.; Zeger, S. (1990) Passive smoking, air pollution, and acute respiratory symptoms in a diary study of student nurses. Am. Rev. Respir. Dis. 141: 62-67.
Schwartz, J.; Spix, C.; Wichmann, H. E.; Malin, E. (1991) Air pollution and acute respiratory illness in five German communities. Environ. Res. 56: 1-14.

1 2 3 4	 Schwartz, J.; Dockery, D. W.; Neas, L. M.; Wypij, D.; Ware, J. H.; Spengler, J. D.; Koutrakis, P.; Speizer, F. E.; Ferris, B. G., Jr. (1994) Acute effects of summer air pollution on respiratory symptom reporting in children. Am. J. Respir. Crit. Care Med. 150: 1234-1242.
5 6 7	Schwartz, J.; Litonjua, A.; Suh, H.; Verrier, M.; Zanobetti, A.; Syring, M.; Nearing, B.; Verrier, R.; Stone, P.; MacCallum, G.; Speizer, F. E.; Gold, D. R. (2005) Traffic related pollution and heart rate variability in a panel of elderly subjects. Thorax 60: 455-461.
8 9	Seaton, A.; Dennekamp, M. (2003) Hypothesis: ill health associated with low concentrations of nitrogen dioxidean effect of ultrafine particles? Thorax 58: 1012-1015.
10 11 12	Ségala, C.; Fauroux, B.; Just, J.; Pascual, L.; Grimfeld, A.; Neukirch, F. (1998) Short-term effect of winter air pollution on respiratory health of asthmatic children in Paris. Eur. Respir. J. 11: 677-685.
13 14	Ségala, C.; Poizeau, D.; Neukirch, F.; Aubier, M.; Samson, J.; Gehanno, P. (2004) Air pollution, passive smoking, and respiratory symptoms in adults. Arch. Environ. Health 59: 669-676.
15 16	Seinfeld, J. H.; Pandis, S. N. (1998) Atmospheric chemistry and physics: from air pollution to climate change. New York, NY: John Wiley & Sons, Inc.
17 18 19	Sekharam, K. M.; Patel, J. M.; Block, E. R. (1991) Plasma membrane-specific phospholipase-A1 activation by nitrogen dioxide in pulmonary artery endothelial cells. Toxicol. Appl. Pharmacol. 107: 545-554.
20 21 22	Selgrade, M. K.; Mole, M. L.; Miller, F. J.; Hatch, G. E.; Gardner, D. E.; Hu, P. C. (1981) Effect of NO ₂ inhalation and vitamin C deficiency on protein and lipid accumulation in the lung. Environ. Res. 26: 422-437.
23 24 25	Seto, K.; Kon, M.; Kawakami, M.; Yagishita, S.; Sugita, K.; Shishido, M. (1975) [Influence of nitrogen dioxide inhalation on the formation of protein in the lung]. Igaku to Seibutsugaku 90: 103-106.
26 27 28	Shalamberidze, O. P.; Tsereteli, N. T. (1971) Effect of low concentrations of sulfur and nitrogen dioxides on the estrual cycle and reproductive functions of experimental animals. Hyg. Sanit. (USSR) 36: 178-182.
29 30	Sheppard, L. (2005) Acute air pollution effects: consequences of exposure distribution and measurements. J. Toxicol. Environ. Health Part A 68: 1127-1135.
31 32 33	Sheppard, L.; Slaughter, J. C.; Schildcrout, J.; Liu, LJ. S.; Lumley, T. (2005) Exposure and measurement contributions to estimates of acute air pollution effects. J. Exposure Anal. Environ. Epidemiol. 15: 366-376.
34 35 36	Sherwin, R. P.; Carlson, D. A. (1973) Protein content of lung lavage fluid of guinea pigs exposed to 0.4 ppm nitrogen dioxide: disc-gel electrophoresis for amount and types. Arch. Environ. Health 27: 90-93.
37 38	Sherwin, R. P.; Dibble, J.; Weiner, J. (1972) Alveolar wall cells of the guinea pig: increase in response to 2 ppm nitrogen dioxide. Arch. Environ. Health 24: 43-47.
39 40	Shima, M.; Adachi, M. (2000) Effect of outdoor and indoor nitrogen dioxide on respiratory symptoms in schoolchildren. Int. J. Epidemiol. 29: 862-870.

1	Shiraishi, F.; Bandow, H. (1985) The genetic effects of the photochemical reaction products of
2	propylene plus NO ₂ on cultured Chinese hamster cells exposed in vitro. J. Toxicol.
3	Environ. Health 15: 531-538.
4	Siegel, P. D.; Al-Humadi, N. H.; Nelson, E. R.; Lewis, D. M.; Hubbs, A. F. (1997) Adjuvant
5	effect of respiratory irritation on pulmonary allergic sensitization: time and site
6	dependency. Toxicol. Appl. Pharmacol. 144: 356-362.
7	Silkoff, P. E.; Zhang, L.; Dutton, S.; Langmack, E. L.; Vedal, S.; Murphy, J.; Make, B. (2005)
8	Winter air pollution and disease parameters in advanced chronic obstructive pulmonary
9	disease panels residing in Denver, Colorado. J. Allergy Clin. Immunol. 115: 337-344.
10	Simoni, M.; Carrozzi, L.; Baldacci, S.; Scognamiglio, A.; Di Pede, F.; Sapigni, T.; Viegi, G.
11	(2002) The Po River delta (north Italy) indoor epidemiological study: effects of pollutant
12	exposure on acute respiratory symptoms and respiratory function in adults. Arch.
13	Environ. Health 57: 130-136.
14	Simoni, M.; Scognamiglio, A.; Carrozzi, L.; Baldacci, S.; Angino, A.; Pistelli, F.; Di Pede, F.;
15	Viegi, G. (2004) Indoor exposures and acute respiratory effects in two general population
16	samples from a rural and an urban area in Italy. J. Exposure Anal. Environ. Epidemiol.
17	14(suppl. 1): S144-S152.
18	Simpson, R.; Williams, G.; Petroeschevsky, A.; Best, T.; Morgan, G.; Denison, L.; Hinwood, A.;
19	Neville, G. (2005a) The short-term effects of air pollution on hospital admissions in four
20	Australian cities. Aust. N. Z. J. Public Health 29: 213-221.
21	Simpson, R.; Williams, G.; Petroeschevsky, A.; Best, T.; Morgan, G.; Denison, L.; Hinwood, A.;
22	Neville, G.; Neller, A. (2005b) The short-term effects of air pollution on daily mortality
23	in four Australian cities. Aust. N. Z. J. Public Health 29: 205-212.
24 25	Sindhu, R. K.; Mautz, W. J.; Kikkawa, Y. (1998) Chronic exposure to ozone and nitric acid vapor results in increased levels of rat pulmonary putrescine. Arch. Toxicol. 72: 445-449.
26 27 28	Singer, B. C.; Hodgson, A. T.; Hotchi, T.; Kim, J. J. (2004) Passive measurement of nitrogen oxides to assess traffic-related pollutant exposure for the East Bay Children's Respiratory Health Study. Atmos. Environ. 38: 393-403.
29 30 31 32 33 34	 Singh, H. B.; Salas, L.; Herlth, D.; Kolyer, R.; Czech, E.; Avery, M.; Crawford, J. H.; Pierce, R. B.; Sachse, G. W.; Blake, D. R.; Cohen, R. C.; Bertram, T. H.; Perring, A.; Wooldridge, P. J.; Dibb, J.; Huey, G.; Hudman, R. C.; Turquety, S.; Emmons, L. K.; Flocke, F.; Tang, Y.; Carmichael, G. R.; Horowitz, L. W. (2007) Reactive nitrogen distribution and partitioning in the North American troposphere and lowermost stratosphere. J. Geophys. Res. [Atmos.] 112(D12S04): 10.1029/2006JD007664.
35 36	Slack, H. H.; Heumann, M. A. (1997) Use of unvented residential heating appliances—United States, 1988-1994. Morb. Mortal. Wkly. Rep. 46: 1221-1224.
37	Slade, R.; Highfill, J. W.; Hatch, G. E. (1989) Effects of depletion of ascorbic acid or nonprotein
38	sulfhydryls on the acute inhalation toxicity of nitrogen dioxide, ozone, and phosgene.
39	Inhalation Toxicol. 1: 261-271.

1 Smith, B. J.; Nitschke, M.; Pilotto, L. S.; Ruffin, R. E.; Pisaniello, D. L.; Wilson, K. J. (2000) 2 Health effects of daily indoor nitrogen dioxide exposure in people with asthma. Eur. 3 Respir. J. 16: 879-885. 4 Snyder, S. H.; Bredt, D. S. (1992) Biological roles of nitric oxide. Sci. Am. 266(5): 68-71, 74-77. 5 Solomon, C.; Christian, D. L.; Chen, L. L.; Welch, B. S.; Kleinman, M. T.; Dunham, E.; Erle, D. 6 J.; Balmes, J. R. (2000) Effect of serial-day exposure to nitrogen dioxide on airway and 7 blood leukocytes and lymphocyte subsets. Eur. Respir. J. 15: 922-928. 8 Son, B.; Yang, W.; Breysse, P.; Chung, T.; Lee, Y. (2004) Estimation of occupational and 9 nonoccupational nitrogen dioxide exposure for Korean taxi drivers using a 10 microenvironmental model. Environ. Res. 94: 291-296. 11 Sørensen, M.; Loft, S.; Andersen, H. V.; Raaschou-Nielsen, O.; Skovgaard, L. T.; Knudsen, L. 12 E.; Nielsen, I. V.; Hertel, O. (2005) Personal exposure to PM_{2.5}, black smoke and NO₂ in 13 Copenhagen: relationship to bedroom and outdoor concentrations covering seasonal 14 variation. J. Exposure Anal. Environ. Epidemiol. 15: 413-422. 15 Spannhake, E. W.; Reddy, S. P. M.; Jacoby, D. B.; Yu, X.-Y.; Saatian, B.; Tian, J. (2002) 16 Synergism between rhinovirus infection and oxidant pollutant exposure enhances airway 17 epithelial cell cytokine production. Environ. Health Perspect. 110: 665-670. 18 Spengler, J. D.; Brauer, M.; Koutrakis, P. (1990) Acid air and health. Environ. Sci. Technol. 24: 19 946-956. 20 Spengler, J.; Schwab, M.; Ryan, P. B.; Colome, S.; Wilson, A. L.; Billick, I.; Becker, E. (1994) 21 Personal exposure to nitrogen dioxide in the Los Angeles Basin. J. Air Waste Manage. 22 Assoc. 44: 39-47. 23 Spengler, J. D.; Lee, K.; Yanagisawa, Y.; Bischof, W.; Braathan, O.; Chung, S.; Coward, K.; 24 Gutschmidt, V.; Isidorov, V.; Jahng, D.; Jin, K.; Korenaga, T.; Maroni, M.; Ohkoda, Y.; 25 Pastuszka, J.; Patil, R. S.; Qing, X.; Raizenne, M.; Romieu, I.; Salonen, R.; Sega, K.; 26 Seifert, B.; Shah, S.; Torres, E.; Yoon, D.; Zhang, X. (1996) Impact of residential 27 nitrogen exposure on personal exposure: an international study. In: Indoor air '96: the 7th international conference on indoor air quality, volume I; July; Nagoya, Japan. Tokyo, 28 29 Japan: Institute of Public Health; pp. 931-936. 30 Spicer, C. W.; Coutant, R. W.; Ward, G. F.; Joseph, D. W.; Gaynor, A. J.; Billick, I. H. (1989) 31 Rates and mechanisms of NO₂ removal from indoor air by residential materials. Environ. 32 Int. 15: 643-654. 33 Spicer, C. W.; Kenny, D. V.; Ward, G. F.; Billick, I. H. (1993) Transformations, lifetimes, and 34 sources of NO₂, HONO, and HNO₃ in indoor environments. Air Waste 43: 1479-1485. 35 Steerenberg, P. A.; Nierkens, S.; Fischer, P. H.; Van Loveren, H.; Opperhuizen, A.; Vos, J. G.; 36 Van Amsterdam, J. G. (2001) Traffic-related air pollution affects peak expiratory flow, 37 exhaled nitric oxide, and inflammatory nasal markers. Arch. Environ. Health 56: 167-38 174. 39 Steerenberg, P. A.; Bischoff, E. W. M. A.; de Klerk, A.; Verlaan, A. P. J.; Jongbloets, L. M. N.; 40 Van Loveren, H.; Opperhuizen, A.; Zomer, G.; Heisterkamp, S. H.; Hady, M.; Spieksma, 41 F. T. M.; Fischer, P. H.; Dormans, J. A. M. A.; van Amsterdam, J. G. C. (2003) Acute

1 2 3	effect of air pollution on respiratory complaints, exhaled NO and biomarkers in nasal lavages of allergic children during the pollen season. Int. Arch. Allergy Immunol. 131: 127-137.
4	Stemmler, K.; Ammann, M.; Donders, C.; Kleffmann, J.; George, C. (2006) Photosensitized
5	reduction of nitrogen dioxide on humic acid as a source of nitrous acid. Nature (London,
6	U.K.) 440: 195-198.
7	Stephens, R. J.; Freeman, G.; Crane, S. C.; Furiosi, N. J. (1971) Ultrastructural changes in the
8	terminal bronchiole of the rat during continuous, low-level exposure to nitrogen dioxide.
9	Exp. Mol. Pathol. 14: 1-19.
10 11	Stephens, R. J.; Freeman, G.; Evans, M. J. (1972) Early response of lungs to low levels of nitrogen dioxide: light and electron microscopy. Arch. Environ. Health 24: 160-179.
12 13	Stevens, R. K.; Dzubay, T. G.; Russwurm, G.; Rickel, D. (1978) Sampling and analysis of atmospheric sulfates and related species. Atmos. Environ. 12: 55-68.
14	Stevens, M. A.; Ménache, M. G.; Crapo, J. D.; Miller, F. J.; Graham, J. A. (1988) Pulmonary
15	function in juvenile and young adult rats exposed to low-level NO ₂ with diurnal spikes. J.
16	Toxicol. Environ. Health 23: 229-240.
17	Stieb, D. M.; Burnett, R. T.; Beveridge, R. C.; Brook, J. R. (1996) Association between ozone
18	and asthma emergency department visits in Saint John, New Brunswick, Canada.
19	Environ. Health Perspect. 104: 1354-1360.
20	Stieb, D. M.; Judek, S.; Burnett, R. T. (2002) Meta-analysis of time-series studies of air pollution
21	and mortality: effects of gases and particles and the influence of cause of death, age, and
22	season. J. Air Waste Manage. Assoc. 52: 470-484.
23	Stieb, D. M.; Judek, S.; Burnett, R. T. (2003) Meta-analysis of time-series studies of air pollution
24	and mortality: update in relation to the use of generalized additive models. J. Air Waste
25	Manage. 53: 258-261.
26	Stölzel, M.; Peters, A.; Wichmann, HE. (2003) Daily mortality and fine and ultrafine particles
27	in Erfurt, Germany. In: Revised analyses of time-series studies of air pollution and health.
28	Special report. Boston, MA: Health Effects Institute; pp. 231-240. Available:
29	http://www.healtheffects.org/Pubs/TimeSeries.pdf [18 October, 2004].
30	Strand, V.; Salomonsson, P.; Lundahl, J.; Bylin, G. (1996) Immediate and delayed effects of
31	nitrogen dioxide exposure at an ambient level on bronchial responsiveness to histamine in
32	subjects with asthma. Eur. Respir. J. 9: 733-740.
33	Strand, V.; Rak, S.; Svartengren, M.; Bylin, G. (1997) Nitrogen dioxide exposure enhances
34	asthmatic reaction to inhaled allergen in subjects with asthma. Am. J. Respir. Crit. Care
35	Med. 155: 881-887.
36	Strand, V.; Svartengren, M.; Rak, S.; Barck, C.; Bylin, G. (1998) Repeated exposure to an
37	ambient level of NO ₂ enhances asthmatic response to nonsymptomatic allergen dose. Eur.
38	Respir. J. 12: 6-12.
39	Studnicka, M.; Hackl, E.; Pischinger, J.; Fangmeyer, C.; Haschke, N.; Kuhr, J.; Urbanek, R.;
40	Neumann, M.; Frischer, T. (1997) Traffic-related NO ₂ and the prevalence of asthma and
41	respiratory symptoms in seven year olds. Eur. Respir. J. 10: 2275-2278.
1 2	Stutz, J.; Ackermann, R.; Fast, J. D.; Barrie, L. (2002) Atmospheric reactive chlorine and bromine at the Great Salt Lake, Utah. Geophys. Res. Lett. 29: 10.1029/2002GL014812.
------------------	--
3 4	Sunyer, J.; Basagaña, X. (2001) Particles, and not gases, are associated with the risk of death in patients with chronic obstructive pulmonary disease. Int. J. Epidemiol. 30: 1138-1140.
5 6 7 8	 Sunyer, J.; Spix, C.; Quénel, P.; Ponce-de-León, A.; Pönkä, A.; Barumandzadeh, T.; Touloumi, G.; Bacharova, L.; Wojtyniak, B.; Vonk, J.; Bisanti, L.; Schwartz, J.; Katsouyanni, K. (1997) Urban air pollution and emergency admissions for asthma in four European cities: the APHEA project. Thorax 52: 760-765.
9 10	Sunyer, J.; Basagaña, X.; Belmonte, J.; Antó, J. M. (2002) Effect of nitrogen dioxide and ozone on the risk of dying in patients with severe asthma. Thorax 57: 687-693.
11 12 13	Suzuki, A. K.; Tsubone, H.; Ichinose, T.; Oda, H.; Kubota, K. (1981) [Effects of subchronic nitrogen dioxide exposure on arterial blood pHa, Pa _{CO2} and Pa _{O2} in rats]. Nippon Eiseigaku Zasshi 36: 816-823.
14 15 16	Suzuki, T.; Terada, N.; Ikeda, S.; Ohsawa, M.; Endo, K.; Mizoguchi, I. (1984) [Effect of NO ₂ exposure on the activity of angiotensin converting enzyme in lung]. Kenkyu Nenpo Tokyo-toritsu Eisei Kenkyusho 35: 279-285.
17 18 19	Suzuki, T.; Ikeda, S.; Kanoh, T.; Mizoguchi, I. (1986) Decreased phagocytosis and superoxide anion production in alveolar macrophages of rats exposed to nitrogen dioxide. Arch. Environ. Contam. Toxicol. 15: 733-739.
20 21 22	Svartengren, M.; Strand, V.; Bylin, G.; Jarup, L.; Pershagen, G. (2000) Short-term exposure to air pollution in a road tunnel enhances the asthmatic response to allergen. Eur. Resp. J. 15: 716-724.
23 24 25	Tabacova, S. (1984) Behavioral effects of prenatal exposure to nitrogen dioxide. In: European Teratology Society 11th conference; August 1983; Paris, France. Teratology 29: 33A- 34A.
26 27	Tabacova, S.; Balabaeva, L. (1988) Nitrogen dioxide embryotoxicity and lipid peroxidation. Teratology 38: 29A.
28 29 30	Tabacova, S.; Balabaeva, L.; Vardev, F. (1984) Nitrogen dioxide: maternal and fetal effects. In: Abstracts of the 25th congress of the European Society of Toxicology, p. 40; June; Budapest, Hungary.
31 32	Tabacova, S.; Nikiforov, B.; Balabaeva, L. (1985) Postnatal effects of maternal exposure to nitrogen dioxide. Neurobehav. Toxicol. Teratol. 7: 785-789.
33 34	Tager, I. B.; Balmes, J.; Lurmann, F.; Ngo, L.; Alcorn, S.; Künzli, N. (2005) Chronic exposure to ambient ozone and lung function in young adults. Epidemiology 16: 751-759.
35 36	Takahashi, Y.; Mochitate, K.; Miura, T. (1986) Subacute effects of nitrogen dioxide on membrane constituents of lung, liver, and kidney of rats. Environ. Res. 41: 184-194.
37 38	Takano, T.; Miyazaki, Y. (1984) Combined effect of nitrogen dioxide and cold stress on the activity of the hepatic cytochrome <i>P</i> -450 system in rats. Toxicology 33: 239-244.
39 40	Takano, H.; Yanagisawa, R.; Inoue, KI.; Shimada, A.; Ichinose, T.; Sadakane, K.; Yoshino, S.; Yamaki, K.; Morita, M.; Yoshikawa, T. (2004) Nitrogen dioxide air pollution near

1 2	ambient levels is an atherogenic risk primarily in obese subjects: a brief communication. Exp. Biol. Med. 229: 361-364.
3 4	Tenías, J. M.; Ballester, F.; Rivera, M. L. (1998) Association between hospital emergency visits for asthma and air pollution in Valencia, Spain. Occup. Environ. Med. 55: 541-547.
5 6 7	Tepper, J. S.; Costa, D. L.; Winsett, D. W.; Stevens, M. A.; Doerfler, D. L.; Watkinson, W. P. (1993) Near-lifetime exposure of the rat to a simulated urban profile of nitrogen dioxide: pulmonary function evaluation. Fund. Appl. Toxicol. 20: 88-96.
8 9 10	Thompson, A. J.; Shields, M. D.; Patterson, C. C. (2001) Acute asthma exacerbations and air pollutants in children living in Belfast, Northern Ireland. Arch. Environ. Health 56: 234- 241.
11 12	Timonen, K. L.; Pekkanen, J. (1997) Air pollution and respiratory health among children with asthmatic or cough symptoms. Am. J. Respir. Crit. Care Med. 156: 546-552.
13 14 15	Timonen, K. L.; Pekkanen, J.; Tiittanen, P.; Salonen, R. O. (2002) Effects of air pollution on changes in lung function induced by exercise in children with chronic respiratory symptoms. Occup. Environ. Med. 59: 129-134.
16 17 18 19	 Timonen, K. L.; Hoek, G.; Heinrich, J.; Bernard, A.; Brunekreef, B.; De Hartog, J.; Hameri, K.; Ibald-Mulli, A.; Mirme, A.; Peters, A.; Tiittanen, P.; Kreyling, W. G.; Pekkanen, J. (2004) Daily variation in fine and ultrafine particulate air pollution and urinary concentrations of lung Clara cell protein CC16. Occup. Environ. Med. 61: 908-914.
20 21 22 23	 Tolbert, P. E.; Mulholland, J. A.; MacIntosh, D. L.; Xu, F.; Daniels, D.; Devine, O. J.; Carlin, B. P.; Klein, M.; Dorley, J.; Butler, A. J.; Nordenberg, D. F.; Frumkin, H.; Ryan, P. B.; White, M. C. (2000) Air quality and pediatric emergency room visits for asthma in Atlanta, Georgia. Am. J. Epidemiol. 151: 798-810.
24 25 26	Totten, R. S.; Moran, T. J. (1961) Cortisone and atypical pulmonary "epithelial" hyperplasia: effects of pretreatment with cortisone on repair of chemically damaged rabbit lungs. Am. J. Pathol. 38: 575-586.
27 28 29 30	 Touloumi, G.; Katsouyanni, K.; Zmirou, D.; Schwartz, J.; Spix, C.; Ponce de Leon, A.; Tobias, A.; Quennel, P.; Rabczenko, D.; Bacharova, L.; Bisanti, L.; Vonk, J. M.; Ponka, A. (1997) Short-term effects of ambient oxidant exposure on mortality: a combined analysis within the APHEA project. Am. J. Epidemiol. 146: 177-185.
31 32 33	Touloumi, G.; Samoli, E.; Pipikou, M.; Le Tertre, A.; Atkinson, R.; Katsouyanni, K. (2006) Seasonal confounding in air pollution and health time-series studies: effect on air pollution effect estimates. Stat. Med. 25: 4164-4178.
34 35 36	Tozuka, Y.; Watanabe, N.; Ohsawa, M.; Toriba, A.; Kizu, R.; Hayakawa, K. (2004) Transfer of polycyclic aromatic hydrocarbons to fetuses and breast milk of rats exposed to diesel exhaust. J. Health Sci. 250: 497-502.
37 38 39	Triche, E. W.; Belanger, K.; Bracken, M. B.; Beckett, W. S.; Holford, T. R.; Gent, J. F.; McSharry, JE.; Leaderer, B. P. (2005) Indoor heating sources and respiratory symptoms in nonsmoking women. Epidemiology 16: 377-384.

1 2 3	Tsai, SS.; Goggins, W. B.; Chiu, HF.; Yang, CY. (2003) Evidence for an association between air pollution and daily stroke admissions in Kaohsiung, Taiwan. Stroke 34: 2612-2616.
4 5 6	Tsai, SS.; Cheng, MH.; Chiu, HF.; Wu, TN.; Yang, CY. (2006) Air pollution and hospital admissions for asthma in a tropical city: Kaohsiung, Taiwan. Inhalation Toxicol. 18: 549-554.
7 8	Tsubone, H.; Suzuki, A. K. (1984) Reflex cardiopulmonary responses by stimulation to type J receptors in rats exposed to NO ₂ . J. Toxicol. Environ. Health 13: 905-917.
9 10 11	Tsuda, H.; Kushi, A.; Yoshida, D.; Goto, F. (1981) Chromosomal aberrations and sister- chromatic exchanges induced by gaseous nitrogen dioxide in cultured Chinese hamster cells. Mutat. Res. 89: 303-309.
12 13 14	Tunnicliffe, W. S.; Burge, P. S.; Ayres, J. G. (1994) Effect of domestic concentrations of nitrogen dioxide on airway responses to inhaled allergen in asthmatic patients. Lancet 344: 1733-1736.
15 16	U.S. Census Bureau. (2001) Statistical abstract of the United States: 2001. The national data book. 121st ed. Washington, DC: U.S. Census Bureau.
17 18	U.S. Code. (2003a) Clean Air Act, §108, air quality criteria and control techniques. U. S. C. 42: §7408.
19 20	U.S. Code. (2003b) Clean Air Act, §109, national ambient air quality standards. U. S. C. 42: §7409.
21	U.S. Code. (2005) Clean Air Act, §302, definitions. U. S. C. 42: §7602(h).
22 23	U.S. Court of Appeals for the District of Columbia. (1980) Lead Industries v. U.S. Environmental Protection Agency. 647 F2d 1130, 1154 (DC Cir. 1980).
24 25	U.S. Court of Appeals for the District of Columbia. (1981) American Petroleum Institute v. Costle. 665 F2d 1176, 1186 (DC Cir. 1981).
26 27 28 29	U.S. Environmental Protection Agency. (1982) Air quality criteria for oxides of nitrogen. Research Triangle Park, NC: Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office; EPA report no. EPA-600/8-82-026. Available from: NTIS, Springfield, VA; PB83-131011.
30 31 32 33	U.S. Environmental Protection Agency. (1993) Air quality criteria for oxides of nitrogen. Research Triangle Park, NC: Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office; report nos. EPA/600/8-91/049aF-cF. 3v. Available from: NTIS, Springfield, VA; PB95-124533, PB95-124525, and PB95-124517.
34 35 36 37 38	U.S. Environmental Protection Agency. (1994) Methods for derivation of inhalation reference concentrations and application of inhalation dosimetry. Research Triangle Park, NC: Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office; report no. EPA/600/8-88/066F. Available: http://cfpub1.epa.gov/ncea/cfm/recordisplay.cfm?deid=71993 (11 April, 2005).
39 40	U.S. Environmental Protection Agency. (1995) Review of the national ambient air quality standards for nitrogen dioxide: assessment of scientific and technical information.

1 2	Research Triangle Park, NC: Office of Air Quality Planning and Standards; report no. EPA/452/R-95-005.
3	U.S. Environmental Protection Agency. (2004) Air quality criteria for particulate matter.
4	Research Triangle Park, NC: National Center for Environmental Assessment; report no.
5	EPA/600/P-99/002aF-bF. 2v. Available: http://cfpub.epa.gov/ncea/ [9 November, 2004].
6 7 8 9 10	U.S. Environmental Protection Agency. (2005) Approaches for the application of physiologically based pharmacokinetic (PBPK) models and supporting data in risk assessment (external review draft 2005). Washington, DC: U.S. Environmental Protection Agency; report no. EPA/600/R-05/043A. Available: http://oaspub.epa.gov/eims/eimsapi.dispdetail?deid=135427 [3 July, 2007].
11	U.S. Environmental Protection Agency. (2006) Air quality criteria for ozone and related
12	photochemical oxidants. Research Triangle Park, NC: National Center for Environmental
13	Assessment; report no. EPA/600/R-05/004aF-cF. 3v. Available:
14	http://cfpub.epa.gov/ncea/ [24 March, 2006].
15	U.S. Environmental Protection Agency. (2007) Integrated plan for the primary National Ambient
16	Air Quality Standard for Nitrogen Dioxide. Research Triangle Park, NC: National Center
17	for Environmental Assessment.
18	 U.S. Senate. (1970) National Air Quality Standards Act of 1970: report of the Committee on
19	Public Works, United States Senate together with individual views to accompany S.
20	4358. Washington, DC: Committee on Public Works; report no. CONG/91-1196.
21	U.S. Supreme Court. (2001) Whitman v. American Trucking Association. 531 U.S. 457 (nos. 99-
22	1257 and 99-1426).
23	Vagaggini, B.; Paggiaro, P. L.; Giannini, D.; Franco, A. D.; Cianchetti, S.; Carnevali, S.;
24	Taccola, M.; Bacci, E.; Bancalari, L.; Dente, F. L.; Giuntini, C. (1996) Effect of short-
25	term NO ₂ exposure on induced sputum in normal, asthmatic and COPD subjects. Eur.
26	Respir. J. 9: 1852-1857.
27 28 29	 Van Der Zee, S. C.; Hoek, G.; Boezen, H. M.; Schouten, J. P.; Van Wijnen, J. H.; Brunekreef, B. (1999) Acute effects of urban air pollution on respiratory health of children with and without chronic respiratory symptoms. Occup. Environ. Med. 56: 802-813.
30	Van Der Zee, S. C.; Hoek, G.; Boezen, M. H.; Schouten, J. P.; Van Wijnen, J. H.; Brunekreef, B.
31	(2000) Acute effects of air pollution on respiratory health of 50-70 yr old adults. Eur.
32	Respir. J. 15: 700-709.
33	Van Stee, E. W.; Sloane, R. A.; Simmons, J. E.; Moorman, M. P.; Brunnemann, K. D. (1995)
34	Endogenous formation of <i>N</i> -nitrosomorpholine in mice from ¹⁵ NO ₂ by inhalation and
35	morpholine by gavage. Carcinogenesis 16: 89-92.
36	Van Strien, R. T.; Gent, J. F.; Belanger, K.; Triche, E.; Bracken, M. B.; Leaderer, B. P. (2004)
37	Exposure to NO ₂ and nitrous acid and respiratory symptoms in the first year of life.
38	Epidemiology 15: 471-478.
39	Varshney, C. K.; Singh, A. P. (2003) Passive samplers for NO _x monitoring: a critical review.
40	Environmentalist 23: 127-136.

1 Vedal, S.; Schenker, M. B.; Munoz, A.; Samet, J. M.; Batterman, S.; Speizer, F. E. (1987) Daily 2 air pollution effects on children's respiratory symptoms and peak expiratory flow. Am. J. 3 Public Health 77: 694-698. 4 Vedal, S.; Brauer, M.; White, R.; Petkau, J. (2003) Air pollution and daily mortality in a city 5 with low levels of pollution. Environ. Health Perspect. 111: 45-51. 6 Velsor, L. W.; Postlethwait, E. M. (1997) NO₂-induced generation of extracellular reactive 7 oxygen is mediated by epithelial lining layer antioxidants. Am. J. Physiol. 17: L1265-8 L1275. 9 Victorin, K. (1994) Review of the genotoxicity of nitrogen oxides. Mutat. Res. 317: 43-55. 10 Victorin, K.; Ståhlberg, M. (1988) A method for studying the mutagenicity of some gaseous compounds in Salmonella typhimurium. Environ. Mol. Mutagen. 11: 65-77. 11 Victorin, K.; Busk, L.; Cederberg, H.; Magnusson, J. (1990) Genotoxic activity of 1,3-butadiene 12 13 and nitrogen dioxide and their photochemical reaction products in Drosophila and in the 14 mouse bone marrow micronucleus assay. Mutat. Res. 228: 203-209. 15 Villeneuve, P. J.; Chen, L.; Stieb, D.; Rowe, B. H. (2006) Associations between outdoor air pollution and emergency department visits for stroke in Edmonton, Canada. Eur. J. 16 17 Epidemiol. 21: 689-700. 18 Vinzents, P. S.; Møller, P.; Sørensen, M.; Knudsen, L. E.; Herte, L. Q.; Jensen, F. P.; Schibye, 19 B.; Loft, S. (2005) Personal exposure to ultrafine particles and oxidative DNA damage. 20 Environ. Health Perspect. 113: 1485-1490. 21 Vollmuth, T. A.; Driscoll, K. E.; Schlesinger, R. B. (1986) Changes in early alveolar particle 22 clearance due to single and repeated nitrogen dioxide exposures in the rabbit. J. Toxicol. 23 Environ. Health 19: 255-266. 24 Von Klot, S.; Wölke, G.; Tuch, T.; Heinrich, J.; Dockery, D. W.; Schwartz, J.; Kreyling, W. G.; 25 Wichmann, H. E.; Peters, A. (2002) Increased asthma medication use in association with 26 ambient fine and ultrafine particles. Eur. Respir. J. 20: 691-702. 27 Von Klot, S.; Peters, A.; Aalto, P.; Bellander, T.; Berglind, N.; D'Ippoliti, D.; Elosua, R.; 28 Hörmann, A.; Kulmala, M.; Lanki, T.; Löwel, H.; Pekkanen, J.; Picciotto, S.; Sunyer, J.; 29 Forastiere, F.; Health Effects of Particles on Susceptible Subpopulations (HEAPSS) 30 Study Group. (2005) Ambient air pollution is associated with increased risk of hospital 31 cardiac readmissions of myocardial infarction survivors in five European cities. 32 Circulation 112: 3073-3079. 33 Wade, K. S.; Mulholland, J. A.; Marmur, A.; Russell, A. G.; Hartsell, B.; Edgerton, E.; Klein, 34 M.; Waller, L.; Peel, J. L.; Tolbert, P. E. (2006) Effects of instrument precision and 35 spatial variability on the assessment of the temporal variation of ambient air pollution in Atlanta, Georgia. J. Air Waste Manage. Assoc. 56: 876-888. 36 37 Wagner, H.-M. (1970) Absorption von NO und NO₂ in MIK- und MAK-Konzentrationen bei der 38 Inhalation [Absorption of NO and NO₂ in mik- and mak-concentrations during 39 inhalation]. Staub Reinhalt. Luft 30: 380-381. 40 Wagner, W. D.; Duncan, B. R.; Wright, P. G.; Stokinger, H. E. (1965) Experimental study of 41 threshold limit of NO₂. Arch. Environ. Health 10: 455-466.

1	Wainman, T.; Weschler, C.; Lioy, P.; Zhang, J. (2001) Effects of surface type and relative
2	humidity on the production and concentration of nitrous acid in a model indoor
3	environment. Environ. Sci. Technol. 35: 2200-2206.
4 5	Wallace, L. A.; Emmerich, S. J.; Howard-Reed, C. (2004) Source strengths of ultrafine and fine particles due to cooking with a gas stove. Environ. Sci. Technol. 38: 2304-2311.
6	Walles, S. A.; Victorin, K.; Lundborg, M. (1995) DNA damage in lung cells in vivo and in vitro
7	by 1,3-butadiene and nitrogen dioxide and their photochemical reaction products. Mutat.
8	Res. 328: 11-19.
9	Wang, J. H.; Devalia, J. L.; Duddle, J. M.; Hamilton, S. A.; Davies, R. J. (1995a) Effect of six-
10	hour exposure to nitrogen dioxide on early-phase nasal response to allergen challenge in
11	patients with a history of seasonal allergic rhinitis. J. Allergy Clin. Immunol. 96: 669-
12	676.
13	Wang, J. H.; Duddle, J.; Devalia, J. L.; Davies, R. J. (1995b) Nitrogen dioxide increases
14	eosinophil activation in the early-phase response to nasal allergen provocation. Int. Arch.
15	Allergy Immunol. 107: 103-105.
16	Wang, J. H.; Devalia, J. L.; Rusznak, C.; Bagnall, A.; Sapsford, R. J.; Davies, R. J. (1999) Effect
17	of fluticasone propionate aqueous nasal spray on allergen-induced inflammatory changes
18	in the nasal airways of allergic rhinitics following exposure to nitrogen dioxide. Clin.
19	Exp. Allergy 29: 234-240.
20	Wang, XK.; Lu, WZ. (2006) Seasonal variation of air pollution index: Hong Kong case study.
21	Chemosphere 63: 1261-1272.
22	Ward, D. J.; Miller, M. R.; Walters, S.; Harrison, R. M.; Ayres, J. G. (2000) Impact of correcting
23	peak flow for nonlinear errors on air pollutant effect estimates from a panel study. Eur.
24	Respir. J. 15: 137-140.
25	Ward, D. J.; Roberts, K. T.; Jones, N.; Harrison, R. M.; Ayres, J. G.; Hussain, S.; Walters, S.
26	(2002) Effects of daily variation in outdoor particulates and ambient acid species in
27	normal and asthmatic children. Thorax 57: 489-502.
28	Ware, J. H.; Dockery, D. W.; Spiro, A., III; Speizer, F. E.; Ferris, B. G., Jr. (1984) Passive
29	smoking, gas cooking, and respiratory health of children living in six cities. Am. Rev.
30	Respir. Dis. 129: 366-374.
31 32	Watanabe, N. (2005) Decreased number of sperms and Sertoli cells in mature rats exposed to diesel exhaust as fetuses. Toxicol. Lett. 155: 51-58.
33 34	Watanabe, N.; Kurita, M. (2001) The masculinization of the fetus during pregnancy due to inhalation of diesel exhaust. Environ. Health Perspect. 109: 111-119.
35	Watanabe, N.; Nakamura, T. (1996) Inhalation of diesel engine exhaust increases bone mineral
36	concentrations in growing rats. Arch. Environ. Contam. Toxicol. 30: 407-411.
37 38	Watanabe, N.; Oonuki, Y. (1999) Inhalation of diesel engine engine exhaust affects spermatogenesis in growing male rats. Environ. Health Perspect. 107: 539-544.

1	Watanabe, H.; Fukase, O.; Isomura, K. (1980) Combined effects of nitrogen oxides and ozone on
2	mice. In: Lee, S. D., ed. Nitrogen oxides and their effects on health. Ann Arbor, MI: Ann
3	Arbor Science Publishers, Inc.; pp. 181-189.
4	Waxman, M. B.; Cameron, D.; Wald, R. W. (1994) Vagal activity and ventricular
5	tachyarrhythmias. In: Levy, M.; Schwartz, P. Vagal control of the heart: experimental
6	basis and clinical implications. Armonk, NY: Futura Publishing Co.; pp. 579-612.
7 8 9	 Wayne, R. P.; Barnes, I.; Biggs, P.; Burrows, J. P.; Canosa-Mas, C. E.; Hjorth, J.; Le Bras, G.; Moortgat, G. K.; Perner, D.; Poulet, G.; Restelli, G.; Sidebottom, H. (1991) The nitrate radical: physics, chemistry, and the atmosphere. Atmos. Environ. Part A 25: 1-203.
10 11 12	Wegmann, M.; Renz; Herz, U. (2002) Long-term NO ₂ exposure induces pulmonary inflammation and progressive development of airflow obstruction in C57BL/6 mice: a mouse model for chronic obstructive pulmonary disease. Pathobiology 70: 284-286.
13	Weinberg, E. D. (1992) Iron depletion: a defense against intracellular infection and neoplasia.
14	Life Sci. 50: 1289-1297.
15 16	Weinberger, B.; Laskin, D. L.; Heck, D. E.; Laskin, J. D. (2001) The toxicology of inhaled nitric oxide. Toxicol. Sci. 59: 5-16.
17	Wellenius, G. A.; Bateson, T. F.; Mittleman, M. A.; Schwartz, J. (2005) Particulate air pollution
18	and the rate of hospitalization for congestive heart failure among medicare beneficiaries
19	in Pittsburgh, Pennsylvania. Am. J. Epidemiol. 161: 1030-1036.
20	Wellenius, G. A.; Schwartz, J.; Mittleman, M. A. (2006) Particulate air pollution and hospital
21	admissions for congestive heart failure in seven United States cities. Am. J. Cardiol. 97:
22	404-408.
23 24	Wensley, D. C.; Silverman, M. (2001) The quality of home spirometry in school children with asthma. Thorax 56: 183-185.
25	Weschler, C. J.; Shields, H. C. (1997) Potential reactions among indoor pollutants. Atmos.
26	Environ. 31: 3487-3495.
27	Weschler, C. J.; Hodgson, A. T.; Wooley, J. D. (1992) Indoor chemistry: ozone, volatile organic
28	compounds, and carpets. Environ. Sci. Technol. 26: 2371-2377.
29 30 31	Weschler, C. J.; Shields, H. C.; Naik, D. V. (1994) Indoor chemistry involving O ₃ , NO, and NO ₂ as evidenced by 14 months of measurements at a site in southern California. Environ. Sci. Technol. 28: 2120-2132.
32 33 34 35 36	 Weschler, C. J.; Shields, H. C. (1996) The conversion (reduction) of nitrogen dioxide to nitric oxide as a consequence of charcoal filtration. In: Yoshizawa, S.; Kimura, K.; Ikeda, K.; Tanabe, S.; Iwata, T., eds. Indoor Air '96: proceedings of the 7th international conference on indoor air quality and climate, v. 3, July; Nagoya, Japan. Toykyo, Japan: Indoor Air '96; pp. 453-458.
37	Westerdahl, D.; Fruin, S.; Sax, T.; Fine, P. M.; Sioutas, C. (2005) Mobile platform
38	measurements of ultrafine particles and associated pollutant concentrations on freeways
39	and residential streets in Los Angeles. Atmos. Environ. 39: 3597-3610.

1 2 3	Wheeler, A.; Zanobetti, A.; Gold, D. R.; Schwartz, J.; Stone, P.; Suh, H. H. (2006) The relationship between ambient air pollution and heart rate variability differs for individuals with heart and pulmonary disease. Environ. Health Perspect. 114: 560-566.
4 5 6 7	 Wichmann, HE.; Spix, C.; Tuch, T.; Wölke, G.; Peters, A.; Heinrich, J.; Kreyling, W. G.; Heyder, J. (2000) Daily mortality and fine and ultrafine particles in Erfurt, Germany. Part I: role of particle number and particle mass. Cambridge, MA: Health Effects Institute; research report no. 98.
8 9 10 11	Wiley, J. A.; Robinson, J. P.; Piazza, T.; Garrett, K.; Cirksena, K.; Cheng, YT.; Martin, G. (1991a) Activity patterns of California residents. Final report. Sacramento, CA: California Air Resources Board; report no. ARB/R93/487. Available from: NTIS, Springfield, VA.; PB94-108719.
12 13 14	Wiley, J. A.; Robinson, J. P.; Cheng, YT.; Piazza, T.; Stork, L.; Pladsen, K. (1991b) Study of children's activity patterns: final report. Sacramento, CA: California Air Resources Board; report no. ARB-R-93/489.
15 16 17	 Williams, E. J.; Parrish, D. D.; Fehsenfeld, F. C. (1987) Determination of nitrogen oxide emissions from soils: results from a grassland site in Colorado, United States. J. Geophys. Res. [Atmos.] 92: 2173-2179.
18 19 20 21 22	 Winter-Sorkina, R. de; Cassee, F. R. (2002) From concentration to dose: factors influencing airborne particulate matter deposition in humans and rats. Bilthoven, The Netherlands: National Institute of Public Health and the Environment (RIVM); report no. 650010031/2002. Available: http://www.rivm.nl/bibliotheek/rapporten/650010031.html (13 June 2003).
23 24	Witschi, H. (1988) Ozone, nitrogen dioxide and lung cancer: a review of some recent issues and problems. Toxicology 48: 1-20.
25 26	Wolff, G. T. (1993) On a NO _x -focused control strategy to reduce O ₃ . J. Air Waste Manage. Assoc. 43: 1593-1596.
27 28 29 30	 Wolff, G. T. (1996) Closure by the Clean Air Scientific Advisory Committee (CASAC) on the draft Air Quality Criteria for Particulate Matter [letter to Carol M. Browner, Administrator, U.S. EPA]. Washington, DC: U.S. Environmental Protection Agency, Clean Air Scientific Advisory Committee.; EPA-SAB-CASAC-LTR-96-005; March 15.
31 32 33	Wong, T. W.; Lau, T. S.; Yu, T. S.; Neller, A.; Wong, S. L.; Tam, W.; Pang, S. W. (1999) Air pollution and hospital admissions for respiratory and cardiovascular diseases in Hong Kong. Occup. Environ. Med. 56: 679-683.
34 35 36	Wong, G. W.; Ko, F. W.; Lau, T. S.; Li, S. T.; Hui, D.; Pang, S. W.; Leung, R.; Fok, T. F.; Lai, C. K. (2001) Temporal relationship between air pollution and hospital admissions for asthmatic children in Hong Kong. Clin. Exp. Allergy 31: 565-569.
37 38	World Health Organization. (1997) Nitrogen oxides. 2nd ed. Geneva, Switzerland: World Health Organization. (Environmental health criteria 188).
39 40	Yallop, D.; Duncan, E. R.; Norris, E.; Fuller, G. W.; Thomas, N.; Walters, J.; Dick, M. C.; Height, S. E.; Thein, S. L.; Rees, D. C. (2007) The associations between air quality and

1 the number of hospital admissions for acute pain and sickle-cell disease in an urban 2 environment. Br. J. Haematol. 136: 844-848. 3 Yamanaka, S. (1984) Decay rates of nitrogen oxides in a typical Japanese living room. Environ. 4 Sci. Technol. 18: 566-570. 5 Yanagisawa, Y.; Nishimura, H. (1982) A badge-type personal sampler for measurement of 6 personal exposure to NO₂ and NO in ambient air. Environ. Int. 8: 235-242. 7 Yang, W.; Lee, K.; Chung, M. (2004a) Characterization of indoor air quality using multiple 8 measurements of nitrogen dioxide. Indoor Air 14: 105-111. 9 Yang, C.-Y.; Chen, Y.-S.; Yang, C.-H.; Ho, S.-C. (2004b) Relationship between ambient air pollution and hospital admissions for cardiovascular diseases in Kaohsiung, Taiwan. J. 10 Toxicol. Environ. Health Part A 67: 483-493. 11 12 Yang, Q.; Chen, Y.; Krewski, D.; Burnett, R. T.; Shi, Y.; McGrail, K. M. (2005) Effect of short-13 term exposure to low levels of gaseous pollutants on chronic obstructive pulmonary 14 disease hospitalizations. Environ. Res. 99: 99-105. 15 Yang, C.-Y.; Hsieh, H.-J.; Tsai, S.-S.; Wu, T.-N.; Chiu, H.-F. (2006) Correlation between air 16 pollution and postneonatal mortality in a subtropical city: Taipei, Taiwan. J. Toxicol. 17 Environ. Health Part A 69: 2033-2040. 18 Yokoyama, E. (1968) Uptake of SO₂ and NO₂ by the isolated upper airways. Bull. Inst. Public 19 Health (Tokyo) 17: 302-306. 20 Yokoyama, E.; Ichikawa, I.; Kawai, K. (1980) Does nitrogen dioxide modify the respiratory effects of ozone? In: Lee, S. D., ed. Nitrogen oxides and their effects on health. Ann 21 22 Arbor, MI: Ann Arbor Science Publishers, Inc.; pp. 217-229. 23 Zanobetti, A.; Schwartz, J. (2006) Air pollution and emergency admissions in Boston, MA. J. 24 Epidemiol. Community Health 60: 890-895. 25 Zeger, S. L.; Thomas, D.; Dominici, F.; Samet, J. M.; Schwartz, J.; Dockery, D.; Cohen, A. 26 (2000) Exposure measurement error in time-series studies of air pollution: concepts and 27 consequences. Environ. Health Perspect. 108: 419-426. 28 Zeka, A.; Schwartz, J. (2004) Estimating the independent effects of multiple pollutants in the 29 presence of measurement error: an application of a measurement-error-resistant 30 technique. Environ. Health Perspect. 112: 1686-1690. 31 Zhang, H.; Lindwall, R.; Zhu, L.; Frostell, C.; Sun, B. (2003) Lung physiology and 32 histopathology during cumulated exposure to nitric oxide in combination with assisted 33 ventilation in healthy piglets. Pulm. Pharmacol. Ther. 16: 163-169. 34 Zidek, J. V. (1997) Interpolating air pollution for health impact assessment. In: Barnett, E. V.; 35 Turkman, K. F., eds. Pollution Assessment and Control. New York, NY: John Wiley & Sons. (Statistics for the Environment, no. 3). 36 37 Zipprich, J. L.; Harris, S. A.; Fox, J. C.; Borzelleca, J. F. (2002) An analysis of factors that 38 influence personal exposure to nitrogen oxides in residents of Richmond, Virginia. J. 39 Exposure Anal. Environ. Epidemiol. 12: 273-285.

1	Zmirou, D.; Schwartz, J.; Saez, M.; Zanobetti, A.; Wojtyniak, B.; Touloumi, G.; Spix, C.; Ponce
2	de León, A.; Le Moullec, Y.; Bacharova, L.; Schouten, J.; Pönkä, A.; Katsouyanni, K.
3	(1998) Time-series analysis of air pollution and cause-specific mortality. Epidemiology
4	9: 495-503.
5 6	Zota, A.; Adamkiewicz, G.; Levy, J. I.; Spengler, J. D. (2005) Ventilation in public housing: implications for indoor nitrogen dioxide concentrations. Indoor Air 15: 393-401.
7	

Please make all necessary changes in the below label, detach copy or copy, and return to the address in the upper left-hand corner.

If you do not wish to receive these reports CHECK HERE \Box ; detach copy or copy, and return to the address in the upper left-hand corner.

PRESORTED STANDARD POSTAGE & FEES PAID EPA PERMIT No. G-35

National Center for Environmental Assessment Research Triangle Park, NC 27711

Official Business Penalty for Private Use \$300

EPA/600/R-07/093 August 2007