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ABSTRACT: Particulate matter with aerodynamic diameters ≤1 μm (PM1)
has a greater impact on the human health but has been less studied due to
fewer ground observations. This study attempts to improve the retrieval
accuracy and spatial resolution of satellite-based PM1 estimates using the new
ground-based monitoring network in China. Therefore, a space-time extremely
randomized trees (STET) model is first developed to estimate PM1
concentrations at a 1 km spatial resolution from 2014 to 2018 across
mainland China. The STET model can derive daily PM1 concentrations with
an average across-validation coefficient of determination of 0.77, a low root-
mean-square error of 14.6 μg/m3, and a mean absolute error of 8.9 μg/m3.
PM1 concentrations are generally low in most areas of China, except for the
North China Plain and Sichuan Basin where intense human activities and poor
natural conditions are prevalent, especially in winter. Moreover, PM1 pollution
has greatly decreased over the past 5 years, benefiting from emission control in China. The STET model, incorporating the
spatiotemporal information, shows superior performance in PM1 estimates relative to previous studies. This high-resolution and
high-quality PM1 data set in China (i.e., ChinaHighPM1) can be greatly useful for air pollution studies in medium- or small-scale
areas.

■ INTRODUCTION

Due to economic development and the acceleration of
urbanization over the past few decades in China, intense
human activities have emitted abundant pollutants, leading to
an increasingly serious air pollution problem. The World
Health Organization (WHO) has reported that more than 80%
of the world’s population experienced air pollution in 2018,
especially fine particulate matter with aerodynamic diameters
less than 10 μm (PM10), 2.5 μm (PM2.5), and 1 μm (PM1),
and more than 8 million people have lost their lives each year
because of pollution.1,2 Fine particulate matter has become the
primary pollutant affecting the air quality of urban areas and
has thus attracted worldwide attention.3

PM10 is mostly emitted by mechanical processes such as
construction-generated and wind-blown mineral dust/soil and
sea-salt. PM2.5 often comes from anthropogenic activities such
as power plants, industrial production, and emissions of
residues. While some sources are common, PM1 is mainly
derived from direct emissions during the combustion

process;4−6 more importantly, it can incur greater environ-
mental and health effects because these smaller-size particles
can be inhaled deeper into the lungs, more easily entering
alveoli and contaminating them with toxic and harmful
substances.7,8 In addition, previous studies have illustrated
that the spatial distributions and ratios between these fine
particles (i.e., PM1/PM2.5 and PM2.5/PM10) vary greatly (range
from <0.5 to >0.9) from site to regional scales, in different
seasons and polluted levels across China depending on various
natural conditions and human activities, indicating more
complex relationships.9,10

To monitor atmospheric fine particulate matter in real time,
many countries around the world have established various
ground networks with hundreds to thousands of monitoring
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stations. Despite their high accuracy and acquisition frequency,
in situ observations cannot realize monitoring on a wide scale.
However, satellite remote sensing provides an alternative and
more effective way to overcome this limitation by virtue of the
relationships between particulate matter and aerosol optical
depth (AOD).11 Based on this, multisource satellite aerosol
products derived from different instruments, e.g., the Moderate
Resolution Imaging Spectroradiometer (MODIS),12 the Multi-
angle Imaging SpectroRadiometer (MISR),13 the Visible
Infrared Imaging Radiometer Suite (VIIRS),14 and Hima-
wari-8 Imager,15 have been used to estimate the concentration
of surface particulate matters.
Thanks to the publicly available in situ measurements of

PM2.5 and PM10, there have been much more studies on these
two air pollution indexes including their retrievals from various
satellite-derived aerosol products using the physical models,16

the statistical regression models,12−14 and the machine or deep
learning approaches.15,17−19 By contrast, studies on PM1 are
much scantier due to much fewer ground monitoring stations,
which posed difficulties in developing and validating satellite-
derived algorithms. Chen et al. used the generalized additive
model (GAM) to study the spatiotemporal variations in PM1
concentrations at a spatial resolution of 10 km using MODIS
AOD products and ancillary data from 2005 to 2014 in
China.20 Zang et al. developed a principal component analysis-
general regression neural network (PCA-GRNN) model to
estimate hourly PM1 concentrations at a 5 km resolution using
Himawari-8 AOD products from 2013 to 2014 in China15 and
then improved the estimates by integrating PM2.5 observa-
tions.21 Wang et al. presented a two-stage model, combining
the linear mixed effect (LME) and bagged tree (BT) models,
to estimate hourly PM1 concentrations at a 5 km resolution
from 2015 to 2017 over central and eastern China using
Himawari-8 AOD products.22

These traditional methods still face great challenges in
estimating PM1 concentrations due to weak data mining
capability and negligence of spatial-temporal heterogeneities.
Besides, the generated PM1 datasets are at coarse spatial
resolutions (5−10 km), which seriously limited their
applications over medium- and small-scale areas (e.g.,
urban). Therefore, in this study, a new space-time extremely
randomized trees (STET) model is first proposed to improve
the spatial resolution and overall accuracy of PM1 estimates
across mainland China. For this, the newly released MODIS
Collection 6 (C6) Multi-Angle Implementation of Atmos-
pheric Correction (MAIAC) AOD products at a spatial
resolution of 1 km are employed, which is higher than those
used in previous studies. Together with meteorological
variables, emissions, ancillary data, and the spatiotemporal
information are introduced to the STET model. Then, the
high-spatial-resolution (1 km) and high-quality PM1 concen-
trations across mainland China (i.e., ChinaHighPM1 data set)
from 2014 to 2018 are generated for the first time.

■ MATERIALS AND METHODS
Surface PM1 Measurements. The daily PM1 in situ

measurements from 1 Jan 2014 to 31 Dec 2018 were collected
from the China Atmosphere Watch Network (CAWNET) of
the China Meteorological Administration. They were meas-
ured using the GRIMM Model 1.180 Aerosol Spectrometer,
which is an optical particle counter that records particle mass
and size distribution every five minutes, covering wavelengths
ranging from 1.0 to 10 μm. These measurements inferred from

light scattering were converted into mass concentrations using
the GRIMM protocols to be consistent with PM measure-
ments (aerodynamic diameter) according to the China’s
National Ambient Air Quality Standard.9,23 Previous studies
have reported that the GRIMM-derived PM concentrations are
highly consistent with those measured by the tapered element
oscillating microbalance instruments in different regions under
different background aerosols.24−26 In addition, two main
quality-control procedures, i.e., the limit check and the
climatological check, are performed to remove any unreliable,
low-quality observations and outliers and invalid values arising
from instrument malfunction or improper calibration.10,11

There are a total of 153 monitoring stations covering most
provinces across China (Figure S1). These stations are evenly
distributed in central and eastern China where there are
intensive human activities and are relatively sparse in western
China where there is little human population.

MAIAC AOD Product. The National Aeronautics and
Space Administration’s (NASA) Terra and Aqua MODIS C6
MAIAC Level (L) 2 swath aerosol products (MCD19A2) from
2014 to 2018 across China are employed. MAIAC aerosol
products are generated directly from MODIS L1B radiance
data at its native resolution of 1 km using the multi-angle
implementation of atmospheric correction algorithm. The
algorithm is based on the physical atmosphere−surface model
with minimal assumption and realized using the look-up-table
approach.27 The MAIAC aerosol algorithm differs from the
MODIS Dark Target (DT) and Deep Blue (DB) algorithms,
and the MAIAC aerosol products, released on 30 May 2018,
are at 3−10 times higher spatial resolution and more accurate
than most other widely used DT and DB AOD products,
especially over bright urban surfaces.28−30 Therefore, in this
study, the Terra and Aqua MCD19A2 daily AOD products are
selected and only those retrievals at 550 nm passing the
recommended quality assurance (QA) filtered by the best
cloud (QACloudMask = Clear) and adjacency (QAAdjacencyMask =
Clear) masks are used here.

Meteorological Data. Meteorological data used in this
study are from the ERA-Interim atmospheric reanalysis
products.31 This reanalysis has provided long-term (since
1979) and real-time (every 3 or 6 h) atmospheric parameters
at different spatial resolutions. In this study, eight meteoro-
logical variables having potential impacts on PM1 at the highest
spatial resolution of 0.125° are collected, i.e., boundary layer
height (BLH, unit: m), evaporation (ET, unit: mm),
precipitation (PRE, unit: mm), relative humidity (RH, unit:
%), surface pressure (SP, unit: hPa), temperature (TEM, unit:
K), wind speed (WS, unit: m/s), and wind direction (WD,
unit: °). The mean values of the above meteorological variables
between 10 a.m. and 2:00 p.m. local time are calculated to be
coincident with MODIS overpass times.

MEIC Emission Data. As aerosol originated from
emissions, the multi-resolution emission inventory for China
(MEIC) is also used in this study. MEIC provides the
inventory of monthly and annual atmospheric pollutants and
greenhouse gases (i.e., SO2, NOx, CO, PM, BC, etc.) based on
more than 700 anthropogenic sources at a spatial resolution of
0.25° in China.32,33 Four monthly emission variables
contributing to fine particulate matters from industry (IDT,
unit: Mg/grid), power (POW, unit: Mg/grid), residential
(RSD, unit: Mg/grid), and transportation (TST, unit: Mg/
grid) sectors are selected. The total amount is first weight-
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averaged for each grid and downscaled to a spatial resolution of
0.01° (approximately 1 km).
Other Ancillary Data. Other factors that may affect the

PM1−AOD relationships are also considered such as land
cover, topography, traffic, and population. They include the
MODIS Level 3 annual Land Use Cover (LUC) product
(MCD12Q1) and the monthly normalized difference vegeta-
tion index (NDVI) product (MOD13A3) at a 500 m
resolution. Data from the Shuttle Radar Topography Mission
digital elevation model (DEM) at a 90 m resolution is
collected and used to calculate the surface aspect, slope, and
relief34 to reflect surface variations. The spatial distance from
roads (road, unit: m) in cities, provinces, and the whole
country generated using the multiple ring buffer approach at a
spatial resolution of 1 km is selected to represent traffic
conditions.35 The VIIRS monthly day/night band nighttime
lights (NTL, W/cm2/sr) product at a 500 m resolution is
selected to represent human activities and economic
conditions. Table S1 summarizes the data sources used in
this study.
Data Integration. Due to the ubiquity of clouds in remote

sensing images, there is a large number of missing values in
MODIS MAIAC AOD products, especially in southern China
(Figure S2). The spatial coverage of Terra MAIAC product
ranges from 0 to 71% with an average of 30% from 2014 to
2018 in China, which is larger than the Aqua MAIAC product
(i.e., maximum = 64% and average = 26%) due to less cloud
cover in the morning. These differences are due to the different
imaging times between Terra and Aqua satellites, but the
spatial coverage of aerosols can be improved by integrating
these two data sets. Therefore, to reduce the system
differences, a linear regression approach is used to merge the
Terra and Aqua MAIAC AOD products.19 For a given day, the
Terra and Aqua AODs (τTerra and τAqua) are calculated using
established linear regression relationships (eq 1), and if both
are available, an additional average approach is applied for each
pixel (eq 2)

k b

k b

Terra 1 Aqua 1

Aqua 2 Terra 2

τ τ

τ τ
{

= · +

= · + (1)

( )/2Terra Aquaτ τ τ= + (2)

where k1, k2 and b1, b2 represent the slopes and y-intercepts of
the regression lines, respectively. Both Terra and Aqua daily
AODs at all monitoring stations in each month are collected
and used to obtain monthly relationships. Through data fusion,
the spatial coverage of AOD largely increased (i.e., maximum =
80% and average = 40%) over most areas of China, especially
northern China (difference > 15%). The percentage increases
in the number of daily AOD data samples after data fusion are
∼23 and 27% compared to using only Terra or Aqua MAIAC
AOD products, respectively. This approach can improve the
model training capability by increasing the number of data
samples.
In addition, due to different spatial resolutions, the coarser

ERA-Interim meteorological and MEIC emission variables and
the finer-resolution ancillary data (i.e., LUC, NDVI, topo-
graphic conditions, and NTL) are first interpolated to a
uniform spatial resolution of 1 km using the bilinear
interpolation approach. All independent variables are then
matched to the daily PM1 concentrations at the site scale for
each day. After removing all invalid values, there are 12 306,

7631, 7554, 7759, and 7796 matched daily samples covering all
days for each year from 2014 to 2018 in China, respectively.

Model Development and Adjustment. The extremely
randomized trees (ERT) model is a new tree-based ensemble
approach for classification and regression, different from other
tree models (e.g., the decision tree and the random forest).36

The main difference is that the ERT model strongly
strengthens the randomization in both attribute and cut-
point selection while splitting a tree node. The splitting
procedure of the ERT model contains two main parameters,
one of which is the number of attributes randomly selected by
each node (K), which controls the strength of the attribute
randomization. The other main parameter is the minimum
sample size for splitting a node (nmin), which controls the
smoothing degree. The randomized trees are then built, and
their structures are independent of the output values using the
training samples in the extreme case. This approach has high
computational efficiency and good training ability. Each tree in
the ERT model is built with the following steps:

1) A training set S is randomly extracted from the whole
learning sample rather than the bootstrap approach.

2) If S meets the condition of |S| < nmin, or all candidate
variables or the output variable are constant in S, a leaf
labeled by the average output is returned in regression.

3) If not, K attributes {a1, ..., aK} are randomly selected
without replacement among all of the candidate
attributes and K splits {s1, ..., sK} are generated.

4) A split s* is then determined to meet the condition of
score(s*, S) = max[Score(si, S)] (eq 3), and S is split into
two subsets (Sl and Sr) based on the s*.

5) Then, Sl and Sr are used as inputs, and the procedures
(2)−(4) are repeated to build tl and tr.

6) The resulting tree (t) is built by creating a node of the s*
with tl and tr as left and right subtrees, respectively.

s S
y S y S y S

y S
score( , )

var var var

var

S
S

S
Sl r

l r

=
{ | } − { | } − { | }

{ | }

| | | |

(3)

where var{y|Sx}} represents the variance of the output y in the
training set S.
All selected independent variables with potential effects on

PM1 estimations are input to the ERT model. However,
atmospheric fine particulate matter (i.e., PM2.5, and PM1) are
temporally and spatially heterogeneous.18,19 Therefore, a new
space-time extremely randomized trees (STET) model is first
developed by introducing spatiotemporal information to the
ERT model. The STET model considers the spatial
autocorrelation (space) weighted by the geographical distance
(ws) between the center pixel (P) and its adjacent pixels and
the temporal difference (time) determined by the different
days in a given year from PM1 observations.

19 The improved
PM1−AOD relationship can then be explored using MAIAC
AODs, meteorological data, pollution emissions, land use,
topography, and road, population, and spatiotemporal
information as input to the STET model.
The potential correlations and effects of 21 selected

independent variables on PM1 estimates are first calculated
(Figure S3). Satellite-derived AOD products are not closely
correlated to ground PM1 observations with an average
correlation coefficient (R) of 0.378 (Table S2). Therefore,
the remaining variables are used to improve the PM1−AOD
relationship developed for China. In general, 10 variables show
positive effects on surface PM1 concentrations, especially RSD,
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SP, and ET with high correlations of 0.372, 0.236, and 0.192,
respectively. By contrast, the remaining 10 variables have
negative effects, especially BLH, DEM, and TEM with
correlations of −0.351, −0.235, and −0.220, respectively.
Almost all variables are closely associated with surface PM1
concentrations at the 99% confidence levels (p-value <0.01).
Examined next are the contributions of more important

variables rather than all variables to PM1 to establish a stable
estimation model for PM1 concentrations and to optimize and
adjust the model, improving its overall efficiency and accuracy.
All meteorological, MEIC emission, land-use, topographic,
traffic, and population variables with potential impacts on PM1
estimations are first input into the STET model for preliminary
training, and their importance scores are calculated.
Figure S4 shows the sorted average importance scores of all

independent variables on PM1 estimations in China from 2014
to 2018. Different variables influence PM1 estimates differently.
AOD is the most critical factor, accounting for ∼15% of all
variables. Three main meteorological variables, i.e., BLH
(∼10%), TEM (∼6%), and ET (∼5%), and residential
emissions (∼8%) contribute the most to PM1 estimates.
More importantly, space and time are two critical variables
with an average importance score of ∼8%, indicating the
importance of spatiotemporal information when estimating
PM1 concentrations. The remaining factors show a gradual
decline in contributions to PM1 estimates, especially, the last
10 variables show less contributions to PM1 estimation whose
scores are below 2.5%. Therefore, these variables are excluded
from the STET model and the remaining 13 variables are used
for model training and establishment.
Evaluation and Analysis Methods. In this study, the

commonly used 10-fold cross-validation (10-CV) approach,37

along with several statistical indicators including the root-
mean-square error (RMSE) and the mean absolute error
(MAE), is selected to validate the model performance. In
addition, monthly PM1 maps are generated by averaging
adequate daily PM1 values for each grid in a month. Seasonal
and annual maps are generated from these monthly PM1
estimates. The spatial coverage is calculated using the area-
weighting approach. Linear trends in PM1 pollution are
calculated from deseasonalized monthly PM1 anomalies, and
the two-side test is selected to assess the statistical
significance.38

■ RESULTS AND DISCUSSION

Model Fitting and Validation. The STET model shows
great but overfitting results with coefficients of determination
(R2) equal to ∼1 and with almost no biases (Figure S5). This
attests to the strong learning ability of the STEL in data mining
because of its high model complexity but is also compromised
by the small number of data samples with respective to the
large degree of freedom.18,39 Figure 1 illustrates the 10-CV
results from the newly developed STET model from 2014 to
2018 in China. The year 2014 has the largest number of data
samples (N = 12 306) and the largest RMSE (18.2 μg/m3) and
MAE (11.5 μg/m3). The main reason is that the air quality was
relatively poor that year, with more than 12% of the data
samples exceeding 80 μg/m3. Another reason may be that the
PM1 data records at the beginning of the observation period
were of relatively low quality. Approximately one-third of the
monitoring stations gradually stopped working after 2014. The
number of data samples decreased by ∼38% from 2015 to
2018 in China. However, the air quality appears to have

Figure 1. Density scatterplots of 10-fold cross-validation results of 1 km daily PM1 estimates across China for the years (a)−(e) 2014 to 2018 and
(f) all years. Statistical metrics are given in each panel: the number of samples (N), the coefficient of determination (R2), the root-mean-square
error (RMSE), and the mean absolute error (MAE). The linear regression relationship is also given in each panel. Dashed lines are the 1:1 lines,
and solid lines are the linear best-fit lines through the data points.
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improved, with more than 93% of the data samples below 50
μg/m3 in 2018. The estimated PM1 concentrations are
gradually improved with larger cross-validation coefficients
(CV-R2 > 0.74), better linear regression lines, and smaller
estimation uncertainties (i.e., RMSE < 14.1 μg/m3 and MAE <
9.0 μg/m3). There are differences in the model performance
among different years, mainly due to different air quality
conditions. Nevertheless, overall, PM1 concentrations on
highly polluted days are underestimated (i.e., slope < 0.73).
In general, the STET model works well in estimating daily PM1
concentrations with an average high CV-R2 value equal to 0.77
and a small RMSE of 14.6 μg/m3 and MAE of 8.9 μg/m3

during 2014−2018 across mainland China.
The effects of spatiotemporal information on the estimation

of PM1 concentrations in China using the STET model are
also investigated (Table S3). The original ERT model, which
neglects spatiotemporal variations, has the lowest CV-R2 and
largest RMSE and MAE values. However, when considering
either spatial (space) or temporal (time) information, the
model performance improves with increasing CV-R2 values
and decreasing RMSE and MAE values. Considering both
spatial and temporal information yields the best model
performance in terms of the highest CV-R2 values and the
lowest RMSE and MAE values. These results suggest that
incorporating spatiotemporal information into models that
estimate PM1 concentrations is crucial because it can
significantly improve the model performance.
Figure 2 shows the spatial distributions of 10-fold cross-

validation results for the STET model at individual monitoring
stations from 2014 to 2018 in China. For statistical
significance, only those stations with more than 10 matched
data samples are plotted. The number of days with valid PM1
estimates varies from 13 to 1181 days, with an average of 324

days. The Yangtze River Delta region contains most of those
stations with less than 100 valid samples because only 1 year of
surface observations is available from this region. Approx-
imately 48% of all stations in China have more than 200 valid
samples. Local CV-R2 values range from 0.10 to 0.89, with an
average value of 0.65. Approximately 71% of all stations, more
evenly distributed throughout mainland China, have CV-R2

values greater than 0.6. Local RMSE values range from 3.0 to
45.6 μg/m3, with an average value of 14.4 μg/m3, and local
MAE values range from 2.1 to 29.1 μg/m3, with an average
value of 9.9 μg/m3. In general, their spatial patterns are similar
across mainland China. The Beijing−Tianjin−Hebei region
has large RMSE and MAE values (i.e., RMSE > 20 μg/m3 and
MAE > 15 μg/m3) due to more severe air pollution in that
region. By contrast, the estimation uncertainties of PM1 are
relatively small in most other parts of China, with more than
85 and 88% of the stations showing overall low RMSE and
MAE values of less than 20 and 15 μg/m3, respectively. These
results illustrate that the STET model performs well under
different natural and population conditions.
The temporal performance of the STET model in China is

also evaluated (Figure S6). There are 2892, 1277, and 373
matched data samples from 2014 to 2018 across China on the
monthly, seasonal, and annual scales, respectively. Results
suggest that the STET model more accurately captures
monthly PM1 concentrations. The data samples are evenly
distributed on both sides of the 1:1 line, and the linear best-fit
line through the data samples has a slope of 0.88 and a y-
intercept of 4.38 μg/m3. The average R2 value is 0.96, and the
RMSE and MAE values are 4.8 and 3.2 μg/m3, respectively.
Annual and seasonal PM1 estimates are more consistent with
ground measurements with stronger linear fits (i.e., slope >
0.89 and y-intercept < 4.24 μg/m3), higher correlation

Figure 2. Spatial distributions of model cross-validation statistics based on PM1 estimates and measurements from 2014 to 2018 across China in
terms of (a) number of valid days of data (N), (b) coefficient of determination (R2), (c) root-mean-square error (RMSE; μg/m3), and (d) mean
absolute error (MAE; μg/m3).
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coefficients (0.97), and smaller estimation uncertainties (i.e.,
RMSE < 4.1 μg/m3 and MAE < 2.8 μg/m3). These results
suggest that the PM1 data set generated by the STET model
can more reliably capture the spatial distributions and temporal
variations of PM1 pollution across China.
Spatial Coverage and Distribution. In this study, daily

1-km-resolution (∼0.01° grids) surface PM1 concentrations are
estimated using the STET model from 2014 to 2018 across

China and then averaged to produce monthly, seasonal, and
annual PM1 maps. This belongs to one of the series of high-
resolution and high-quality PMx data sets across China, i.e.,
ChinaHighPMx (x = 1). The spatial coverage of monthly PM1
maps ranges from 57 to 95% with an average of 79% across
China (Figure S7). The spatial coverage of PM1 estimates is
the smallest in June (average = 69%) and February (average =
74%) mainly due to frequent clouds in summer and long-term

Figure 3. Satellite-derived 1-km-resolution annual mean PM1 concentrations across China from (a)−(e) 2014 to 2018 and (f) for all years.

Figure 4. Seasonal mean 1-km-resolution PM1 concentrations in (a) spring, (b) summer, (c) autumn, and (d) winter during 2014−2018 across
China, respectively.
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snow cover in winter. By contrast, October always has the most
extensive spatial coverage (average = 88%). Moreover, PM1
concentrations have regular interannual variations, with
maximum and minimum concentrations seen in January
(∼40.0 μg/m3) and August (∼16.0 μg/m3), respectively.
Figure 3 shows annual mean PM1 concentration maps from

2014 to 2018 across China. The model provides a nearly
complete spatial coverage (>98%) of annual PM1 estimates
across mainland China. In general, annual mean PM1
concentrations vary greatly from essentially nil to 126 μg/m3

with averages of 32.3 ± 12.8, 24.5 ± 8.7, 24.7 ± 8.7, 23.8 ±
8.0, and 16.8 ± 7.3 μg/m3 for each year from 2014 to 2018 in
China, respectively (Table S4). Estimated PM1 concentrations
are generally higher in 2014 than in the other 3 years,
especially over eastern China where PM1 values are always
greater than 50 μg/m3; by contrast, the PM1 pollution appears
to be the lightest in 2018.
The spatial distributions of PM1 concentration are similar in

different years on the local scale. High PM1 concentrations are
mainly distributed throughout the North China Plain and the
Sichuan Basin, mainly due to severe pollutant emissions due to
intense human activities and poor topographical or meteoro-
logical conditions. By contrast, southwestern, northeastern, and
southern China, areas where there are less anthropogenic
activities and more favorable climatic conditions, have much
lower PM1 concentrations. Note that the estimated PM1
concentrations may differ from observations in some parts of
China such as Qinghai and Gansu Provinces and Tibet in
western China due to the limited number of monitoring
stations.
In general, the PM1 concentrations vary greatly on the

seasonal scale (Figure 4). The spatial coverage of estimated
PM1 concentrations is the lowest in winter (∼86%) due to
snow/ice cover in northeastern and northwestern China

(Table S4). PM1 pollution is also severe in winter with the
highest mean PM1 concentration (36.3 μg/m3) and the largest
standard deviation (14.5 μg/m3). More importantly, more than
42% of mainland China has high PM1 concentrations
exceeding 40 μg/m3, especially the North China Plain. Coal
and fossil fuel combustion caused by anthropogenic activities
explains this. By contrast, summer has the least PM1 pollution
with an average concentration of 16.4 ± 5.8 μg/m3 (spatial
coverage = 96%). PM1 estimates are less than 30 μg/m3 over
more than 95% of the areas in China. Frequent rainfall and
high relative humidity, which promote the diffusion of
pollutants and reduce air pollution, are the main explanations.
The PM1 estimations are more consistent in spatial coverage in
spring (∼97%) and autumn (∼99%) and also have similar PM1
pollution levels with average values of 22.4 ± 7.5 and 24.4 ±
8.8 μg/m3, respectively. Moreover, in spring, PM1 concen-
trations are much lower than PM2.5 concentrations at the
Tarim Basin, Xinjiang Province, where coarser dust particles
dominate.

Temporal Variation and Trend. Focusing on the
numerical differences in PM1 concentrations among different
years, the temporal variations in PM1 pollution are investigated
from 2014 to 2018 in China. PM1 concentrations have
changed greatly in China over this time period (Figure 5),
showing a significant decreasing trend of −3.0 μg/m3/year (p-
value <0.0001). In general, PM1 concentrations have decreased
over 96% of mainland China, especially in central and eastern
China where the decrease is more than 6 μg/m3 per year (p-
value <0.05). Parts of southwest China where fewer people live
show increasing trends in PM1 concentrations. These trends,
however, may not be reliable because few monitoring stations
are located in this part of China. Four typical urban
agglomerations, where air pollution is a public concern, show
significant decreasing trends in PM1 concentrations, i.e., the

Figure 5. Linear trends (μg/m3/year) derived from deseasonalized monthly PM1 concentration anomalies from 2014 to 2018 in China, where
green areas in the (a) inserted figure show areas where the trends are significant at 95% confidence level (p-value <0.05). The inserted figures show
time series of monthly PM1 anomalies over (b) Beijing−Tianjin−Hebei (BTH) region, (c) Yangtze River Delta (YRD), (d) Pearl River Delta
(PRD), and (e) Sichuan Basin (SCB), where the red and blue lines represent the linear regression lines and y = 0 lines.
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Beijing−Tianjin−Hebei region (−4.3 μg/m3/year, p-value
<0.0001), the Yangtze River Delta (−4.2 μg/m3/year, p-
value <0.0001), the Pearl River Delta (−3.5 μg/m3/year, p-
value <0.0001), and the Sichuan Basin (−3.7 μg/m3/year, p-
value <0.0001).
Figure S8 shows the number of highly polluted days (daily

mean PM1 > 50 μg/m3) in each year from 2014 to 2018 in
China and four typical regions. Over China as a whole, average
PM1 concentrations are less than 50 μg/m3 on most days.
However, the Beijing−Tianjin−Hebei and Yangtze River Delta
regions have more severe air pollution with a large number of
days having concentrations exceeding 50 μg/m3. The overall
pollution level is the highest in 2014, with high-PM1 days
accounting for approximately 8, 40, 23, 12, and 14% of the
total year over the whole of China and the four typical regions,
respectively. The number of highly polluted days has decreased
significantly over the years in China. In 2018, there were few
high-PM1 days in most areas (<5%). These results suggest that
air quality has greatly improved in recent years in China. This
is mainly attributed to the implementation by the Chinese
government in 2013 of effective measures to reduce pollution
emissions.40,41

Comparison with Related PM Studies. In general,
compared with satellite-derived daily PM2.5 concentrations,
which can have CV-R2 values of greater than 0.8 in China,
satellite-derived daily PM1 concentrations do not agree as well
with ground measurements (CV-R2 = 0.7−0.8). There are four
possible reasons for this: (1) the larger size range compromises
more aerosols as measured by AOD, which is a total measure
of aerosol loading; (2) the weaker correlation between PM1
and AOD indicates a more complex and implicit relationship;
(3) given the sparse distribution of less monitoring stations, all
possible surface types and atmospheric conditions across
mainland China are likely not covered; and (4) fewer data
samples likely affect the model training ability and overall
accuracy.
Unlike PM2.5 studies, few PM1 studies focused on China

have been conducted due to the scarcity of PM1 data sources.
PM1 concentrations have been estimated by combining
MODIS C6 DT and DB AOD products at a 10 km resolution
across China (Table S5).20 Himawari-8 hourly AOD products
have also been used to estimate PM1 concentrations in most
parts of China due to lack of satellite observations over western
China with an improved spatial resolution of 5 km.15,21,22 PM1
concentrations are mainly associated with human activities and
are more severe in local urban regions. Estimations of PM1
concentrations at coarse resolutions are thus not useful.
Therefore, in this paper, 1-km-resolution PM1 concentrations
are estimated for the first time across China using the newly
released MAIAC AOD products. Our new products have a
much higher spatial resolution than those from previous
studies, which is important when studying PM1 in medium-
and small-scale areas like urban areas.
In terms of model performance, the GAM model has an R2

of 0.59 and an RMSE of 22.5 μg/m3 in estimating PM1 using
MODIS AOD products in China.20 The PM1 concentrations
are estimated from Himawari-8 AOD products in China using
a PCA-GRNN model with an R2 of 0.61, an RMSE of 22.0 μg/
m3, and an MAE of 13.8 μg/m3, as well as some other
traditional models, e.g., the multiple linear regression model
(R2 = 0.23, RMSE = 32.8 μg/m3, and MAE = 22.5 μg/m3), the
LME model (R2 = 0.41, RMSE = 28.7 μg/m3, and MAE = 19.4
μg/m3), the back propagation neural network model (R2 =

0.52, RMSE = 26.1 μg/m3, and MAE = 17.8 μg/m3), and the
GRNN model (R2 = 0.61, RMSE = 24.1 μg/m3, and MAE =
14.3 μg/m3).15 The PCA-GRNN model was subsequently
improved by including surface PM2.5 observations, increasing
the CV-R2 to 0.74 and decreasing the RMSE to 19.0 μg/m3

and the MAE to 11.4 μg/m3.21 The two-stage model estimates
PM1 better (R

2 = 0.80, RMSE = 15.4 μg/m3, and MAE = 9.3
μg/m3) using Himawari-8 AOD products over central and
eastern China.22 Note that our STET model developed for
China can outperform most previous models with almost all
better evaluation metrics, chiefly because of (1) accounting for
spatiotemporal heterogeneity by our model that has not been
taken into account in other studies; (2) the use of high-quality
MAIAC AOD products at 1 km resolution; and (3) overall low
accuracy with large estimation uncertainty for those coarse-
resolution aerosol products, especially over urban areas.42−45

The ChinaHighPM1 data set generated in this study may be
most valuable for air pollution studies in urban and megacity
areas where pollution is severe and more inhomogeneous in
response to intensive human activities.
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