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A B S T R A C T   

For the past two decades, quantitative retrievals of aerosol optical depth (AOD) have been made from both geostationary and polar-orbiting satellites, and the results 
have been widely used in numerous studies. Despite the progress made in improving the accuracy of AOD retrievals, there are still major challenges, especially over 
land. A notable one for the so-called Dark-Target (DT) algorithms is building the surface reflectance (SR) relationships (SRR) to derive SR in the visible channels from 
SR in the short-wave infrared (SWIR) channel, mainly because these relationships are strongly subjected to entangled factors (e.g., viewing geometry, surface type, 
and vegetation state). In this study, we examine the benefits of a new method for deriving the SRR using deep learning techniques. The SRR constructed by the deep 
neural network (DNN) considers multiple related inputs, such as the SWIR normalized difference vegetation index (NDVISWIR), viewing geometry, and seasonality, 
among others. We then incorporate the DNN-constrained SRR into a DT algorithm developed at NOAA/STAR to retrieve AOD from the Advanced Himawari 
Instrument (AHI) onboard the new generation of geostationary satellites, Himawari-8. The revised DT algorithm with the deep learning technique (DTDL) de-
monstrates improved performance over the study region (95–125°E, 18–30°N, a portion of the AHI full disk), as attested by significantly reduced random noise, 
especially for low NDVISWIR and high surface albedo cases. Robust independent tests indicate that this algorithm can be applied to untrained regions, not only to those 
used in training. The method directly benefits the algorithm development for Himawari-8 and can also be adopted for other geostationary or polar-orbiting satellites. 
Our study illustrates how artificial intelligence could significantly improve AOD retrievals from multi-spectral satellite observations following this new approach.  

1. Introduction 

Aerosols critically impact Earth's climate through modulating the 
energy budget and cloud properties and serve as the primary source of 
uncertainties to quantifications and interpretations of the changing 
radiation budget of Earth (Ackerman et al., 2004; Boucher et al., 2013;  
Chung et al., 2012; Guo et al., 2017, 2019; Li et al., 2011, 2017;  
Ramanathan et al., 2001). To qualitatively and quantitatively under-
stand aerosols' impact on the climate system, measuring aerosol optical 
properties using advanced remote sensing techniques is increasingly 
needed (Kahn et al., 2017; King et al., 2003; Pavlov et al., 2018; Su 
et al., 2020a; Wei et al., 2018). Among these properties, aerosol optical 
depth (AOD) is the critical and most widely used product to tackle both 
scientific questions and air quality monitoring (Chu, 2002; Guo et al., 
2020; Li et al., 2015; Lin et al., 2015; Su et al., 2017, 2020b; van 
Donkelaar et al., 2006; Wei et al., 2019a, 2019b). This task is especially 
important and challenging over land due to the complexity of under-
lying land properties and aerosol types (Gupta et al., 2016; Levy et al., 
2005; Li et al., 2009). 

During the last 20 years, substantial progress has been made in 

aerosol remote sensing techniques for satellites, which is considered the 
best way to obtain long-term, large-scale AOD products (Colarco et al., 
2010; King et al., 1999; Li et al., 2009). Launched onboard Terra (1999) 
and onboard Aqua (2002), the Moderate Resolution Imaging Spectro-
radiometer (MODIS) has offered benchmark global AOD retrievals over 
a long period, which have been extensively used in numerous studies 
(Gupta et al., 2016, 2018, 2019; Han et al., 2020; Kaufman et al., 2005;  
Levy, 2007; Li et al., 2013; Lin et al., 2016; Remer et al., 2008; Su et al., 
2018; Wei et al., 2019c, 2020; Mhawish et al., 2017, 2018). Following 
the success of MODIS, measurements from multiple geostationary and 
polar-orbiting satellites have been used to retrieve AOD at regional and 
global scales (Kahn et al., 2009; Kondragunta et al., 2020; Laszlo, 2018;  
Laszlo et al., 2008; Yoshida et al., 2018). 

Several algorithms have been developed to retrieve AOD using data 
from these sensors, with different merits and weaknesses. A widely used 
algorithm, the Dark Target (DT) algorithm, has been employed in 
multiple sensors (Jackson et al., 2013; Kaufman and Coauthors, 1997;  
Levy et al., 2007), which has good performance over low albedo regions 
(e.g., dark ocean and dark vegetated surfaces) (Levy et al., 2013). An-
other popular algorithm, the Deep Blue (DB) or ultraviolet method, can 
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provide retrievals over bright surfaces with useful accuracy (Hsu et al., 
2006, 2013). As a relatively new method, the Multi-Angle Im-
plementation of Atmospheric Correction (MAIAC) has been used to 
retrieve AOD at the native 1-km resolution with high accuracy 
(Lyapustin et al., 2011, 2018). Since the DT algorithm was mainly de-
veloped for relatively dark regions, the DB and MAIAC algorithms offer 
higher retrieval rates and more accurate retrievals over bright surfaces 
due to their different strategies (Hsu et al., 2013; Lyapustin et al., 
2018). Among these methods for MODIS, the MAIAC-derived AOD has 
the best performance (Liu et al., 2019; Mhawish et al., 2019). 

The abovementioned algorithms work reasonably well for polar- 
orbiting satellites, providing long-term AOD products with extensive 
coverage. However, the temporal resolution for polar-orbiting satellites 
is limited, while geostationary satellites have great potential to fill this 
gap (Kim et al., 2008, 2019). An advanced geostationary satellite 
named Himawari-8 was successfully launched on 7 October 2014 by the 
Japan Meteorological Agency. As a vital sensor onboard Himawari-8, 
the Advanced Himawari Imager (AHI) provides spectral reflectance 
measurements every 10 min with variable spatial resolutions of 
0.5–2 km at different channels covering Southeast Asia, East Asia, part 
of South Asia, and Oceania. With high spatial and temporal resolutions, 
the AHI offers a great opportunity to continuously monitor aerosols 
over Asia in detail (Gupta et al., 2019). Nevertheless, recent studies 
have revealed that Himawari-8 AOD products from the Japan Meteor-
ological Agency still suffer from large uncertainties, especially for low 
Normalized Difference Vegetation Index (NDVI) cases (Wei et al., 
2019d; Zhang et al., 2019). 

In this study, we focus on improving the DT algorithm, as im-
plemented with Himawari-8/AHI observations at the Center for 
Satellite Applications and Research (STAR), National Oceanic and 
Atmospheric Administration (NOAA) (Laszlo et al., 2008, 2018). A core 
part of the DT algorithms is the estimation of spectral surface re-
flectances (SR) in the visible channels (0.47/0.64 μm) from SR in the 
short-wave infrared (SWIR) channel (2.25 μm). The usual way to ac-
complish this is to use empirical functions to describe the SR relation-
ships (SRR) between the visible and SWIR channels with consideration 
of the scattering angle and the NDVI at SWIR (NDVISWIR) (e.g., Jackson 

et al., 2013; Kaufman et al., 1997; Levy et al., 2007). Due to the com-
plexity of the SR relationships, such empirical regressions usually lead 
to relationships fraught with large biases, a major source of un-
certainties in AOD retrievals. 

Since it appears difficult to establish mathematical functions in 
closed form that accurately characterize the SRR, deep learning tech-
niques may offer a better way to deal with the task. The multi-layer 
artificial neural network, a primitive deep learning technique, has been 
widely employed (Cireşan et al., 2012; Liu et al., 2017; Seide et al., 
2011; Haykin, 2009) for a variety of environmental and geographical 
studies (e.g., Deng and Yu, 2014; Ma et al., 2020; Tong et al., 2019). 
Hence, we use the multi-layer neural network (i.e., the deep neural 
network, or DNN) to construct the SRR that accounts for the influences 
of multiple variables (NDVISWIR, viewing geometry, time, etc.). The 
DNN-constrained SRR is then incorporated into the NOAA/STAR DT 
algorithm. The revised DT algorithm with deep learning techniques 
(DTDL) provides an example of how deep learning could improve re-
trievals of AOD from multi-spectral satellite observations. 

The paper is structured as follows: General information about multi- 
source data used and preprocessing are presented in Section 2. Section 
3 describes the SRR constructed by traditional fitting and by the DNN. 
Section 4 presents the methodology of the revised algorithm DTDL. The 
objective of this paper is to test the application of a deep learning 
technique for deriving SRR and to demonstrate the improvement in 
AOD retrievals. Therefore, we only present the most relevant features of 
the algorithm in Section 4. An evaluation of the new algorithm is de-
monstrated in Section 5. Section 6 presents a summary and concluding 
remarks. 

2. Data and instruments 

2.1. Himawari-8/AHI sensor 

The new generation of geostationary satellite Himawari-8 carrying 
AHI was launched on 7 October 2014 and became operational on 7 July 
2015. AHI is able to image East Asia every 30s while offering full-disk 
coverage of the Pacific region (longitude: 80°E–160oW, latitude: 

Fig. 1. Spatial distribution of terrain height (unit: m) of the study region. Red dots indicate the 16 AERONET sites, and pink dots indicate the 2 SONET sites used in 
our study. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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60oS–60oN) every 10min from a geostationary orbit over the equator at 
~140°E (https://www.data.jma.go.jp/mscweb/en/product/library_ 
data). Table S1 summarizes the characteristics of the spectral chan-
nels of AHI. The NOAA/STAR over-land AOD algorithm uses five 
shortwave channels (1, 3, 4, 5, and 6) with central wavelengths of 0.47, 
0.64, 0.86, 1.61, and 2.25 μm. The nominal spatial resolutions of ob-
servations in these channels are, in order, 1, 0.5, 1, 2, and 2 km. To 
provide consistent inputs, observations from the higher-resolution 
channels are averaged to the lowest spatial resolution of 2 km, with a 
temporal resolution of 30 min. Due to the focus of our current project, 
we obtained AHI data over a specific region (95–125°E, 18–30°N) in 
2017 (see Fig. 1). We analyze data from 00:00 to 09:00UTC, which 
corresponds to the daytime over the region studied. 

2.2. Ground AOD measurements 

In this study, we utilize ground-based AOD datasets obtained from 
two observation networks: the Aerosol Robotic Network (AERONET) 
and the Chinese Sun–Sky Radiometer Observation Network (SONET). 
The ground-based observation network of sun and sky scanning 
radiometer, AERONET, provides aerosol retrievals under clear-sky 
conditions every 15 min. It is widely utilized to evaluate aerosol re-
trievals derived from satellites (Giles et al., 2019; Holben et al., 1992; Li 
et al., 2014). With reported uncertainties of 0.01–0.02, AOD retrievals 
derived from AERONET are much more accurate than any satellite re-
trieval (Eck et al., 1999) and have thus been regarded as “ground- 
truth”. Version 3 Level 1.5 AOD products derived from AERONET are 
used in our study (https://aeronet.gsfc.nasa.gov/). The ground-based 
CIMEL radiometer network in China, SONET (http://www.sonet.ac.cn/ 
), uses the same instruments and algorithms as used in AERONET, with 
a similar uncertainty of 0.01–0.02 (Li et al., 2018). 

Here, we used data from 16 AERONET sites and 2 SONET sites for 
cloud-free scenes over the study region (Fig. 1). The AERONET and 
SONET AOD retrievals are typically available at multiple wavelengths 
(i.e., 440, 500, 675, 870, and 1020 nm). Following Eck et al. (1999), a 
quadratic fit is used to characterize the relationship between the loga-
rithm of AOD and the logarithm of wavelength. The AOD at 550 nm is 
then interpolated, based on the relationship between AOD and wave-
length. The ground-based AODs at 550 nm are used in two ways. They 
provide the AOD input needed to estimate the SR from which the SRR is 
built (see Section 3.1). They are also the source of “ground-truth” in the 
evaluation of AHI-retrieved AOD (see Section 5). 

2.3. Auxiliary data 

An external cloud mask serves as input for identifying clear-sky 
pixels for both establishing the SRR and aerosol retrievals. The external 
cloud mask (Heidinger et al., 2016) is produced upstream to the AOD 
retrieval, and as such, it is not part of the AOD algorithm. The cloud 
mask is processed at the same temporal and spatial resolutions as the 
AHI measurements. Note that the presence of cirrus clouds in a scene is 
usually detected by the 1.38-μm channel in other satellites (Gao and 
Kaufman, 1995; Gao et al., 2002). Due to the lack of a 1.38-μm channel 
on AHI, cirrus is primarily identified by the 11- and 12-μm split-window 
test. We note that other methods also exist for detecting cirrus in an AHI 
pixel. For example, Imai and Yoshida (2016) developed a CO2 slicing 
technique. We also use the land/ocean mask to choose the appropriate 
algorithm (land or ocean) for retrieving AOD. 

Total amounts of water vapor and ozone, surface wind field, pres-
sure, and surface altitude are obtained at a horizontal resolution of 
0.5°×0.5° from the National Centers for Environmental Prediction 
Global Forecast System (GFS) model data at a 3-h interval (https:// 
www.nco.ncep.noaa.gov/pmb/products/gfs/).These data are inter-
polated to match the uniform spatial resolution of 2 km and the tem-
poral resolution of 30 min of the AHI reflectance data. In particular, 
model data are linearly interpolated to match the times of satellite 

observations. For a given satellite pixel, we use the model data closest 
to the pixel. The temporal and spatial resolutions of GFS data are 
coarser than those of the satellite data. Thus, interpolation inevitably 
leads to some uncertainties. Note that the model itself also suffers from 
considerable uncertainties. However, since observations are not avail-
able everywhere, the only feasible option is using model or reanalysis 
data. 

3. Spectral surface reflectance relationships 

SR estimated by SRR is one of the most important factors affecting 
the accuracy of AOD retrievals over land (Kaufman et al., 1997; Levy 
et al., 2007). Similar to the DT algorithm for MODIS (Remer et al., 
2005), the National Environmental Satellite, Data, and Information 
Service/STAR DT algorithm (Laszlo et al., 2018; Vermote et al., 2002) 
retrieves SR (simultaneously with AOD) using empirical relationships 
between the SRs in the blue (0.47 μm), red (0.64 μm), and SWIR 
(2.25 μm) bands of dark, dense vegetation. Kaufman et al. (1997) ex-
plained that the existence of such relationships is the result of the 
correlation between chlorophyll (which absorbs radiation in the red/ 
blue band) and liquid water (which absorbs radiation in the SWIR 
band). 

The estimation of spectral SR needed to build the relationships is 
described next. This is followed by showing “traditional” regression- 
based relationships and an improved relationship derived by applying a 
deep neural network. 

3.1. Estimation of SR 

SRs at 0.47, 0.64, and 2.25 μm needed to determine the relation-
ships between them are estimated from the AHI reflectances by ac-
counting for atmospheric effects. Following Vermote et al. (1997a), we 
use the NOAA/STAR DT AOD algorithm that calculates the surface and 
atmospheric contributions to the top-of-the-atmosphere (TOA) re-
flectance. Assuming a Lambertian surface, contributions of the surface 
(ρsurf) and atmosphere (ρatm) to the TOA reflectance (ρtoa) are calculated 
as (Vermote et al., 1997a, 1997b): 
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where Tog indicates the transmittance from absorption contributed by 
gases other than water vapor and ozone; TO3 represents the transmit-
tance from ozone absorption; TH2O and T H O1

2 2 are the transmittances 
from total and half column water vapor absorption, respectively; TR+A

↓ 

/TR+A
↑ indicate the total (i.e., direct plus diffuse) downward/upward 

atmospheric transmissions; SR+A represents the atmospheric spherical 
albedo; ρR(P) represents the Rayleigh reflectance contributed by mo-
lecular scattering at the real surface pressure (P); ρR+A represents the 
path reflectance by molecules and aerosols at the standard surface 
pressure (P0); and ρlam is the Lambertian land surface reflectance. When 
everything needed to calculate ρatm is known, ρsurf is determined from 
Eq. 3. Eq. 2 is then solved for the surface reflectance ρlam. We apply this 
process at the AERONET/SONET sites where AOD is known from 
ground-based measurements. 

Radiative properties of aerosols (normalized extinction coefficient, 
phase function, and single-scattering albedo) required to calculate re-
flectances and transmittances are currently prescribed by one of four 
candidate aerosol models (generic, urban, smoke, and dust) identified 
by the NOAA/STAR DT algorithm as part of the AOD retrieval. We 
recognize that this aerosol model may not be optimal for two reasons. 
First, the candidate models only represent broad categories of aerosol 
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properties. For a particular retrieval, the actual property of aerosols 
likely differs from the property prescribed by any of the candidate 
models. Second, since the model selection is influenced by the SRR used 
in the DT algorithm, uncertainties in SRR contribute to the uncertainty 
in the model selection, especially when the 550-nm AOD is larger than 
about 0.5, i.e., when the radiative properties of candidate aerosol 
models differ the most from each other. For the dataset used in this 
study, this applies to only about 30% of the samples. The approximate 
threshold of 0.5 applies only for the generic and urban models and for 
the normalized extinction of the smoke model. Radiative properties of 
dust and the single-scattering albedo and phase function of smoke are 
different from those of the generic and urban models, even at optical 
depths smaller than 0.5. The impact of erroneous model selection is 
expected to be somewhat mitigated by screening out low-quality re-
trievals, which, among other factors, are associated with poor agree-
ment between the observed and calculated TOA spectral reflectances, 
which can happen when the aerosol model picked by the retrieval is 
likely in error. Even though the calculated SR suffers from multiple 
sources of uncertainties (e.g., the Lambertian assumption, aerosol op-
tical properties, and aerosol vertical distribution), it is still considered 
suitable for retrieving AOD because the same assumptions are made in 
the AOD retrieval. Thus the SRs calculated from Eqs. 1–3 are considered 
as “ground truth”. 

Calculations of TH2Oand TO3 require the column amounts of water 
vapor and ozone, respectively. These parameters, along with other 
meteorological parameters needed in Eq. 1, are obtained from the GFS.  
Laszlo et al. (2018) provide details of calculations of all gaseous 
transmittances, including Tog and Rayleigh reflectance. In constructing 
the database used for establishing SRR, all available 2-km SR retrievals 
are averaged within 10 km around the ground sites. 

3.2. SRR from regression 

The absorption of liquid water and chlorophyll at visible (e.g., blue 
or red bands) and SWIR wavelengths are related to the state of the 
vegetation. The relationships of spectral SR are also affected by the 
vegetation state, as well as seasonality (Kaufman and Remer, 1994;  
Kobayashi et al., 2007; Remer, 2001). The state of vegetation is usually 
characterized by the top-of-canopy NDVI. However, because this NDVI 
requires knowledge of AOD, NDVISWIR is used as an aerosol-in-
dependent measure of the vegetation state, in practice. It is defined as 
(Levy et al., 2007): 

=
+

NDVISWIR

m m

m m
1.61 2.25

1.61 2.25 (4) 

where ρ1.61
m and ρ2.25

m are the AHI-measured reflectances at 1.61 μm 
(channel 5) and 2.25 μm (channel 6), respectively. 

Fig. 2 presents the scatterplots of SR0.47 (Fig. 2a-b) and SR0.64 

(Fig. 2c-d) as a function of SR2.25, with colors representing values of 
NDVISWIR (left panels) and scattering angle (right panels). Hereafter, 
SRλ represents the SR at wavelength λ (i.e., 0.47, 0.64, and 2.25 μm). 
Despite the scatter, higher SR is generally associated with lower 
NDVISWIR and higher scattering angles. The simplest linear regressions 
in the form of Y = m + n X, where m and n are constants, are also 
shown. These simple linear regressions cannot fully characterize the 
SRR between visible and SWIR channels, so it is necessary to add 
NDVISWIR and scattering angle into the empirical relationship between 
SR in multiple channels (Laszlo, 2018; Remer et al., 2013). Table 1 
presents the SRR obtained this way and used in this study as one of the 
possible empirical functions to represent the SRR. The regression 
coefficients are derived from the least-squares method for multiple 
parameters (Bühlmann and Van De Geer, 2011). 

3.3. SRR from DNN 

We adopted the DNN to derive SR at the visible channel (0.64 μm) 
from SR at the SWIR channel (2.25 μm). The DNN is designed based on 
the structure and functions of the nervous system and the brain, which 
can contain a large number of interconnected individual elements (i.e., 
artificial neurons) working in parallel (Cireşan et al., 2012; Sarle, 1994;  
Seide et al., 2011). Using a sufficient dataset to train the model, a DNN 
model can provide a predicted output for new input data due to its 
learning ability (Schmidhuber, 2015). 

Instead of specific functions, we use the DNN to train the relation-
ship between SR0.64 and SR2.25 based on measurements within 10 km 
around the AERONET/SONET sites. Based on the previous descriptions 
and Eqs. 1–3, we add additional inputs, including NDVISWIR, scattering 
angle, TOA reflectances at 0.47/0.64/2.25 μm, seasonality, column 
amount of ozone, column amount of water vapor, and the pressure at 
the surface level. Meteorological parameters are obtained from the 
NCEP GFS. The seasonality is classified as winter 
(December–January–February), spring (March–April–May), summer 
(June–July–August), and autumn (September–October–November). 
The four seasons are denoted as 1, 2, 3, and 4, respectively. The sea-
sonality is then used in the DNN training and prediction. Due to the 
nonlinearity in the relationships among various parameters, the DNN 
model is based on the Bayesian regularization approach for tracking 
various nonlinear functions (Burden and Winkler, 2008). The maximum 
number of epochs is set as 10,000 to allow sufficient training. As shown 
in Fig. 3, the corresponding input data are extracted from a geo-
graphical grid. The input data are then interconnected with multiple 
neurons within the hidden layers. Fig. 3 also shows the architecture of 
neurons in the hidden layers. The total number of hidden layers is 
n + 3, where n can be adjusted as needed. The first and second hidden 
layers have 8 and 4 neurons, respectively, and the last hidden layer has 
one neuron. Other hidden layers have two neurons. The neuron is a 
processing element that sums the inputs and weights. The strengths and 
importance of the connections are represented by neuron biases and 
weights, which are automatically adjusted in the training process. The 
predicted SR0.64 would then be generated for a given grid based on the 
training model. 

3.4. The performance of SRR derived from regression and DNN 

The performance of the empirical function in the traditional ap-
proach is shown in Fig. 4a that plots the 0.64-μm SR estimated from the 
empirical function as a function of the “true” 0.64-μm SR obtained from 
the AHI TOA reflectance and the ground-observed AOD using Eqs. 1–3. 
The plot shows a fair amount of scatter for individual retrievals that 
could lead to considerable errors in AOD. The empirical function is also 
likely to underestimate at the high end and overestimate at the low end 
of the “true” SR values. 

For evaluating the performance of the DNN model, we use the 
sample-based cross-validation (CV) technique (Rodriguez et al., 2010). 
For the CV process, we randomly choose 70% of the total samples for 
training, then utilize the remaining 30% of the dataset for validation. 
Such a procedure is repeated ten times to avoid biases in the selection. 
Basically, the data sample size for validation is expanded ten times, 
while the samples do not overlap with the training data. Fig. 4b-e 
present the scatterplots of the 10-CV results of SR0.64 for different 
numbers of hidden layers with the architecture shown in Fig. 3. Sam-
ples of 10-CV are three times the original dataset. The number of 
neurons is a critical parameter in the DNN but does not significantly 
affect the DNN performance in this study. Despite a slightly larger bias 
when the number of hidden layers is three, DNN-derived SR0.64 shows 
consistent performance for different numbers of neurons. With the 
smallest root-mean-square error (RMSE), we set the total number of the 
hidden layers to 7 and the total number of neurons to 27. In the ar-
chitecture constructed in our study, the DNN predicts SR0.64 with 
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RMSEs and mean absolute errors (MAEs) that are about a third of those 
predicted by the empirical function, as shown in Fig. 4. 

Following previous studies (e.g., Gupta et al., 2016), we still use an 

empirical linear relationship to calculate SR0.47 from SR0.64 (Fig. S1). 
The linear regression predicting SR0.47 from SR0.64 captures the overall, 
dominant characteristics of the true SR0.47 and results in a relatively 
good correlation coefficient (0.9). But the residual error of the linear fit 
is still considerable because of the large scatter in the data. In the 
current stage, we do not use the DNN to train the relationship between 
SR0.47 from SR0.64 because we found that the DNN may predict un-
physical values of SR0.47 based on preliminary analyses (e.g., smaller 
than 0 or larger than 0.3, the maximum value expected for the vege-
tated surface at this wavelengths). However, we do not rule out the 
possibility that the DNN may improve the performance of retrieved 
SR0.47 with appropriate inputs and architecture. Based on the linear 
fitting of SR, we use a simple regression 
(SR0.47 = 0.86 × SR0.64 − 0.02) to derive SR0.47 from the DNN-derived 
SR0.64. To avoid negative values, SR0.47 is set to 0.01 when SR0.64 is less 
than 0.025. 

Fig. 2. (a, b) The linear regression between SR0.47 (surface reflectance at 0.47 μm) and SR2.25 (surface reflectance at 2.25 μm). (c, d) The linear regression between 
SR0.64 (surface reflectance at 0.64 μm) and SR2.25. In (a, c), the colour-shaded dots indicate the corresponding NDVISWIR. In (b, d), the colour-shaded dots indicate the 
corresponding scattering angle. The black solid lines and error bars represent the average values and standard deviations for each bin, which divides the x-axis into 
ten equal parts. The regression equations and correlation coefficients (R) are given at the top of each panel. The SR data are derived from matched ground AOD and 
AHI data. 

Table 1 
Empirical functions relating surface reflectances (SR) at 0.47, 0.64, and 
2.25 μm. Θ indicates the scattering angle. NDVISWIR is the shortwave infrared 
normalized difference vegetation index.       

NDVISWIR range SR0.64 = m + n × SR2.25 

m = a + b × Θ; n = c + d × Θ 
SR0.47 = 0.86 × SR0.64 − 0.02 

a b c d  

NDVISWIR < 0.2 −0.0416 0.00058 0.68 −0.00095 
0.2≤NDVISWIR < 0.3 −0.038 0.00060 0.9 −0.0036 
0.3≤NDVISWIR < 0.4 −0.026 0.00026 1.21 −0.0045 
0.4≤NDVISWIR < 0.5 −0.0147 0.000067 1.32 −0.0048 
0.5≤NDVISWIR 0.0077 −0.00011 0.91 −0.0019 
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4. Dark-target – Deep-learning (DTDL) algorithm 

4.1. The algorithm combining the DNN and the DT method 

We implemented the DNN scheme for the SRR into the NOAA/STAR 
DT algorithm for Himawari-8/AHI. This DT algorithm follows the ap-
proach applied to the GOES-R Advanced Baseline Imager and described 
in more detail by Laszlo et al. (2018). For this DT algorithm, the land 
aerosol models are adopted from previous studies for MODIS (Levy, 
2007; Remer et al., 2006). Detailed information about these aerosol 
models can be found in Table S2. There are notable uncertainties in the 
AOD retrievals associated with assumed aerosol models, which may 
lead to uncertainties of more than 10% in the retrievals (Jeong et al., 
2005; Mielonen et al., 2011; Tirelli et al., 2015; Wang et al., 2017; Wu 
et al., 2016). This is very difficult to solve since we cannot actually 
obtain or retrieve the real aerosol model from monodirectional, mul-
tispectral intensity measurements alone. Moreover, different types of 
aerosols are mixed in the real atmosphere and show large vertical 
variations. Such complex information may not be conveyed by some 
common aerosol models (Li et al., 2020). Unlike oceans, the surface 
properties of land demonstrate large variability and great complexity, 
making modeling the spectral SR difficult. The bias in SR further serves 
as a major source of uncertainties in the aerosol retrieval over land. The 
SRR trained by the DNN is expected to mitigate the problem. 

The retrieval algorithm can be described as searching for the pair of 
AOD and SR that leads to calculated TOA reflectances which best fit the 
observed TOA reflectances at 0.47, 0.64, and 2.25 μm. Instead of di-
rectly using a radiative transfer model (i.e., 6SV v1.1), a look-up table 
(LUT) of necessary terms for several candidate aerosol models, AOD 
values, and geometries was generated, based on the 6S vector radiative 
transfer model (Vermote et al., 1997a) for efficient calculations. Fig. 5 

outlines the procedure of simultaneous AOD retrievals and SR. For each 
aerosol model, an iterative procedure is presented by looping over the 
AOD values in the LUT in ascending order. For a specific step i in the 
loop, a value of SR2.25 is calculated from the AOD and the TOA re-
flectance in the SWIR channel. SR0.64 is then directly estimated through 
the DNN-trained SRR described in Section 3.1.1. SR0.47 is calculated 
from the DNN-derived SR0.64, based on linear regression. The TOA re-
flectance at 0.47-μm (ρ0.47, i) is derived from τ550, i and SR0.47. The loop 
over the AOD values is terminated when ρ0.47, i converges to the ob-
servation (ρ0.47

obs). For the current aerosol model, the AOD retrieval is 
further estimated based on linear interpolation. Furthermore, the cor-
responding TOA reflectance at 0.64 μm is calculated from the current 
AOD retrieval and SR0.64. The associated residual is calculated as the 
squared difference between the observed TOA reflectance and the cal-
culated TOA reflectance at 0.64 μm. By looping the aerosol model, the 
AOD retrieval with the smallest residual is selected as the solution. 

4.2. Quality control 

In the NOAA/STAR DT algorithm, several external masks and in-
ternal tests are applied to screen out unsuitable pixels and control the 
quality of AOD retrievals. Details of the procedures are provided by  
Laszlo et al. (2018), but here, we summarize the major ones for com-
pleteness. First, pixels with ρ0.47

obs  >  0.4 are deemed as cloudy or too 
bright for the aerosol retrieval and are excluded. An internal snow test 
and ephemeral water test are then applied, following previous studies 
(Jackson et al., 2013; Walton et al., 1998). An internal inhomogeneity 
test is also performed to further screen pixels. Detailed information on 
these tests is provided in the publicly available algorithm theoretical 
basis documents referenced by Laszlo et al. (2018). Based on the re-
trieval residual, external masks, and internal tests, the AOD retrievals 

Fig. 3. Diagram describing the deep neural network (DNN) used to derive SR0.64. SR0.47 is calculated from SR0.64, based on a simple linear function (Table 1).  
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are classified into four quality levels (i.e., no retrieval, low quality, 
medium quality, and high quality). Following Laszlo et al. (2018), Table 
S3 summarizes the criteria for determining the quality level of AOD 
retrievals. Cases with no retrieval and low quality are excluded in our 
analyses, including those presented in Section 3. 

5. Evaluation of AOD retrievals 

5.1. An overview of AOD retrievals from the DTDL algorithm 

After implementing the DTDL algorithm, AOD retrievals at 550 nm 
were made from Himawari-8/AHI over the study region during the 

Fig. 4. (a) Density scatterplots of the comparison between surface reflectance (SR) at 0.64 μm (SR0.64) predicted by the empirical function and SR0.64 calculated from 
Eqs. 1–3, the “true” surface reflectance. (b-e) Density scatterplots of 10-cross-validation results for SR0.64 derived from DNN, considering different numbers of hidden 
layers in the DNN model. The correlation coefficients (R), root-mean-square errors (RMSE), and mean absolute errors (MAE) are given in each panel. The solid black 
lines represent the best-fit lines from linear regression. The dashed grey lines are plotted as Y = 0.8× and Y = 1.2× (positions of 20% error). 
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period 1 January 2017 to 31 December 2017 at a 2-km spatial resolu-
tion. To isolate the changes in the retrievals caused by the SRR, re-
trievals from the DTDL algorithm used the same inputs as the DT al-
gorithm. Fig. 6a shows the medium- and high-quality AODs that are 
used in the evaluation. Several polluted regions associated with high 
population densities are identified with relatively high AOD values, 

including the Red River Delta, the Sichuan Basin, western Taiwan, and 
the Pearl River Delta. The available retrieval rate is calculated as the 
number of available AOD retrievals divided by the total number of 
samples (~3600), which is around 20% for plains with dense vegeta-
tion. It is much lower for arid regions due to the relatively brighter 
surface (Fig. 6b). The spatial distributions of averaged AOD and 

Fig. 5. Flowchart of the DTDL algorithm for retrieving AOD for clear pixels over land. The modules enclosed by the red, dashed lines represent updates the DTDL 
algorithm introduced into the NOAA/STAR DT algorithm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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Fig. 6. Spatial distributions of (a) mean aerosol optical depth (AOD) and (b) available retrieval rate derived from the DTDL algorithm for the year 2017.  

Fig. 7. Diurnal variation in Himawari-8/AHI AOD retrievals derived from (a) the original DT and (b) the DTDL algorithms for the year 2017. Here, all matched pairs 
of AHI retrievals and ground measurements are used. The diurnal variation derived from ground-based measurements is shown in red, and the bias between AHI and 
ground AODs is shown in grey. The shaded areas represent the standard deviations. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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retrieval rates during daytime for high-quality AODs are presented in 
Fig. S2. The AOD pattern is similar for high-quality cases in terms of 
spatial distribution, but the retrieval rates are generally less than one- 
third of the total sampling. The DTDL algorithm uses the same frame-
work as the DT algorithm. The retrieval rates of the DTDL and the DT 
algorithms are thus the same when AOD is not filtered for quality. By 
contrast, algorithms, like the MAIAC algorithm, that provide retrievals 
over a wide range of surfaces (Mhawish et al., 2019) are expected to 
have higher retrieval rates than those of the DTDL algorithm. 

We also compare the diurnal variation in AODs retrieved from 
Himawari-8/AHI measurements and those derived from ground mea-
surements (Fig. 7). These diurnal variations are averaged from data for 
the year 2017. AHI retrievals matched with ground measurements from 
18 sites are used to avoid biases due to sampling differences caused by 
quality control. The ensemble of all matched data is then used in the 
analyses of the AOD diurnal variations. In general, aerosol loading 

based on ground data slightly increases between 00:00–02:00 UTC, 
reaching a maximum value around 02:00 UTC, and gradually de-
creasing thereafter. The AHI AOD retrievals derived from the original 
DT method have a very different diurnal pattern. DT-derived AODs 
generally decrease until about 02:00 UTC, reaching a maximum around 
06:00 UTC. As a result, the largest bias exists around 02:00 UTC when 
the ground AOD reaches its maximum, and the DT-derived AOD is 
much lower. However, the mean bias of DT is not always larger than the 
DTDL bias. For example, it is slightly smaller than that of the DTDL at 
05:00 UTC. 

The diurnal biases for the original DT and the DTDL algorithms 
during different seasons are presented in Fig. S3. The considerable 
mean bias of the DT retrievals around 02:00 UTC is likely caused by the 
large bias during spring (Fig. S3). After implementing the DTDL 
method, the systematic biases during spring diminish considerably. The 
AHI AOD retrievals from the DTDL algorithm show higher consistency 
with the ground AOD measurements in all seasons. Some features in 
AOD biases are shared by the original DT and DTDL algorithms, such as 
the overestimation in AOD retrievals at 00:00 UTC. Such systematic 
biases need to be considered when using AHI AOD retrievals in this 
region. 

5.2. Validation of AOD retrievals against ground measurements 

Fig. 8a-b show comparisons between ground-measured AOD and 
AOD derived from the original DT algorithm for medium-quality and 

Fig. 8. Comparisons between AERONET AOD and AOD derived from the original DT method for (a) medium-quality and (b) high-quality data for the year 2017. 
Comparisons between AERONET AOD and AOD derived from the DTDL method for (c) medium-quality and (d) high-quality data for the year 2017. The dashed grey 
lines are plotted as Y = 0.8× and Y = 1.2× (positions of 20% error). The correlation coefficients (R), root-mean-square errors (RMSE), number of samples (N), and 
mean absolute errors (MAE) are given in each panel. 

Table 2 
Classification of different regions for independent tests.     

Region code Classification Number of sites  

R1 Latitude  > 23°N 9 
R2 Latitude  < 23°N 9 
L1 Longitude  > 110°E 12 
L2 Longitude  < 110°E 6 
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high-quality data. Fig. 8c-d show comparisons between ground-mea-
sured AOD and AOD derived from the DTDL algorithm. Note that 70% 
of ground AOD measurements used in model training are excluded from 
the analysis. The AODs retrieved from the DTDL algorithm are gen-
erally improved for both medium-quality and high-quality categories. 
With the new DTDL algorithm, DNN-based SRR, the uncertainties (re-
presented by the MAE) of the AHI retrievals are reduced by about 30%. 
Such a significant reduction in noise considerably improves the quality 
of the AOD product. 

The DTDL method is able to produce better AOD retrievals over a 
region even though the training takes place in another region. 
Additional independent tests were performed to demonstrate this. The 
study region was divided into four regions: R1 and R2, defined by la-
titude, and L1 and L2, defined by longitude (Table 2). We use the da-
taset from R1 to train the model and validate the results over R2. Such a 
test is repeated for each region. Fig. 9a-d shows comparisons between 
ground-measured AOD and DT-derived AOD for the four regions.  
Fig. 9e-h shows comparisons between ground-measured AOD and 
DTDL-derived AOD for R1, R2, L1, and L2, while the training datasets 
are obtained over regions R2, R1, L2, and L1, respectively. This process 
ensures the independence of training and validation datasets. Medium- 
quality and high-quality retrievals are jointly used here. For all four 
regions, the DTDL-derived AOD shows notable improvement in all three 
metrics used to measure quality (i.e., correlation coefficient, RMSE, and 
MAE). The uncertainties of AOD retrievals by DTDL are reduced by 
15–25%. The same procedure is performed for high-quality cases, 
producing similar results (Fig. S4). Thus, the DTDL algorithm not only 
performs better in regions with training data but also consistently 
performs better than the traditional DT algorithm over untrained re-
gions. 

Regarding the original DT method, the empirical relationship leads 
to a large bias in estimated SR and can further contribute to the notable 
uncertainties in AOD retrievals. By implementing a DNN model, 

multiple contributing factors for the SRR, such as meteorological data 
and seasonality, can be taken into consideration. The DNN model ap-
pears to be a good way to characterize the complex and nonlinear SRR 
between visible and SWIR channels. The accuracy of AOD retrievals 
considerably benefits from the improved SRR derived from the DNN. 
Many factors contribute towards the biases in AOD retrievals, such as 
surface reflectance, cloud contamination, aerosol model, and aerosol 
vertical distribution, among others. In this study, we have focused on 
refining the surface reflectance assumption, but we also bear in mind 
that other factors can contribute to the error in AOD retrievals. 

5.3. Uncertainty related to various factors 

Since the quality of satellite AOD retrievals depends on the under-
lying surface and viewing geometry, we calculate the mean absolute 
differences between the AOD retrievals from ground measurements and 
AHI under various conditions. Fig. 10 shows the average absolute bias 
of AOD for different values of SR0.47, SR0.64, NDVISWIR, and scattering 
angle for medium-quality and high-quality retrievals. The mean abso-
lute biases for the original DT and DTDL algorithms are 0.15 and 0.1, 
respectively. However, the absolute biases in DT-derived AOD can be 
very large for scenes with a high albedo and low NDVI. This is because 
the biophysical relationship is valid for dark and dense vegetation but 
less valid for arid and bright surfaces characterized by low NDVI and a 
high albedo. Note that the frequency of occurrence of high albedo in the 
region studied is low. Thus, even relatively few outliers can con-
siderably affect the average calculated from AOD over regions with a 
high surface albedo. 

Compared with the original DT algorithm, the absolute bias of the 
DTDL algorithm is systematically reduced under various conditions. In  
Fig. 10, the shaded parts represent standard deviations that are gen-
erally larger for the original DT algorithm than for the DTDL algorithm. 
The traditional DT method cannot deal well with relatively bright 

Fig. 9. Comparisons between AERONET AOD and AOD derived from the original DT method for regions (a) R1, (b) R2, (c) L1, and (d) L2. Comparisons between 
AERONET AOD and AOD derived from the DTDL algorithm for regions (e) R1, (f) R2, (g) L1, and (h) L2, with the training datasets obtained over regions (e) R2, (f) 
R1, (g) L2, and (h) L1. This process ensures independence of the validation datasets. The dashed grey lines are plotted as Y = 0.8× and Y = 1.2× (positions of 20% 
error). The correlation coefficients (R), root-mean-square errors (RMSE), number of samples (N), and mean absolute errors (MAE) are given in each panel. 
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surfaces or less vegetated surfaces. Although the DTDL algorithm is also 
significantly affected by these factors, the revised method can con-
siderably mitigate this issue. The absolute biases of high-quality re-
trievals as functions of SR, NDVISWIR, and scattering angle are presented 
in Fig. S5. The pattern of change in biases with these variables is similar 
to that shown in Fig. 10 for the combined medium- and high-quality 
retrievals, but the magnitude of the biases is smaller. The DTDL algo-
rithm also produces smaller absolute biases in AOD retrievals at all 18 
sites (Fig. S6). 

The biases in AOD retrievals are considerably reduced after im-
plementing the DNN-derived SRR in the DTDL algorithm. However, 
since the visualization of a deep learning model is generally in-
sufficient, interpretability and casualty have been widely recognized as 
major weaknesses of the DNN (Runge et al., 2015; Zhang and Zhu, 
2018), which may be addressed in the future (Montavon et al., 2017;  
Reichstein et al., 2019). Currently, we only compare the original DT 
and DTDL algorithms in this study since there is no public Himawari-8 
AOD product from the other two major methods (DB and MAIAC). 

6. Summary 

In this paper, we developed a new method (DTDL) that combines 
the traditional DT approach, as applied in the NOAA/STAR AOD al-
gorithm for AHI, with a deep learning technique (i.e., DNN) to improve 
estimates of spectral SR needed for AOD retrievals. The core part of the 
algorithm for retrieving AOD is a radiative transfer model represented 
by a LUT. The DTDL algorithm still keeps this part (i.e., the LUT) but 
changes how the surface reflectance is estimated. Due to the complexity 
of land surface properties, the difficulty in modeling spectral SR con-
stitutes a major source of uncertainties in AOD retrievals in the DT 
algorithm. The DTDL algorithm applies the DNN to infer the surface 
albedo at the visible channel and to tackle the nonlinear relationship 
between multiple, mutually dependent parameters. The improvement 
in characterizing SRR leads to better AOD retrievals. 

One year of the Himawari-8/AHI dataset is employed for the eva-
luation of the proposed method. The DTDL algorithm demonstrates 
better performance over the study region, with a ~ 30% reduction in 
random noise. AOD retrievals are significantly affected by the albedo 
and vegetation state of the underlying surface. Low NDVI and high 
albedo are associated with each other and are two major factors 

Fig. 10. Absolute biases between AOD derived from ground measurements and retrieved from AHI in 2017 for different (a) SR0.47, (b) SR0.64, (c) NDVISWIR, and (d) 
scattering angles. The original DT (red lines) and DTDL (blue lines) algorithms are used. The shaded areas indicate standard deviations. The grey bars represent the 
frequency of occurrence of these parameters. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.) 
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contributing to large biases in AOD retrievals by the DT algorithm. 
After applying the DNN-derived SRR in the DTDL algorithm, this pro-
blem is lessened considerably. Four independent tests are carried out to 
train and test in different regions to ensure the applicability of the 
DTDL algorithm. The DTDL algorithm consistently produces better re-
trievals than the traditional DT algorithm over untrained regions, with 
a ~ 20% reduction in uncertainties. 

Due to its stability and accuracy, the DTDL algorithm has a large 
potential for improving aerosol retrievals over land. The comprehensive 
evaluation provides firm support for our method in the study region. 
Although this area spans thousands of kilometers, it is still limited to a 
portion of the AHI full disk. The surface measurements of AOD at the 18 
sites under study do not cover all underlying surface conditions. 
Therefore, the application of the DTDL algorithm to a larger area is 
warranted to gain a full understanding of the representation and 
adaptability of this method. The deep learning technique and strategy 
may also be revised and improved in the future. 

As pointed out by Reichstein et al. (2019), a physical scheme and 
deep learning can be complementary, and their fusion offers great po-
tential for geoscientific analysis. Our study successfully implements this 
strategy and shows the potential application of such a hybrid method 
combining the physical approach and deep learning. Our study de-
monstrates how artificial intelligence could significantly improve AOD 
retrievals from multi-spectral satellite observations. 
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