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Abstract. Large-scale measurements of cloud condensation
nuclei (CCN) are difficult to obtain on a routine basis,
whereas aerosol optical quantities are more readily available.
This study investigates the relationship between CCN and
aerosol optical quantities for some distinct aerosol types us-
ing extensive observational data collected at multiple Atmo-
spheric Radiation Measurement (ARM) Climate Research
Facility (CRF) sites around the world. The influences of rel-
ative humidity (RH), aerosol hygroscopicity (fRH) and sin-
gle scattering albedo (SSA) on the relationship are analyzed.
Better relationships are found between aerosol optical depth
(AOD) and CCN at the Southern Great Plains (US), Ganges
Valley (India) and Black Forest sites (Germany) than those at
the Graciosa Island (the Azores) and Niamey (Niger) sites,
where sea salt and dust aerosols dominate, respectively. In
general, the correlation between AOD and CCN decreases as
the wavelength of the AOD measurement increases, suggest-
ing that AOD at a shorter wavelength is a better proxy for
CCN. The correlation is significantly improved if aerosol in-
dex (AI) is used together with AOD. The highest correlation
exists between CCN and aerosol scattering coefficients (σsp)

and scattering AI measured in situ. The CCN–AOD (AI) re-
lationship deteriorates with increasing RH. If RH exceeds
75 %, the relationship where AOD is used as a proxy for CCN
becomes invalid, whereas a tightσsp–CCN relationship ex-
ists for dry particles. Aerosol hygroscopicity has a weak im-
pact on theσsp–CCN relationship. Particles with low SSA are
generally associated with higher CCN concentrations, sug-
gesting that SSA affects the relationship between CCN con-
centration and aerosol optical quantities. It may thus be used
as a constraint to reduce uncertainties in the relationship. A

significant increase inσsp and decrease in CCN with increas-
ing SSA is observed, leading to a significant decrease in their
ratio (CCN /σsp) with increasing SSA. Parameterized rela-
tionships are developed for estimating CCN, which account
for RH, particle size, and SSA.

1 Introduction

Aerosols play important roles in Earth’s climate and the hy-
drological cycle via their direct and indirect effects (IPCC,
2007). Aerosol particles can scatter and absorb solar radia-
tion, and alter the vertical distribution of solar energy and
atmospheric stability (Ramanathan et al., 2001; Liu et al.,
2012). These are known as direct effects. Aerosols can mod-
ify microphysical and macroscopic cloud properties, such as
cloud particle size, cloud albedo (Twomey, 1977; Twomey et
al., 1984; Rosenfeld et al., 2001; Andreae et al., 2004; Koren
et al., 2005) and cloud-top heights (Andreae et al., 2004; Lin
et al., 2006; Li et al., 2011). They can also influence warm-
and cold-rain processes (Rosenfeld and Woodley, 2000; An-
dreae et al., 2004; Lin et al., 2006; Bell et al., 2008; Li et al.,
2011), the depth of the mixed-phase region in a cloud (An-
dreae et al., 2004; Koren et al., 2005, 2008, 2010; Niu and Li,
2012) and the occurrence of lightning (Orville et al., 2001;
Steiger and Orville, 2003; Yuan et al., 2011; Yang et al.,
2013). These are known as aerosol’s indirect effects, which
are the largest sources of uncertainty in the forcing of Earth’s
climate system. Determining CCN (cloud condensation nu-
clei) concentrations and their spatial and temporal variations
are key challenges in quantifying aerosol’s indirect effects.
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CCN concentration has been measured chiefly through
field experiments by counting the number of droplets formed
in a chamber using optical counters at various levels of wa-
ter vapor supersaturation (S) (Hudson and Yum, 2002; Ross
et al., 2003; Yum et al., 2007; Rose et al., 2008; Liu et al.,
2011). However, such in situ measurements of CCN concen-
tration are few and localized and thus may not represent large
areas. Extensive measurements of CCN concentration are not
currently feasible because of the high cost and complex na-
ture of the operation. CCN is determined by the aerosol size
distribution and chemical composition and is governed by the
Köhler theory. Aerosol particles in the ambient environment
are often very complex and are comprised of inorganic and
organic species (Kanakidou et al., 2005; Zhang et al., 2007),
so the Köhler theory has been extended to include the in-
fluence of these species (Shulman et al., 1996; Facchini et
al., 1999; Svenningsson et al., 2006). The mixing state and
a detailed knowledge of how different compounds interact
with water also matter (McFiggans et al., 2006; Andreae and
Rosenfeld, 2008; Ward et al., 2010; Yang et al., 2012). A
modified Köhler theory, called the “κ-Köhler” theory, was
proposed by Petter and Kriedenweis (2007), which uses a
single parameter,κ, to describe the solubility effect on CCN
activation.

Unlike CCN concentration and size-resolved aerosol com-
position, aerosol optical quantities, such as aerosol opti-
cal depth (AOD) and aerosol scattering/extinction coeffi-
cients, are much more readily available using ground-based
and space-borne remote sensing instruments. Aerosol opti-
cal quantities, especially AOD, have often been used as a
proxy for CCN in large-scale model simulations (Quaas et
al., 2009; Wang et al., 2011; Tao et al., 2012; Grandey et
al., 2013) and in studying aerosol’s indirect effects (Naka-
jima, 2001; Bréon et al., 2002; Feingold et al., 2003; Yuan
et al., 2008). However, AOD represents the vertically inte-
grated attenuation and depends not only on the number of
particles but also on relative humidity (RH), size distribu-
tion, etc., and might not be a good proxy for CCN (Jeong
et al., 2007). The use of aerosol optical measurements to es-
timate CCN concentrations is appealing but challenging be-
cause they are governed by different aerosol attributes (Ghan
et al., 2006; Kapustin et al., 2006; Andreae, 2009). Nev-
ertheless, attempts at relating CCN concentration to AOD
or aerosol extinction/scattering properties have shown gross
correlations between CCN concentration and aerosol optical
quantities (Ghan and Collins, 2004; Ghan et al., 2006; Shi-
nozuka et al., 2009; Andreae, 2009; Jefferson, 2010; Liu et
al., 2011). The correlation is often fraught with uncertainties
that could be reduced by accounting for some influential fac-
tors, such as aerosol size and/or composition, as well as envi-
ronmental variables (e.g., RH). Previous attempts have been
made to try to account for the influence of RH (Ghan and
Collins, 2004; Ghan et al., 2006), but few systematic investi-
gations have been conducted (Andreae, 2009), due partially
to the dearth of measurements available at the time.

Thanks to the US Department of Energy, which is respon-
sible for the deployment of the Atmospheric Radiation Mea-
surement (ARM) Climate Research Facility (at fixed and mo-
bile locations), CCN and many pertinent variables have been
measured in recent years, allowing for the study presented
here. The goal of this study is to gain further insights into
the relationship between CCN and aerosol optical quantities,
such as columnar AOD and aerosol scattering coefficients,
by exploiting rich ARM data acquired around the world with
different background aerosol types. To reduce the uncertainty
in CCN estimations from aerosol optical measurements, we
investigate the influence of RH, aerosol hygroscopicity and
aerosol single scattering albedo (SSA) on the relationship
between CCN and aerosol optical measurements. Measure-
ments and methods used are described in Sect. 2. Section 3
presents results from various analyses and a summary is
given in Sect. 4.

2 Data and methodology

2.1 Data

ARM data from five sites are used, representing different
regions (e.g., continental and marine) dominated by differ-
ent types of aerosols: the US Southern Great Plains (SGP,
permanent site, typical rural continental aerosols over farm
land), Graciosa Island in the Azores (GRW, mobile facility
site, sea salt aerosols and local pollution from airport traf-
fic and long-range transport from Europe), the Black Forest
in Germany (FKB, mobile facility, agricultural and forested
regions with rich biogenic aerosols), the Ganges Valley in
India (GVAX, mobile facility site, anthropogenic pollution,
high concentrations of sulfate, nitrate, organic and black car-
bon particles), and Niamey in Niger (NIM, mobile facility
site, dust aerosols). The locations and observation periods,
as well as measurements used in this study, are listed in Ta-
ble 1. More detailed information about each site can be found
athttp://www.arm.gov/sites.

AOD and the Angstrom wavelength exponent (α) data
were obtained from the National Aeronautics and Space
Administration’s Aerosol Robotic Network (AERONET)
database (Holben et al., 1998;http://aeronet.gsfc.nasa.gov).
The quality and consistency of AERONET AOD data are
well controlled and continuously monitored. There were no
AERONET retrievals available for the FKB site. Cimel sun-
photometers used in the AERONET measure direct solar and
sky radiances at discrete wavelengths (340, 380, 440, 500,
670, 870, 940 and 1020 nm) from which AOD is retrieved at
each wavelength with an uncertainty of 0.01–0.02 (Dubovik
and King, 2000). At the FKB site, AOD andα were re-
trieved from the multifilter rotating shadow band radiome-
ter (MFRSR). The MFRSR measures total and diffuse so-
lar broadband irradiances at 415, 500, 610, 673, 870, and
940 nm with an AOD retrieval accuracy of∼ 0.01 (Alexander
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Table 1.Description of ARM1 data sets selected for this study.

Site2 Location/Altitude Time range Environment Measurements used in the study

SGP 36.6◦ N, 97.5◦ W/320 m 2006.09–2011.04 Agricultural AOD3 andα4 from AERONET5 measurements
GRW 39.1◦ N, 28.0◦ W/15 m 2009.05–2010.12 Marine CCN6, CN7, σsp(σap)

8, SSA9, f 10
RH(RH/RHRef)

NIM 13.5◦ N, 2.2◦ E/205 m 2006.08–2007.01 Dust region from ground-based AOS11

GVAX 29.4◦ N, 79.5◦ E/1936 m 2011.06–2012.04 Industrial emission and Atmospheric RH from surface
biomass burning meteorological instrumentation

FKB 48.5◦ N, 8.4◦ E/511 m 2007.04–2007.12 Forest

1 ARM Atmospheric Radiation Measurement;2 SGP Southern Great Plains, USA; GRW Graciosa Island, Azores; NIM Niamey, Niger, West Africa; GVAX Ganges Valley
Aerosol Experiment, Ganges Valley region of India; FKB Black Forest region, Germany;
3 AOD aerosol optical depth;4 α Angstrom wavelength exponent;5 AERONET Aerosol Robotic Network;6 CCN cloud condensation nuclei;7 CN condensation nuclei;
8 σsp aerosol light scattering coefficients;σap aerosol light absorption coefficients;9 SSA single scattering albedo, equal to the ratio ofσsp to (σsp+ σap);
10 fRH(RH/RHRef)

aerosol hygroscopic growth factor defined as the ratio ofσsp at a given RH toσsp at a low reference RH;11 AOS aerosol observing system, the primary
ARM platform for in situ aerosol measurements made at the surface.

et al., 2008). The consistency of AOD andα retrieved from
the Cimel sun-photometer and the MFRSR has been investi-
gated by Lee et al. (2010). Close agreements were found at
all wavelengths except at 415 nm. MFRSR-derivedα used in
this study was calculated using data at 500 and 675 nm.

CCN and aerosol condensation nuclei (CN) concentra-
tions, aerosol scattering and absorption properties, as well
as the aerosol hygroscopic growth factor (fRH), are mea-
sured by a suite of instruments comprising the aerosol ob-
serving system (AOS), which is the primary ARM platform
measuring in situ aerosol properties at the surface (Jefferson,
2011). CN concentrations are measured by the compact and
rugged TSI Model 3010 instrument, which counts the num-
ber of particles with diameters in the size range of 10 nm to
3 µm. CCN concentrations are measured by the Droplet Mea-
surement Technology (DMT) CCN counter at seven levels of
supersaturation (S; Roberts and Nenes, 2005). The observa-
tion interval is 5 min at each level ofS. It is calibrated at the
beginning and at the end of each mobile facility deployment
and annually at the SGP site (Jefferson, 2011).

Aerosol scattering coefficients (σsp) integrated over the
scattering angle range of 7–170◦ are measured with TSI
Model 3565 three-wavelength (450, 550 and 700 nm) neph-
elometers that separate aerosols by particle diameter for
total aerosols (Dp ≤ 10 µm) and submicrometer aerosols
(Dp ≤ 1 µm). Two nephelometers are deployed, with one
serving as the “reference” that measures dryσsp and the other
connected to a humidity scanning system and measuring
changes inσsp with RH. The humidifier scans RH from low
(∼ 40 %) to high (∼ 90 %) and back to low RH on an hourly
basis. Aerosol light absorption coefficients (σap) at 470, 528
and 660 nm are measured by a filter-based Radiances Re-
search particle/soot absorption photometer. The 470 nmσap
was normalized to 450 nm to match theσsp measured by the
nephelometer. Anderson et al. (1996) and Heintzenberg et
al. (2006) have reported that the uncertainty in nephelometer-
measuredσsp ranges from 1 to 4 Mm−1 for one-minute aver-

aged data. The uncertainty also depends on the magnitudes
of σsp andσap (Jefferson et al., 2011).

The aerosol hygroscopic growth factor,fRH, is a parame-
ter commonly used to quantify the increase in aerosol scat-
tering relative to dry scattering with changes in RH, and is
defined as the ratio of theσsp at a given RH to that at a low
reference RH:

fRH(RH/RHRef)=
σsp(RH)

σsp(RHRef)

. (1)

The hygroscopic growth factor at RH= 85 % and
RHRef = 40 % is then written asfRH(85%/40%). To cal-
culate the RH dependence ofσsp, a two-parameter empirical
fit is used:

fRH = a ×

(
1−

RH(%)

100

)−b

, (2)

wherea and bare determined fromσsp measured at vary-
ing RH levels (Jefferson, 2011). RH values measured by a
nephelometer have an error on the order of 10 % because
the instrument sensor is not well calibrated. However, bin-
averagedfRH(85%/40%) has been calculated in this study us-
ing a large amount of data, so the effects of the uncertainty
on results are minor. Knowing the fitting parameters,a and
b, one can estimateσsp at any ambient RH:

σsp(amb)=σsp(dry)
(1−RHamb/100)−b

(1−RHdry/100)−b
. (3)

2.2 Data analysis

After matching data from multiple instruments according to
observation time, they are sorted into different discrete bins
in which means and standard deviations are calculated. A pe-
riod void of data is excluded from subsequent analyses. CCN
measurements were made at different values ofS, and AOD
at different wavelengths, but to easily compare our finding
with the study by Andreae (2009), the data used here were
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made atS = 0.4 % and at 500 nm, respectively. Note that
S = 0.4 % is more representative of convective clouds, but is
too high a value for stratiform clouds. To compensate for this,
low S values (S = 0.1 %) were considered in deriving the
general aerosol optical quantities–CCN relationship for prac-
tical applications, as presented in Sect. 3.5. CCN measured
at anyS is adjusted to a fixedS of 0.4 and 0.1 % through the
following equation:

CCNs=N0(1− exp(−bSk)), (4)

whereN0, b andk are empirically fitted parameters (Ji and
Shaw, 1998). This function describes theNCCN–S relation-
ship better than the traditional formula CCNS = CSk sug-
gested by Twomey (1959) (C andk are fitted parameters).
The latter overestimates CCN concentration at largeS be-
cause there is no constraint on CCN as total aerosol concen-
tration increases. Mean fitting errors in this study are 9.5, 3.2,
6.3, 23.8 and−10.7 % at SGP, GRW, NIM, GVAX and FKB
sites, respectively.

3 Results

3.1 Overall correlation between aerosol optical
quantities and CCN

Table 2 presents the means and standard deviations of aerosol
optical quantities and CCN at all sites. The largest mean
AOD occurred at the NIM site (0.39± 0.33), which is almost
four times greater than that at other sites, and the smallest
mean AOD was measured at the GRW site (0.11± 0.06).
Mean α at these two locations (NIM: 0.47± 0.23, GRW:
0.75± 0.35) are lower than that at the other sites, indicat-
ing more influence by coarse particles (dust particles at the
NIM site and sea salt at the GRW site). The largest mean
α at the FKB site (1.88± 0.27) suggests more fine parti-
cles at this site than at the SGP and GVAX sites. Meanσsp
shows that submicron particles (Dp ≤1 µm) play a dominant
role in aerosol scattering at the SGP and FKB sites. They
are responsible for nearly half of the aerosol scattering at
the NIM and GVAX sites. Coarse particles with diameters
> 1 µm contribute more to aerosol scattering at the GRW site.
The smallest values of SSA are found at the NIM and FKB
sites (0.82± 0.06 and 0.85± 0.06, respectively). As per the
values of SSA andα, significantly different aerosol types are
present at these sites. SSA at the SGP and GVAX sites is sim-
ilar (∼ 0.92± 0.04) andα is on the same order. On average,
there was no significant difference in the magnitude offRH
between these two sites wherefRH is generally large, indi-
cating the presence of more hygroscopic particles. The NIM
site has the lowestfRH because dust aerosols are primarily
composed of insoluble components or components with low
solubility, while the GRW site has the highestfRH because
sea salt aerosols with strong hygroscopicity dominate in this
area. Mean number concentrations of CN and CCN0.4 are

Fig. 1. (a)Relationship between AOD at 500 nm and CCN0.4, (b)
relationship between AI and CCN0.4 (c) their correlation coeffi-
cients, and(d) same as(c), but for AI in lieu of AOD.

small at the GRW site because there is less anthropogenic
pollution, but the ratio of CCN to CN is high. This suggests
that a large fraction of aerosol particles at this site can be ac-
tivated into CCN. CN concentrations at the NIM site are the
largest because dust events are frequent. The ability of dust
particles to serve as CCN strongly depends on the amount
of minor soluble substances contained in the dust particles
(Rosenfeld et al., 2001; Kelly et al., 2007). CCN generally
increases with CN during dust events, but the ratio of CCN
to CN tends to decrease sharply with increasing CN, imply-
ing that less CCN become available under dusty conditions
(Liu et al., 2011). This is why the smallest ratio of CCN to
CN is found at the NIM site even though the CCN0.4 concen-
tration is moderately high.

3.1.1 Relationship between columnar aerosol optical
quantities and CCN

For easy comparison with Andreae (2009), AOD–CCN
relationships were obtained based on the function
AOD = a· (CCN0.4)

b (Andreae, 2009) for AOD at 440,
500, 675, 870 and 1020 nm. Figure 1 presents the rela-
tionships between CCN0.4 and AOD at 500 nm (AOD500),
between CCN0.4 and AI, and their corresponding correlation
coefficients (R2) for different sites. AI is defined as the
product of AOD500 and α (500–675 nm), which serves as
a better proxy for CCN (Nakajima, 2001). AOD500 and
CCN0.4 are positively correlated and the correlations are
best at the SGP, GVAX and FKB sites. Although a moderate
correlation exists at the NIM site, the largest standard devi-
ations and the smallest ratio of CCN to CN representative
of the site suggests that dust aerosols are not efficient CCN.
They are, however, efficient in light scattering. The small
value of meanα indicates that dust aerosols dominated this
area during the study period. Biomass burning aerosols are
also present in this area and may complicate the analysis
of NIM data. The lowest correlations between CCN0.4 and
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Table 2. Summary of mean aerosol optical quantities, CN concentration, and CCN concentration at 0.4 % supersaturation during the study
period.

Sites AOD α σsp SSA fRH CN CCN0.4 CCN / CN
500 nm 500–675 nm 450 nm 450 nm (cm−3) (cm−3) 0.4S

SGP 0.10± 0.08 1.28± 0.34 41.8± 34.1 (Dp ≤ 1 µm) 0.92± 0.05 (Dp ≤ 1 µm) 1.54± 0.28 (Dp ≤ 1 µm) 3944± 2992 1248± 896 0.40± 0.24
50.5± 44.8 (Dp ≤ 10 µm) 0.92± 0.05 (Dp ≤ 10 µm) 1.52± 0.28 (Dp ≤ 10 µm)

GRW 0.11± 0.06 0.75± 0.35 7.7± 7.7 (Dp ≤ 1 µm) 0.91± 0.06 (Dp ≤ 1 µm) 2.11± 0.71 (Dp ≤ 1 µm) 615± 587 287± 263 0.53± 0.30
22.8± 16.5 (Dp ≤ 10 µm) 0.93± 0.04 (Dp ≤ 10 µm) 2.12± 0.57 (Dp ≤ 10 µm)

NIM 0.39± 0.33 0.47± 0.23 54.6± 98.8 (Dp ≤ 1 µm) 0.81± 0.07 (Dp ≤ 1 µm) 1.43± 0.40 (Dp ≤ 1 µm) 5561± 5476 726± 780 0.20± 0.24
106.2± 200.7 (Dp ≤ 10 µm) 0.82± 0.06 (Dp ≤ 10 µm) 1.14± 0.21 (Dp ≤ 10 µm)

GVAX 0.14± 0.12 1.23± 0.45 137.9± 120.6 (Dp ≤ 1 µm) 0.92± 0.03 (Dp ≤ 1 µm) 1.66± 0.27 (Dp ≤ 1 µm) 2597± 1797 1426± 1031 0.51± 0.29
218.9± 200.4 (Dp ≤ 10 µm) 0.93± 0.03 (Dp ≤ 10 µm) 1.45± 0.14 (Dp ≤ 10 µm)

FKB 0.12± 0.05 1.88± 0.27 48.3± 35.7 (Dp ≤ 1 µm) 0.84± 0.06 (Dp ≤ 1 µm) 1.60± 0.36 (Dp ≤ 1 µm) 3591± 2098 1007± 749 0.29± 0.17
57.2± 44.3 (Dp ≤ 10 µm) 0.85± 0.06 (Dp ≤ 10 µm) 1.46± 0.25 (Dp ≤ 10 µm)

* σsp at 450 nm (Mm−1); S: supersaturation.

AOD500 / AI observed at the GRW site may be attributed to
sea salt aerosols. Because of their large size, their scattering
may be strong relative to the low number concentration of
large particles that are converted into CCN. In general, for
most of the sites considered in this study, the correlation
between AOD500 and CCN deteriorates with increasing
wavelength. CCN is more closely correlated with AOD
measurements at shorter wavelengths because the CCN
concentration is dictated by fine-mode aerosols (Andreae,
2009). The relationship varies considerably from site to site
and so large errors would be incurred if one global mean
relationship was used, attesting to the need of different
functions for different aerosol types/regions.

Both the ability of an aerosol particle to act as a CCN at a
givenS level and its contribution to extinction depends on the
aerosol particle size distribution. Particle size is thus also a
key factor influencing the AOD–CCN relationship. To assess
this potential impact, Fig. 1c and d show correlation coeffi-
cients from linear regressions of CCN0.4 and AOD500 / AI,
respectively, as a function of wavelength. Like AOD500, AI
generally increases with increasing CCN and the correlation
is better than with AOD500 at all sites. AI is more sensi-
tive than AOD to the accumulation mode aerosol concen-
tration, which is typically responsible for most CCN. Since
α contains aerosol size information and AI conveys both
aerosol loading and particle size information, the correlation
between AI and CCN depends much weakly on wavelength.
Compared with other pollution aerosols, dust AOD shows
a slight decreasing trend with increasing wavelength, which
may contribute to the slight increase in the correlation be-
tween CCN and AI at the NIM site.

3.1.2 Relationship between in situ aerosol scattering
properties and CCN

Given that CCN is measured near the surface and that AOD
represents total light extinction in the whole atmospheric col-
umn, the AOD–CCN relationship must be affected by the
vertical distribution of aerosols. To avoid such mismatch,
Fig. 2 shows results from the same analysis performed in

Table 3. Number of CCN bins and sample sizes for each bin in
Figs. 2 and 4.

SGP GVAX FKB GRW NIM

Number of bins 10 8 7 8 9
Sample size (Bin1) 57 825 1034 6585 1823 12 937
Bin2 166 278 5552 13 021 4867 9536
Bin3 173 826 3458 9008 1423 2705
Bin4 12 4776 1716 3835 166 1193
Bin5 60 115 908 1113 141 604
Bin6 27 775 440 268 116 370
Bin7 13 832 210 192 116 173
Bin8 6993 136 100 196
Bin9 4385 171
Bin10 2631

Fig. 1, but using in situ measurements ofσsp at 450 nm in lieu
of AOD (Fig. 2a) and the scattering aerosol index, Scat_AI
(Fig. 2b). Correlation coefficients for the linear regressions
of CCN0.4 andσsp (Fig. 2c) and Scat_AI (Fig. 2d) for dry
aerosol particles withDp ≤ 1 µm as a function of wavelength
are shown in Fig. 2c and d. Scat_AI is the product ofσsp and
the scattering wavelength exponent,αScat, which is expressed
as

αScat= − log(σsp,λ1/σsp,λ2)/ log(λ1/λ2), (5)

whereσsp,λ1 andσsp,λ1 are scattering coefficients at wave-
lengthsλ1 andλ2 (here,λ1 = 450 nm andλ2 = 700 nm). The
number of CCN bins and sample sizes for each CCN bin are
shown in Table 3. At all sites, correlations betweenσsp and
CCN and Scat_AI and CCN are greater than those for the
AOD–CCN and AI–CCN relationships (Fig. 1). The highest
correlations are found for the Scat_AI–CCN relationships,
which also exhibit much less wavelength dependence.

The sound relationship between aerosol optical quantities
and CCN concentration indicates that if the vertical profile
of aerosol scattering properties is known, the CCN profile
may be estimated. Note that the ARM program has adopted
the method of Ghan et al. (2006) to produce vertical pro-
files of CCN at its long-term sites. The method is based on
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Fig. 2.Same as Fig. 1, but AOD is replaced by aerosol scattering co-
efficients for dry aerosol particles with diameters of less than 1 µm
measured by nephelometers.

aerosol extinction profiles, as well as surface CCN measure-
ments. While their method and ours differ significantly be-
cause they rely on different types of scattering received by
active and passive sensors, the fundamental principle is the
same, namely, making use of optical measurements to derive
CCN. In general, scattering is much more readily measured
than CCN. While this sounds encouraging, the uncertainty is
large, up to a factor of two (Andreae, 2009). Accounting for
some influential factors would help reduce the uncertainty.

3.1.3 Influence of ambient RH

The aerosol humidification effect is defined as the change
in AOD in response to changing RH. A hygroscopic particle
can swell in size through the uptake of water, which enhances
its scattering efficiency and thus increases its contribution to
total extinction and AOD. On the other hand, its capability
of being activated to become a CCN does not depend on RH
because it activates atS. This implies that changes in ambi-
ent RH can result in variations in AOD500 or AI, even when
CCN0.4 concentrations remain the same. As such, the rela-
tionship between CCN and AOD orσsp is affected by RH,
which is qualitatively investigated in the following way.

AOD and AI data originally averaged over different CCN
concentration ranges were further binned within each CCN
interval according to RH range (0–35 %, 35–75 %, and 75–
100 %). Figure 3 shows AOD500 and AI as a function of CCN
concentration for these different RH bins using data from the
SGP site. Both AOD500 and AI increase with increasing am-
bient RH within the same ranges of CCN0.4 concentration.
The correlation between AOD500 and CCN concentration be-
comes weak when ambient RH values are above 75 % due to
the strong aerosol swelling effect on AOD500 (Jeong et al.,
2007). The increase in particle size implies thatα decreases,
which has been demonstrated by others (Noh et al., 2011).
This increase in AOD and decrease inα with increasing RH
complicates the relationship between AI and CCN0.4. Unless

Fig. 3. (a) AOD at 500 nm and(b) AI as a function of CCN0.4
concentration for different ranges of ambient RH. Data are from
the SGP site.

RH is very high, e.g., greater than 95 %, changes in humid-
ity do not influence the wavelength dependence of scattering
in any significant way because scattering coefficients at all
wavelengths change by similar factors and absorption is usu-
ally a minor fraction of extinction (Shinozuka et al., 2007).
AOD500 or AI values under lower ambient RH conditions are
more representative of the real effects of aerosols.

Figure 4 shows the correlation coefficients of the rela-
tionships between in situσsp and CCN for aerosol particles
with Dp ≤ 1 µm and at ambient RH conditions as a func-
tion of wavelength at all sites. The CCN bins used are the
same as in Fig. 2 and ambientσsp are averaged in each CCN
bin. Aerosolσsp measurements, CCN concentrations, ambi-
ent RH measurements, and calculated aerosol hygroscopic
growth factors were temporally matched. The aerosol hygro-
scopic growth factor is calculated at 1 h intervals. Scattering
coefficients corrected for ambient RH have a temporal reso-
lution of one minute and are matched with the closest hourly
value of aerosol hygroscopic growth factor. The correlation
coefficients ofσsp–CCN relationships at ambient RH lev-
els are generally lower than those under dry RH conditions
(Fig. 2c). For example, at the GRW site, there is almost no
relationship between CCN0.4 andσsp at ambient conditions
because particles over the site have a strong hygroscopicity.
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Fig. 4. Correlation coefficients of the relationship between surface-
measured aerosol scattering coefficients and CCN0.4 concentrations
as a function of wavelength for ambient RH conditions and with
aerosol particle diameters of less than 1 µm.

Theσsp–CCN relationship at the NIM site is least affected by
RH because RH is low in that region and the prevalent dust
aerosols have a relatively low hygroscopicity. These results
suggest that the influence of RH on the relationship between
aerosol optical quantities and CCN concentration needs to be
taken into consideration unless RH is low enough for humid-
ification to be negligible.

3.1.4 Influence of aerosol hygroscopicity

Hygroscopicity and RH jointly determine the swelling effect,
which affects AOD andσsp, and thus the AOD (σsp)–CCN re-
lationship. Having addressed the effect of RH, hygroscopic-
ity is investigated by minimizing the influence of ambient RH
through use of in situ measurements ofσsp under fixed mod-
erately dry conditions (∼ 40 %). Figure 5 showsσsp–CCN0.4
relationships for different ranges offRH for dry aerosol par-
ticles withDp ≤ 1 µm (Fig. 5a) andDp ≤ 10 µm (Fig. 5b) at
the SGP site. The sample sizes in Fig. 5a and b are given
in Table 4. No clear influence offRH on anyσsp–CCN rela-
tionship for dry particles withDp ≤ 1 µm andDp ≤ 10 µm is
seen.

The aerosol propertyfRH depends strongly on aerosol
chemical composition (Jeong et al., 2007; Liu et al., 2011)
and conveys information about the enhancement of aerosol
light scattering/extinction as RH increases. Fundamentally, if
aerosol particles are highly hygroscopic, they should be more
readily activated into CCN. To further assess the influence
of fRH on theσsp–CCN relationship, the CCN concentration
andσsp at 450 nm for dry particles withDp ≤ 10 µm (Fig. 6a)
and the ratio of CCN toσsp (Fig. 6b) as a function offRH are
plotted. No significant changes in CCN andσsp with increas-
ing fRH are found, especially whenfRH is greater than 1.5

Fig. 5. Relationship between CCN0.4 concentrations and aerosol
scattering coefficients at 450 nm for dry aerosol particles with(a)
DP ≤ 1 µm and(b) DP ≤ 10 µm for different ranges of aerosol hy-
groscopic growth factor. Data are from the SGP site.

(Fig. 6a). Since there is no significant variation in CCN and
σsp with changes infRH, the ratio of CCN toσsp is insensi-
tive to increasingfRH. This supports the finding thatfRH has
a weak influence on theσsp–CCN relationship. The scatter-
ing wavelength exponent associated with each value offRH
is 1.69± 0.40, 1.67± 0.40, 1.70± 0.40 and 1.76± 0.34, re-
spectively, which shows almost no change with variations in
fRH.

It is still unclear whetherfRH is useful for inferring CCN
properties (Ervens et al., 2007). Studies have shown that the
most important piece of information for CCN closure is the
aerosol size distribution, followed by aerosol composition
(Dusek et al., 2006). Both affect aerosol hygroscopicity (Er-
vens et al., 2007). As natural aerosols are usually well mixed,
the true effect of chemical composition may not stand out
clearly, especially if its signal is weaker than the other un-
certainties. Aerosol composition at the SGP site does not
vary dramatically, sofRH there may be more dependent on
changes in the aerosol size (Hegg et al., 1993). Meanα does
change slightly in each bin, which may indicate that there
are differences in aerosol composition after all. Also,α may
not completely describe the aerosol particle size, especially
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Table 4.Sample size for the data points in Fig. 5a and b.

Particle Size fRH Bins CCN Bins (cm−3)

0–500 500–1000 1000–1500 1500–2000 2000–2500 2500–3000 3000–3500 3500–4000 4000–4500 4500–5000

Dp ≤ 1 µm fRH (1.0–1.4) 22 833 69 685 107 688 88 531 38 563 15 220 7344 3660 2278 1344
fRH (1.4–1.8) 41 441 85 718 61 428 41 203 23 322 14 012 7551 4651 3097 1862
fRH (1.8–2.2) 25 889 53 929 35 743 24 075 11 242 5192 2044 773 389 180
fRH (> 2.2) 8258 25 190 17 361 8299 3078 1142 766 208 77 30

Dp ≤ 10 µm fRH (1.0–1.4) 18 340 43 649 63 002 52 860 24 022 8007 3796 1769 872 598
fRH (1.4–1.8) 33 002 59 206 33 851 17 318 9444 5876 3418 2184 1313 962
fRH (1.8–2.2) 11 890 25 148 17 253 11 590 5572 2595 1013 516 365 153
fRH (> 2.2) 5158 13 135 10 207 6588 3540 1299 704 226 79 29

Fig. 6. (a) CCN0.4 concentrations and aerosol scattering coeffi-
cients, and(b) their ratio as a function offRH for dry particles with
DP ≤ 10 µm. Data are from the SGP site.

for small particles, which are not optically sensitive but are
fRH-sensitive.

3.1.5 Influence of aerosol SSA

In addition to AOD andα, aerosol SSA, defined as the ratio
of scattering to extinction, is another independent aerosol at-
tribute denoting aerosol composition and size. SSA can thus
potentially affect the CCN–AOD (σsp) relationship. SSA can
be estimated from surface measurements made by a scan-
ning sun-photometer, such as those used in the AERONET
(Dubovik and King, 2000), by a combination of direct-beam

Table 5.Sample sizes for the data points in Fig. 7.

CCN bins SSA SSA SSA
(cm−3) (0.8–0.85) (0.85–0.95) (0.95–1.0)

0–500 1342 21 614 21 218
500–1000 3989 47 059 33 114

1000–1500 3728 48 181 27 138
1500–2000 3233 37 130 14 344
2000–2500 1746 18 841 5610
2500–3000 709 9136 2149
3000–3500 419 4552 999
3500–4000 244 2484 430
4000–4500 112 1578 218
4500–5000 67 980 105

and diffuse radiation (Zhao and Li, 2007), or a combination
of surface-measured total attenuation and satellite-measured
atmospheric reflection (Lee et al., 2007). Since both AOD
and SSA are influenced by ambient RH, only surface mea-
suredσsp and SSA at a fixed RH (∼ = 40 %) are used here to
eliminate the influence of ambient RH. Figure 7 showsσsp at
450 nm as a function of CCN0.4 for different ranges of SSA
at 450 nm withDp ≤ 1 µm. Table 5 lists sample sizes.σsp
generally increases with increasing SSA for the same range
of CCN0.4 concentration. Low SSA values are generally as-
sociated with high CCN concentrations, and vice versa.

Figure 8a shows CCN0.4 concentrations,σsp, and their
ratio (CCN /σsp) at 450 nm as a function of SSA for
Dp ≤ 1 µm. CCN0.4 concentrations decrease slightly with in-
creasing SSA, whileσsp increases significantly with increas-
ing SSA. Their ratio decreases significantly with increasing
SSA. One explanation for these dependencies involves an air
mass containing light-absorbing soot particles coated with
volatile material (e.g., sulfates and organics) (Clarke et al.,
2007). These particles can act as CCN, but scatter radiation
poorly, therefore they have a lower SSA (Shinozuka, 2008).
As they age, the particles grow in size due to deposition of
soluble mass, such as sulfate and nitrate. They can then scat-
ter more even while their number concentration remains con-
stant or decreases due to coagulation (Shinozuka, 2008). To
constrain any influence of particle size, which also affects
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Fig. 7. Relationship between aerosol scattering coefficients at
450 nm and CCN0.4 concentrations for different ranges of SSA and
for dry particles withDP ≤ 1 µm.

CCN and aerosol optical quantities, the same relationships
as in Fig. 8a are plotted in Fig. 8b, but using only data withα

ranging from 1.6 to 1.8. Similar trends are found, eliminating
particle size as a driving force behind the relationships.

Results presented here suggest that SSA has a signifi-
cant influence on the relationship between CCN concentra-
tion and aerosol optical quantities and if used as a constraint,
may reduce uncertainties in the relationship. Similar results
were reported by Shinozuka (2008), who showed that by us-
ing SSA as a constraint, the estimation of CCN concentration
from aerosol extinction coefficients for pollution particles in
Mexico is improved by up to 20–30 %.

3.1.6 Parameterizations for estimating CCN

The above analyses serve a guide toward developing more
accurate relationships between CCN and aerosol optical
properties by accounting for the major influential factors. A
relationship between CCN and AOD is first developed by
considering the influences of particle size and aerosol SSA.
Correcting for the strong influence of RH cannot be general-
ized because it depends on aerosol type. On the other hand,
the swelling effect is only significant for large RH (> 90 %).
Here, the parameterization is limited to RH < 80 %, i.e., only
measurements made under dry to moderately moist condi-
tions are used. The parameterization based upon the large
data set from the ARM SGP site may be valid for other rural
continental regions.

The parameterization is given as

CCN0.4= 1.2824e5· [AOD500·α]2.39410.85 < SSA < 0.95. (6)

R2 is 0.94 and the mean relative error (RE), defined as
(CCNC-CCNM)/CCNM , is 0.85. CCNC and CCNM represent
calculated CCN concentration using Eq. (6) and measured

Fig. 8. CCN0.4 concentration, aerosol scattering coefficient and
their ratio as a function of SSA at 450 nm for all dry particles with
DP ≤ 1 µm for (a) all values of the extinction Angstrom exponent
and (b) values of the extinction Angstrom exponent that fall be-
tween 1.6 and 1.8. The sample number in each SSA bin for each
case is given in each panel.

CCN concentration, respectively. SSA is limited to 0.85–
0.95, which represents most aerosol particles with moderate
scattering and absorbing properties.

The relatively large error is mainly attributed to the fact
that CCN is measured near the surface, but AOD represents
total light extinction in the whole atmospheric column. Any
unaccounted for swelling effect is not expected to be very
large due to the constraint in RH. Compared to the use of a
single fixed relationship between CCN and AOD,R2 is im-
proved by 9.3 % (0.94 vs. 0.86) and RE is improved about
11.5 % (0.85 vs. 0.96).

If there are in situ aerosol optical measurements available,
such asσsp at 450 nm, estimation of CCN can be further im-
proved by the following parameterization:

CCN0.4= 2.3397·
[
σsp·α

]1.51780.85 < SSA < 0.95. (7)

R2 is improved (increasing from 0.94 to 0.99) and mean RE
is reduced from 0.85 to 0.20, relative to Eq. (6). When com-
pared to a single fixed CCN–σsp relationship that does not
account for any influential factors, theR2 from Eq. (7) does
not differ considerably (0.99 vs. 0.97); the mean RE is sig-
nificantly decreased by as much as 74.7 % (0.20 vs. 0.79).

As mentioned in Sect. 2.2, a CCN parameterization is also
given for CCN concentrations atS = 0.1 %. Using AOD500,
the parameterization is

CCN0.1= 3.4e4
· [AOD500·α]2.47520.85 < SSA < 0.95, (8)
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whereR2
= 0.90 and RE= 0.91. Usingσsp at 450 nm, the

parameterization is

CCN0.1= 0.7591·
[
σsp·α

]1.56210.85< SSA < 0.95, (9)

whereR2
= 0.99 and RE= 0.20.

4 Summary and conclusions

Aerosol loading has often been used as a proxy or predic-
tor of CCN in cloud–aerosol interaction studies due to the
dearth of CCN measurements. Based on extensive measure-
ments of aerosol optical quantities and CCN number con-
centrations made at different ARM Climate Research Facil-
ity sites, the relationships between aerosol optical quantities,
including columnar AOD, surface-measured aerosol scatter-
ing parameters, and CCN concentrations are assessed. For
the purpose of constraining and reducing the variability and
uncertainties in relating aerosol optical quantities and CCN
concentrations, the influences of RH, aerosol hygroscopicity
and SSA are investigated using more extensive routine mea-
surements made at the permanent ARM SGP site.

In general, mean AOD–CCN relationships at the SGP,
GVAX and FKB sites show a variable degree of correlation.
A weaker correlation is found at the GRW and NIM sites
where relatively large particles dominate. In general, the cor-
relation decreases as the wavelength at which AOD is mea-
sured increases. So use of AOD values measured at the short-
est wavelengths is recommended. Moreover, it is better to
use AI derived from AOD measurements at two wavelengths
than AOD at a single wavelength because the relationship
between AI and CCN is systematically better than the CCN–
AOD relationship. The best predictors of CCN are in situ
aerosol scattering/extinction coefficients and aerosol indices
measured simultaneously with CCN.

AOD and AI are significantly influenced by ambient RH
levels. The correlation between AOD (AI) and CCN becomes
weak when ambient RH values are high, e.g., greater than
75 %, due to strong aerosol swelling effects on AOD. The
correlation between aerosol optical quantities and CCN con-
centration is much tighter for dry air than for humid air. This
implies that aerosol optical quantities measured at low RH
are better representatives of the real effects due to aerosols.
No significant influence of the aerosol hygroscopic growth
factor on any CCN–σsp relationship is found. Particles with
low SSA are generally associated with higher CCN concen-
trations for the same scattering coefficient and lowerσsp val-
ues. Aerosol SSA has a significant influence on the relation-
ship between CCN concentration and aerosol optical loading
variables, and can thus be used to reduce uncertainties in the
estimate of CCN. Note that bothfRH and SSA are related to
aerosol chemical composition.

The influential factors are accounted for in developing pa-
rameterization schemes for estimating CCN from any aerosol
optical property (AOD,α, and σsp). The best results are

achieved by usingσsp and SSA. The parameterization is valid
for RH < 80 %. If the humidification function and humidity
are known, one can correct for the effect to any higher values
of RH.

This study reveals the potential and limitations of using
aerosol optical property measurements to infer CCN concen-
tration with a focus on the impact of ambient RH, aerosol
hygroscopic response, and SSA. Further evaluation and anal-
yses will require aerosol composition and aerosol size distri-
bution information, together with aerosol optical parameters
and meteorological parameters for each aerosol type and re-
gion.
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