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A B S T R A C T

Landsat imagery offers remarkable potential for various applications, including land monitoring and environ-
mental assessment, thanks to its high spatial resolution and over 50 years of data records. However, the presence
of atmospheric aerosols greatly hinders the precision of land classification and the quantitative retrieval of
surface parameters. There is a pressing need for reliable and accurate global aerosol optical depth (AOD) data
derived from Landsat imagery, particularly for atmospheric correction purposes and various other applications.
To address this issue, we introduce an innovative framework for retrieving AOD from Landsat imagery over land,
which leverages the deep-learning Transformer model (named AeroTrans-Landsat) and operates on the Google
Earth Engine (GEE) cloud platform. We gather Landsat 8 and 9 images starting from their launch dates (February
2013 and September 2021, respectively) until the end of 2022, which are used to construct a robust aerosol
retrieval model. The global AOD retrievals are then rigorously validated across ~560 monitoring stations on land
using diverse spatiotemporally independent methods. Leveraging information from multiple spectral channels,
which contributes to 80 % according to the SHapley Additive exPlanation (SHAP) method, our retrieved AODs
from 2013 to 2022 generally agree well with surface observations, with a sample-based cross-validation corre-
lation coefficient of 0.905 and a root-mean-square error of 0.083. Around 86 % and 55 % of our AOD retrievals
meet the criteria of Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue expected errors
[±(0.05 + 20 %)] and the Global Climate Observation System {[max(0.03, 10 %)]}, respectively. Additionally,
our model is not as sensitive to fluctuations in both surface and atmospheric conditions, enabling the generation
of spatially continuous AOD distributions with exceptionally fine-scale information over dark to bright surfaces.
This capability extends to areas characterized by high pollution levels originating from both anthropogenic and
natural sources.

1. Introduction

Atmospheric aerosols are suspended particulate matter (PM) con-
sisting of solid or liquid particles with diameters ranging from 10 nm to
100 μm, located chiefly in the lower atmosphere (Kaufman et al., 1997).
These aerosols originate from natural processes such as volcanic erup-
tions, wildfires, dust storms, and anthropogenic activities, including fuel
combustion, vehicular emissions, and industrial and agricultural

processes. Aerosols can alter the Earth-atmosphere radiative balance by
absorbing and scattering solar radiation, directly impacting ecosystems
and climate (Kaufman et al., 2002; Ramanathan et al., 2001). They also
indirectly influence climate change through interactions with clouds
and precipitation (Li et al., 2011; Rosenfeld et al., 2014). Furthermore,
in the form of fine and ultra-fine particulate matter like PM2.5 and PM1,
aerosols significantly deteriorate air quality and pose substantial threats
to public health (Fuller et al., 2022; Fuzzi et al., 2015; Kim et al., 2015;

* Corresponding authors.
E-mail addresses: weijing@umd.edu (J. Wei), zhanqing@umd.edu (Z. Li), sunlin6@126.com (L. Sun).

1 Co-first-authors: J. Wei and Z. Wang made equal contributions to this work.

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

https://doi.org/10.1016/j.rse.2024.114404
Received 31 October 2023; Received in revised form 13 August 2024; Accepted 29 August 2024

Remote Sensing of Environment 315 (2024) 114404 

Available online 24 September 2024 
0034-4257/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

mailto:weijing@umd.edu
mailto:zhanqing@umd.edu
mailto:sunlin6@126.com
www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2024.114404
https://doi.org/10.1016/j.rse.2024.114404
https://doi.org/10.1016/j.rse.2024.114404


Li et al., 2017). Therefore, accurate determination and assessment of
aerosol quantity and characteristics is of utmost significance in moni-
toring atmospheric environmental pollution and understanding climate
change dynamics.

Aerosol optical depth (AOD) is defined as the integral of a medium’s
extinction coefficient in the vertical direction and serves as a critical
optical parameter for characterizing aerosol content and assessing at-
mospheric turbidity (Kaufman et al., 2002). Satellite remote sensing
offers an efficient means to acquire AOD distributions across extended
timeframes and broad spatial extents. At present, a multitude of mature
aerosol retrieval algorithms exists, e.g., Dark Target (Levy et al., 2013),
Deep Blue (Hsu et al., 2013), and Multi-Angle Implementation of At-
mospheric Correction (Lyapustin et al., 2018), using atmospheric radi-
ative transfer (ART) models. These algorithms have been successfully
and operationally applied to medium- and low-spatial-resolution sun-
synchronous satellite instruments, such as the Moderate Resolution
Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging
Radiometer Suite (VIIRS), as well as instruments on high-temporal-
resolution geostationary satellites, including Himawari and the GOES-
R Series (Li et al., 2019a; She et al., 2019; Wang et al., 2022),
providing daily or hourly AOD products covering the entire Earth with
considerable accuracy. These datasets are invaluable for real-time air
quality monitoring, tracking, forecasting, and a variety of related
studies, particularly in the retrieval of PM (Ma et al., 2022; Wei et al.,
2021; Zhang et al., 2021).

Satellite-derived AOD serves as the primary and most crucial input
for atmospheric correction, directly impacting the accuracy of quanti-
tative remote sensing information extraction (Doxani et al., 2023; Li
et al., 2019b; Vermote et al., 2016), particularly for high-spatial-
resolution satellites such as the Landsat series and Sentinel-2. For
instance, aerosol retrieval is present in the official Landsat product
through different Atmospheric Correction Inter-comparison eXercise
(ACIX-II Land) algorithms (Doxani et al., 2018, 2023), yet access to their
AOD outputs are limited. In addition, physically based methods
informed by an ART model have been employed to retrieve AODs at a
30-m resolution from Landsat imagery, with a particular emphasis on
urban areas (Yang et al., 2022). Luo et al. (2015) developed a simple
ImAero-Landsat algorithm without using look-up tables and retrieved
AODs from Landsat 7 imagery, which was then applied to improve PM10
estimates in Beijing, China. Tian et al. (2018) retrieved AOD from
Landsat 8 imagery in Beijing City by estimating surface reflectance with
a bidirectional reflectance distribution function (BRDF) using the
RossThick-LiSparse model. Lin et al. (2021a) improved AOD retrievals
from Landsat 8 images by developing three schemes for estimating land
surface reflectance and by considering four aerosol types in Beijing and
Wuhan, China. They then further refined a fusion retrieval algorithm
specifically designed for urban areas using Landsat 8 and Sentinel-2
imagery (Lin et al., 2021b). Kumar and Mehta (2023) introduced a
simple iterative approach to enhance AOD retrievals from Landsat 8 and
Sentinel-2 data by using visible and near-infrared spectral signals across
diverse land surface types. Our group has also made notable contribu-
tions to facilitating AOD retrievals from Landsat 4–8 images through the
construction of priori land surface reflectance databases and the deter-
mination of aerosol types using time series analyses of historical ground
measurements in Beijing, China (Sun et al., 2016; Wei et al., 2017).

Conventional methods for coupled unknown variables associated
with the Atmosphere-Earth system typically depend on empirical as-
sumptions. However, the varying sensitivity of satellite signals to diverse
underlying surfaces, coupled with the high spatiotemporal variability of
aerosols and their compositions, could have a substantial impact on the
accuracy of aerosol retrievals (Li et al., 2009; Wei et al., 2020b). The
growing capacity for robust information mining and the capability to
tackle intricate, nonlinear problems have led to increased applications of
artificial intelligence (AI) techniques in satellite aerosol retrievals across
a range of satellite platforms (Jia et al., 2022; Su et al., 2020; Tao et al.,
2023; Yeom et al., 2022). However, its application to Landsat imagery is

still in its early experimental stages, and only a handful of studies have
been conducted thus far. For example, Liang et al. (2022) applied a
range of tree-based machine-learning (ML) models to retrieve AOD from
Landsat 7 and 8 scenes covering the Beijing area, utilizing prior
knowledge from multiple sources as inputs. She et al. (2022) demon-
strated the effectiveness of a deep neural network (DNN) model to
retrieve AOD from Landsat 8 data over land, showing strong correlations
with ground-based measurements. The Landsat series of satellites have
been providing long-term, high-spatial-resolution, and high-quality
global-scale imagery, continuously improving and updating their capa-
bilities since the 1970s with over 50 years of continuity (Crawford et al.,
2023; Wulder et al., 2022). These advantages have made Landsat an
indispensable tool in a variety of applications, such as natural resources
mapping, land cover change analysis, and ecological environmental
monitoring (Masek et al., 2020; Wulder et al., 2019). To achieve the
reliability and accuracy in these applications, high-precision AOD
products are essential for effectively removing atmospheric effects
through atmospheric correction.

Therefore, this study introduces a state-of-the-art powerful deep-
learning (DL) model called Transformer (Vaswani et al., 2017), devel-
oped to tackle the intricate nonlinear problems associated with
Atmosphere-Earth decoupling in aerosol retrievals for Landsat imagery.
To enhance the model’s performance, we have integrated multi-channel
information, observational geometry, absorbing gases, and surface cover
and elevation, resulting in innovative aerosol retrieval using the
Transformer model for Landsat imagery, known as AeroTrans-Landsat.
Furthermore, we utilize the eXplainable Artificial Intelligence (XAI)
technique to dissect the individual contributions of various features to
aerosol retrievals. Last, we automate the entire data preprocessing
process on the Google Earth Engine (GEE) platform and accomplish
global-scale aerosol retrievals from Landsat imagery using the Google
Colaboratory (Colab) platform. We assess the model’s AOD retrieval
performance using a variety of independent validation methods and
compare our results with those fromwidely used ML and DLmodels, and
previous studies. We also verify the model’s robustness by testing it in
both low- and highly-polluted representative regions selected from
around the world.

2. Materials and methods

2.1. Data sources

2.1.1. Landsat 8/9 imagery
The Landsat Operational Land Imager (OLI) is a multispectral in-

strument onboard the eighth satellite of the Landsat Data Continuity
Mission, which was launched successfully on 11 February 2013. Landsat
8 (L8) OLI provides satellite data covering the spectrum from visible to
shortwave infrared channels (Roy et al., 2014). L8 OLI introduces new
bands for coastal aerosol (deep blue) and cirrus cloud detection bands in
comparison to its predecessor, the Landsat 7 Enhanced Thematic Map-
per Plus (ETM+), which ceased operations in May 2021. It also boasts
improvements in imaging width (185 km × 180 km) and daily image
captures (725 scenes per day), enriching the multispectral radiometric
dataset and expanding the potential for capturing cloud-free scenes
globally. To minimize data gaps within the Landsat record, Landsat 9
(L9) was launched on 27 September 2021, carrying the OLI-2 sensor. It
closely aligns with L8 OLI in terms of spectral bands, spatiotemporal
coverage, radiometry, and geometric precision, further enhancing
measurement accuracy and stability while offering extended imaging
capabilities (Masek et al., 2020). L9 operates in orbit alongside L8, with
an 8-day orbital offset, resulting in an updated data revisit time of every
8 days and acquiring over 1400 scenes daily. To facilitate user access
and utilization, the Google Earth Engine (GEE) remote sensing cloud
platform provides the USGS Landsat 8/9 Collection 2 Tier 1 TOA
Reflectance dataset (Crawford et al., 2023). This dataset comprises 11
discrete spectral bands, 4 observation angles, and 2 quality assessment
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bands (see details in Table S1). To eliminate the influence of clouds and
ensure the quality of generated training samples, we set a cloud filter
value of 20 % for all images in our study. Here, we have collected all
available images from L8 (~20,947 cloud-screened scenes from 2013 to
2022) and L9 (~1333 cloud-screened scenes from 2021 to 2022)
worldwide since their respective launch times, matching them with
ground monitoring stations on land.

2.1.2. Ground-based measurements
The AErosol RObotic NETwork (AERONET) is a global ground-based

aerosol observation network capable of automated data collection
(Holben et al., 1998). It has been comprised of over 1600 monitoring
stations since 1992, each equipped with a CIMEL Electronique CE318
multi-band sun photometer. AERONET provides multi-channel AOD
observations every 15 min, with an average uncertainty of ±2 % (Giles
et al., 2019). These observations undergo different quality controls and
are categorized into three quality levels: Level 1.0 (unscreened), Level
1.5 (cloud screened), and Level 2.0 (cloud screened and quality assured)
(Giles et al., 2019). AERONET AOD data has been extensively employed
as ground truth for the development and validation of aerosol retrieval
studies (Hsu et al., 2013; Levy et al., 2013; Lyapustin et al., 2018; Wei
et al., 2019a; Wei et al., 2020b).

Given the limited number of AERONET stations in China, the Sun-sky
Radiometer Observation Network (SONET) has been incorporated to
enrich the observation samples. SONET is closely aligned to AERONET
in terms of observation instruments, spectral bands, and data quality
level categorization. It provides AOD observations at 16 long-term
ground stations across China, with an average uncertainty of approxi-
mately 0.25–0.5 % (Li et al., 2018). These observations have also been
widely used in studies related to the development of satellite aerosol
algorithms and uncertainty analysis in China (He et al., 2021; Wei et al.,
2019b). In this study, we have collected AERONET (Level 2.0) and
SONET (Level 1.5) AOD ground observations at a total of ~560 land
sites from 2013 to 2022 (Fig. S1) for DL model training and validation.

We have also incorporated another open-access independent obser-
vation network, the Sky Scanning Monitoring Network (SKYNET),
which is dedicated to research on aerosol-cloud-solar-radiation in-
teractions (Nakajima et al., 2020). SKYNET measures both the optical
and microphysical properties of aerosols across various wavelengths.
SKYNET observations have undergone rigorous inter-calibration pro-
cesses and have been subjected to inter-comparison with AERONET
CIMEL sun-photometers and precision filter radiometers to ensure ac-
curacy and consistency (Estellés et al., 2012). For this study, we have
gathered data from a total of 31 long-term ground stations operated by
SKYNET during the study period from 2013 to 2022 (Fig. S1), serving
the purpose of independent validation for the DL model. Note that the
three networks do not provide direct AOD observations at 550 nm.
Instead, these observations are interpolated using the Ångström algo-
rithm following our previous study (Wei et al., 2019a).

2.2. Landsat aerosol retrieval framework

In this study, we introduce a hybrid aerosol retrieval framework,
which includes the development of the aerosol retrieval using Trans-
former for Landsat imagery (AeroTrans-Landsat) over land, along with
the implementation of the automated aerosol retrieval facilitated by the
Google Earth Engine (GEE) platform.

2.2.1. AeroTrans-Landsat model
Conventional physical remote sensing approaches still face chal-

lenges in aerosol retrieval (Hsu et al., 2013; Levy et al., 2013; Lyapustin
et al., 2018). In contrast, AI, particularly DL, offers a promising solution
to deal with these nonlinear tasks. This study introduces an advanced DL
model called Transformer to minimize these effects and enhance the
capability to handle nonlinear problems. Transformer, developed by
Google researchers in 2017 (Vaswani et al., 2017), has been recognized

as the fourth major category of DL models, following multilayer per-
ceptron (MLP), the convolutional neural network (CNN), and the
recurrent neural network (RNN). It was originally designed for machine
translation tasks and has demonstrated outstanding performance in
various domains, such as image classification and text summarization
(Dong et al., 2022; Liu and Lapata, 2019). However, it has seldom been
applied to the field of geoscience, especially in atmospheric science.
Unlike other DL models via the pixel-by-pixel approaches, Transformer
utilizes sequence (time-series) processing and unique self-attention
mechanisms to model long-range dependencies and global relation-
ships within the data. Self-attention allows Transformer to weigh the
importance of different parts of the input data more dynamically, which
can be particularly advantageous for tasks requiring an understanding of
global context. Additionally, Transformer introduces the concepts of
residual connections and encoder-decoder structures, resulting in sig-
nificant breakthroughs in aspects such as operational efficiency, model
flexibility, and scalability (see the model structure in Fig. S2) (Vaswani
et al., 2017).

Determining input variables. Aerosols exert diverse and significant in-
fluences on the top-of-the-atmosphere (TOA) reflectance across various
wavelengths, with shorterwavelengthsmore sensitive to aerosols (Fig. S3).
As a result, seven discrete spectral channels (bands 1–7) spanning from
visible (deep blue) tomid-infraredwavelengths, i.e., coastal aerosol (0.443
μm), blue (0.482 μm), green (0.562 μm), red (0.655 μm), near-infrared
(NIR: 0.865 μm), shortwave infrared 1 (SWIR: 1.61 μm), and mid-
infrared (MIR: 2.2 μm), are selected as the primary input features for the
DL model. Notably, integrating multi-band information into the DL model
can also enhance its ability to differentiate between various aerosol types
over land (Wei et al., 2018). Additionally, TOA reflectances observed by
OLI andOLI-2 can be affected by atmospheric water vapor and ozone, with
the degree of influence varying by wavelength (TOAλ). Therefore, they are
also incorporated into the model, derived from total precipitable water
vapor (TH2O) and total column ozone (TO3) data from the Modern-Era
Retrospective analysis for Research and Applications, Version 2 (MERRA-
2) Single-Level Diagnostics product. Furthermore, aerosol information is
also influenced by the surface bidirectional reflectance distribution func-
tion (BRDF) and observation geometry. Five angles, including solar zenith
angle (SZA), solar azimuth angle (SAA), viewing zenith angle (VZA), the
viewing azimuth angle (VAA), and scattering angle (Θ), are thus included.
In addition, altitude (z) is a critical factor characterizing surface terrain
changes, particularly rugged terrain and at high altitudes where aerosol
retrievals face great challenges (Wang et al., 2019;Wei et al., 2020a) and is
derived from the NASADigital ElevationModel (DEM) 30-m product. Last,
we employ theMIR vegetation index (NDVIMIR, Eq. (1)),which ismuch less
sensitive to aerosols (Vermote et al., 2016), to discern land-use cover and
changes. In summary, 16 influencing factors related to aerosol retrieval are
selected as input features in the DL model. These variables encompass in-
formation related to various aspects, including spectral reflectance (Land-
sat 8/9OLI Bands 1–7TOA reflectances), absorbing gases (water vapor and
ozone), observational geometry (i.e., SAA, SZA, VAA, VZA, and Θ), and
land-surface conditions (i.e., DEM and NDVIMIR). Leveraging the strong
data-mining capabilities of DL, this approach has the potential to utilize the
benefits of implicit aerosol information among multiple channels and a
series of auxiliary influencing factors to address the challenges of resolving
complex atmospheric-surface decoupling processes, thereby enhancing the
model’s capability for aerosol retrieval (Li et al., 2022; Liang et al., 2022;
She et al., 2022).

NDVIMIR =
NIR − MIR/2
NIR+MIR/2

(1)

Model construction and training.We designate ground measurements of
AOD at 550 nm (AODm) as the ground truth (target value) and treat the
abovementioned 16 continuous features as training inputs into the
Transformer. The developed AeroTrans-Landsat model can be expressed
as:
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She et al. (2024) demonstrated the ability of the Transformer to
capture the time series information utilizing 10-min observations from
Himawari-8, with time-series lengths ranging from 1 to 81 and an
average of 21. In contrast, our study uses Transformer to capture time
series information every 16 days from Landsat over a 10-year period
(2013− 2022), with the frequency improved to every 8 days after the
launch of Landsat 9. This approach provides more valid observations,
with time-series lengths ranging from 4 to 208 and an average of 47,
thereby enhancing time-series modeling. Like She et al. (2024), our
model uses a 10-year time series encoded with 16 predictor variables as
inputs to produce the corresponding time series AOD retrievals as
outputs.

During this process, we replace the original positional encoding
module, typically employed in machine translation tasks, with multi-
dimensional spatiotemporal layers. These layers are represented by a
10-year time series of 16 predictor variables, encoded using three helix-
shaped trigonometric month sequence vectors (Sun et al., 2022; Wei
et al., 2023), accounting for the 16-day revisit period for Landsat im-
agery. This encoding module enhances the Transformer’ ability to
effectively utilize the long-term time series information recorded by
Landsat. Subsequently, we stack multiple Transformer encoders and
directly yield output through fully connected layers, which not only
enables us to thoroughly extract hidden aerosol information from multi-
dimensional features but also effectively mitigates the overfitting issue
by complex models in this specific task (Vaswani et al., 2017; Doso-
vitskiy et al., 2021). Specifically, the final AOD (AODm) is obtained using
a fully connected layer as the Decoder in the Transformer model, which
performs linear transformations to reduce and convert the high-
dimensional feature vectors from the Encoder.

During model training, we adopt the trial-and-error approach to
determine the optimal hyperparameters and utilize the early stopping
strategy to pinpoint the retrieval model that performs best, which can
also enhance both the model’s training efficiency and convergence
speed (Yeom et al., 2022). In this study, we use PyTorch (Paszke et al.,
2019) to build and train our DL model. The model architecture includes
2 sub-encoder layers, a hidden layer dimension of 64, and 4 heads in the
multi-head attention mechanism. To further enhance learning efficiency
and extract sparse features more effectively, we employ the ReLU
function as the activation function between each hidden layer. Addi-
tionally, recognizing the non-uniform distribution characteristics of the
AOD target reference values in the data samples, we utilize the Huber
Loss function (delta = 0.2) as the loss function to measure the disparity
between predicted values and target values, thereby facilitating a more
reasonable adjustment of the model’s training process.

2.2.2. Google Earth Engine platform
The GEE is a cloud-computing platform designed specifically to

enhance the parallel processing of petabyte-scale satellite remote
sensing imagery and other geographical spatial data, leveraging the
powerful computational infrastructure (Gorelick et al., 2017; Tamiminia
et al., 2020). Moreover, the platform offers application programming
interfaces (APIs) and integrated development environments in both
JavaScript and Python, empowering users to engage in customized
development according to their specific needs. Users can leverage the
cloud computing capabilities of GEE’s backend data center to perform a
variety of computations and analyses, saving a huge amount of time
required for local data downloading and processing. In this study, we
employ the cloud-based automated retrieval of global AOD, facilitated
by the Colaboratory (Colab) platform developed by Google Research
(https://colab.research.google.com/), an interactive open-source

project that provides stable GPU computing resources. By integrating
with the Python API environment of GEE, the entire process of Landsat
data querying, collection, processing, and retrieval is streamlined, with
Google Drive serving as an intermediary.

In the online retrieval framework, initially, Landsat 8/9 Collection 2
Tier 1 TOA reflectance data on the GEE platform is filtered based on the
central coordinates of AERONET and SONET sites, retaining only valid
observations that coincide with the satellite overpass time within a ±

30-min window. All valid observations are averaged to establish ground-
truth values for each site. Subsequently, we utilize the Landsat quality
assessment (QA) band to mask out all unsuitable retrieval pixels,
including those affected by clouds, cloud shadows, water, and ice/snow.
We then proceed with the extraction (e.g., spectral reflectance and angle
information), computation (e.g., NDVIMIR), and pixel-to-pixel value
matching of selected input features to complete the generation of
training samples. To establish a robust global aerosol retrieval model,
we collect all satellite images from the launches of Landsat 8 and 9 that
matched ground-based monitors, encompassing a total of 22,280 cloud-
screened images (Table S2). All data samples are input into the Trans-
former model (currently trained in Colab), which is then applied to
perform the aerosol retrieval, ultimately generating the final output
map. By the way, Transformer will also be integrated into the GEE
platform in the near future, enabling a fully GEE-based cloud aerosol
retrieval process. Last, a 5 × 5 window median filter is applied to
minimize spatial noise and enhance the quality of the final retrieval
(approximately 150 m in effective spatial resolution), following our
previous study (Wei et al., 2017). Fig. 1 illustrates the flowchart of our
proposed model for aerosol retrieval from Landsat imagery over land.

2.3. Validation method

To comprehensively assess the performance of the proposed model
for global Landsat AOD retrievals, we employ two distinct categories of
independent validation methods. One is the widely used ten-fold cross-
validation (10-CV), a standard approach in validating AI regression tasks
(Rodriguez et al., 2010). This is conducted at sample, station, and
monthly levels, which involves randomly selecting 90 % of the data
samples, ground monitor stations, and months of the year for training
the model, while the remaining 10 % is reserved for validation (Wei
et al., 2023). This process ensures that the training samples are inde-
pendent of the testing samples at overall, spatial, and temporal scales.
This cycle is repeated 10 times to ensure that all data samples are used as
test sets in the cross-validation. These three methods collectively eval-
uate the overall accuracy of AOD estimates at monitoring stations and
the model performance at locations and on dates where ground mea-
surements are not available, respectively. Lastly, we have included an
additional independent validation using the leave-one-station-out cross-
validation (LOOCV) approach, as detailed in the study by She et al.
(2024).

The other validation method is comprised of three distinct parts:
First, taking into consideration the unbalanced distribution of ground
monitors and the pronounced spatiotemporal clustering patterns of
AOD, we evaluate the model’s predictive capabilities by withholding
temporal and spatial units. This entails controlling each year from 2013
to 2022 and each of the 10 geographical continents globally [defined in
Fig. S1 according to Wei et al., 2019a] to conduct independent valida-
tions (withhold one year or one continent). This is accomplished by
sequentially selecting all data samples from a single year or a single
continent as the validation set while utilizing data samples from the
remaining 9 years or 9 continents for model training. Second, we employ

AODm ∼ fTransformer
(
TOAλ1− 7 ,TH2O,TO3, SAA, SZA,VAA,VZA,Θ,DEM,NDVIMIR

)
(2)
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data samples from the middle 6 years (i.e., 2015–2020) for the model
training and utilize the two initial years (i.e., 2013 and 2014) and the
two final years (i.e., 2021 and 2022) for validation. This split results in
approximately 65 % of the samples for training and 35 % for testing.
This method can effectively validate the model’s capacity to retrieve
AOD levels in both preceding and subsequent years. Lastly, we utilize a
completely independent ground-based network called SKYNET to vali-
date the AOD retrievals for the period 2013 to 2022 produced by our
developed model.

To quantitatively assess the model’s accuracy and facilitate model
comparison, several statistical indicators are used, namely, the Pearson
correlation coefficient (R), median bias (MB), mean absolute error
(MAE), and root-mean-square error (RMSE). Additionally, to assess the
uncertainties of satellite AOD retrievals, we employ the expected errors
(EE) for AOD retrievals from the MODIS Deep Blue algorithm over land
(Eq. (3)) (Hsu et al., 2013) and the criteria for AOD retrievals in the
Global Climate Observation System (GCOS) (Eq. (4)) (GCOS, 2010).

EE = ±(0.05+ 20%× τobservation) (3)

GCOS = ±maximum(0.03,10%× τobservation) (4)

3. Results and discussion

3.1. Feature contribution analysis using XAI

DL models are commonly seen as black boxes, but with the emer-
gence of XAI, their internal workings can be unveiled from a physical
perspective. Here, we select the advanced SHapley Additive exPlanation
(SHAP) method to calculate feature contributions for our trained model,
as the Transformer itself does not have an inherent feature contribution

evaluation mechanism. Specifically, we utilize the Deep SHAP module,
which is designed to interpret deep learning models by integrating Deep
Learning Important FeaTures (DeepLIFT) and Shapley Values (Lundberg
and Lee, 2017), to investigate and understand the driving factors in the

Fig. 1. Flowchart of the Transformer-informed global aerosol retrieval framework for Landsat imagery (AeroTrans-Landsat) facilitated by the Google Earth Engine
(GEE) platform.

Fig. 2. Sunburst chart of feature contributions in the AOD retrieval from
Landsat imagery using the SHapley Additive exPlanations (SHAP) approach of
eXplainable Artificial Intelligence (XAI).
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Landsat AOD retrieval (Fig. 2).
Our findings demonstrate that the coastal aerosol channel within the

deep-blue wavelength exerts the most significant contribution, with the
highest SHAP value of approximately 40 % among all features, followed
by the blue and green channels, accounting for ~12 % and 10 %,
respectively. The contributions of discrete channels to the AOD retrieval
tend to gradually decrease as wavelengths increase, consistent with the
decreasing sensitivity of the aerosol signal to apparent reflectance (Fig.
S3). Nevertheless, these contributions remain substantial, and the total
contribution of all channels, spanning from visible to shortwave infrared
wavelengths, amounts to approximately 80 %, underscoring the
considerable importance of multi-band information in aerosol retrievals.
Observation angles, especially solar azimuth and zenith angles, also
have great impacts on the AOD retrieval (total SHAP scores = 11 %).
Furthermore, water vapor, NDVIMIR, and ozone also contribute to
enhancing the AOD retrieval within the Transformer model (SHAP =

1–7 %). These results illustrate the rationale behind our feature selec-
tion, contributing to a deeper understanding of the physical interpret-
ability of DL.

3.2. Evaluation and uncertainty analysis

3.2.1. Model cross-validation
We initially employ three independent cross-validation techniques to

assess the performance of the proposed model for the Landsat global
aerosol retrieval. Our model demonstrates good performance in esti-
mating AOD from Landsat images across the world, agreeing moderately
well with measurements at approximately 78 % of the sites [sample-
based cross-validation correlation coefficient (CV-R) > 0.5], with me-
dian biases within±2% for about 76% of the sites (Fig. 3). Higher levels
of accuracy are noted in populous areas characterized by elevated levels
of air pollution, including Southern Africa, India, and East Asia

(Table 1), where correlations surpass 0.8. The retrieval uncertainties at
most sites remain consistently low, with approximately 86 % and 80 %
of sites having small MAE and RMSE values below 0.08 and 0.1,
respectively. Exceptions are observed at a few sites in North Africa, the
Middle East, and eastern China (Table 1), where larger absolute errors
are primarily associated with high AOD levels resulting from heavy,
frequent sand/dust emissions or anthropogenic activities. Overall, over
88 % of the sites show considerable accuracy, with more than 70 % of
the retrievals falling within the EE envelope. Furthermore, 72 % of the
sites have at least 40 % of retrievals meeting GCOS requirements.
Similar spatial patterns are observed from spatial (temporal) CV results
(Figs. S4 and S5), but the performance is generally poorer than the
sample-based CV results. This is because they reflect the accuracy of the

Fig. 3. Overall accuracy of AOD retrievals from Landsat imagery against ground-based measurements at the individual-site scale from 2013 to 2022 using the
sample-based cross-validation approach: (a) correlation coefficient (R), (b) median bias, (c) mean absolute error (MAE), (d) root-mean-square error (RMSE), and the
percentages of retrievals falling within the (e) expected error (EE) envelope of the MODIS Deep Blue product and (f) the uncertainty goal defined by the Global
Climate Observing System (GCOS). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Overall accuracy of AOD retrievals from Landsat imagery against ground-based
measurements in ten continental regions of interest and on a global scale from
2013 to 2022 using the sample-based cross-validation approach.

Region R Median Bias MAE RMSE = EE (%) = GCOS (%)

EAA 0.885 0.003 0.071 0.120 78.99 40.59
SAA 0.924 0.004 0.093 0.138 80.65 41.84
SEA 0.959 0.000 0.065 0.095 84.86 44.58
EUR 0.710 0.002 0.043 0.065 85.94 51.16
ENAM 0.794 0.003 0.035 0.062 90.71 65.10
WNAM 0.871 0.001 0.037 0.071 89.27 64.63
SAM 0.906 0.003 0.035 0.054 91.00 62.25
NAME 0.823 0.001 0.080 0.129 73.31 36.13
SAF 0.932 0.004 0.042 0.059 88.24 54.45
OCE 0.666 0.002 0.027 0.043 94.80 69.90
Global 0.905 0.002 0.048 0.083 85.96 54.55

EAA: Eastern Asia; SAA: South Asia; SEA: Southeast Asia; EUR: Europe; ENAM:
Eastern North America; WNAM: Western North America; SAM: South America;
NAME: North Africa and the Middle East; SAF: South Africa; OCE: Oceania.
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model in retrieving AOD in regions or dates where observations are not
available. Nevertheless, approximately 77 % (74 %), 78 % (81 %), and
72 % (74 %) of the sites continue to demonstrate station-based (month-
based) moderate correlations (CV-R > 0.5) and low MAE (< 0.08) and
RMSE (< 0.1) values between the retrievals and ground-truth values.
Additionally, acceptable retrievals meeting the error criteria of the EE
(> 70 %) and GCOS (> 40 %) are observed at approximately 74 % (81
%) and 52 % (65 %) of the sites on land. Despite the overall good per-
formance at the individual-site scale, it is important to note a general
trend where errors tend to increase with the decreasing density of
AERONET stations, particularly in regions like Africa and the Middle
East. This trend may be attributed to the limited availability of ground
monitors and a smaller volume of training data acquired for the DL
approach.

On a global scale, our model demonstrates exceptional overall ac-
curacy, attaining a high CV-R value of 0.905. The median bias ap-
proaches zero (~0.002), and the average MAE and RMSE values remain
low at 0.048 and 0.083, respectively. Approximately 86 % and 55 % of
the global AOD retrievals conform to the EE and GCOS criteria (Fig. 4a).
In general, our model exhibits good predictive capability on a global
scale, with average station-CV (Fig. 4b) and month-CV (Fig. 4c) R values
of 0.845 and 0.876, MAE values of 0.061 and 0.054, and RMSE values of
0.104 and 0.094, respectively. Notably, around 78 % (43 %) and 82 %
(50 %) of the AOD predictions align with the EE (GCOS) anticipated
deviations, respectively. Our proposed model also demonstrates excep-
tional performance at regional scales, especially in Southeastern,
Southern, and Eastern Asia [e.g., CV-R = 0.83–0.96, the fraction of re-
trievals falling within the EE envelope (fEE) = 68–85 %) (Tables 1, S3,
and S4). Additionally, the leave-one-station-out cross-validation
(LOOCV) results demonstrate high agreement with observations on a

global scale, with indices of R = 0.908, RMSE = 0.082, and MAE =

0.047, respectively. These additional independent validations attest
further to the robustness of our model’s performance. Nevertheless,
while cross-validation is a standard method for evaluating model per-
formance, it can have limitations in regions with sparse ground mea-
surements, such as Africa and South America. This method might not
fully represent the true accuracy in these areas, as the model may exhibit
limited generalizability and potential biases due to insufficient data.

3.2.2. Spatiotemporal predictability
To further assess the model’s predictive ability in new spatiotem-

poral domains, we employ a variety of spatiotemporally independent
validation methods. Initially, by isolating the spatial dependence
through the independent control of each continent (withhold), our
model demonstrates proficiency in predicting AOD values for various
regions, where most yield moderate correlations exceeding 0.6 and
maintained low median biases within ±1 % (Table S5). Furthermore,
more than half to 92 % of the spatial predictions align with the EEs for
each region. However, decreased performance is observed at unmoni-
tored locations, especially in regions like North Africa, the Middle East,
and Eastern Asia. This could be attributed to substantial variations in
natural conditions and the influence of anthropogenic emissions (such as
sand, dust, and haze) (Wei et al., 2019a; Sogacheva et al., 2020; Falah
et al., 2021). Similarly, the AI method faces difficulties in accurately
learning their conditions from other regions, leading to reduced per-
formance when applying the model trained on data samples collected in
other areas.

Considering the inhomogeneity of global observation sites, particu-
larly at high latitudes above 60 degrees and local regions like Central
Asia with limited sites, we conduct additional independent validations.

Fig. 4. Density scatter plots of global AOD retrievals derived from Landsat imagery against ground measurements over land from 2013 to 2022 using the (a) sample-
based, (b) station-based, (c) month-based 10-fold cross-validation methods, and (d) the spatiotemporally independent validation method (i.e., using data samples
from the years 2015 to 2020 for training and the remaining years for testing). The solid black line is the 1:1 line, and the dashed lines outline the EE envelope.
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We first utilize data samples from low latitudes (within 60 degrees) for
training, then employ ground measurements from 27 available AERO-
NET sites at high latitudes above 60 degrees for validation. Our re-
trievals exhibit an average correlation of 0.811 compared to ground
measurements, with average MAE and RMSE values of 0.045 and 0.096,
respectively. The estimation bias is − 0.003, with approximately 83 %
and 57 % of retrievals meeting MODIS EE and GCOS requirements.
Similar independent validation is also conducted in Central Asia, uti-
lizing data samples from global regions excluding Central Asia for
training and comparing them against available measurements at 18 sites
in Central Asia. Our model performs generally well, with an average R of
0.844, MAE of 0.097, and RMSE of 0.163 between the retrievals and
measurements. Additionally, approximately 70 % and 38 % of the re-
trievals meet EE and GCOS criteria, respectively.

By independently controlling each year (withhold) to reduce tem-
poral correlations, our model effectively captures AOD loads for the
remaining years, achieving high correlations and minimal uncertainties
(e.g., R = 0.80–0.92, MAE = 0.04–0.06, and RMSE = 0.07–0.1)
compared with ground measurements (Table S6). Moreover, a signifi-
cant proportion of the temporal predictions, at least 82 % and 49 %,
meet the EE and GCOS requirements, respectively. Furthermore, we
construct the model using data samples from the years 2015 to 2020 for
training, with the remaining years (2013, 2014, 2021, and 2022) uti-
lized for testing, as illustrated in Fig. 5. Across the globe, AOD retrievals
exhibit notable accuracy, with moderate correlations exceeding 0.5 at
more than 78 % of the sites. Moreover, approximately 83 % and 77 % of
the sites display low MAE and RMSE values of less than 0.08 and 0.1,
respectively. However, in regions with elevated AOD levels, such as
Africa and Eastern China, sites are more prone to underestimation,
showing higher RMSE and MAE values. Nonetheless, a substantial
portion (62 %) of the sites demonstrate nearly “unbiased” estimates

(within ±2 %). In addition, more than 78 % and 63 % of the sites have a
significant proportion of the retrievals falling within the EE (> 70 %)
and GCOS (> 40 %) envelopes. Regionally, the model performance is
generally acceptable, with relatively small biases (Table 2). The highest
correlations are observed in Southeast Asia and Southern Africa (R =

0.928 and 0.9), while Europe and Oceania exhibit relatively lower
correlations, attributable to historically clear air with low AOD loads.
However, they have higher fractions of retrievals falling within the EE
(~84 % and 91 %, respectively) and GCOS (~50 % and 65 %, respec-
tively) envelopes. Our model demonstrates great predictive accuracy on
a global scale, with a correlation coefficient of 0.866 between retrievals

Fig. 5. Model performance in retrieving AOD from Landsat imagery against ground-based measurements at the individual-site scale from 2013 to 2022 using the
spatiotemporally independent validation approach (i.e., data samples from the years 2015 to 2020 for training and other years for testing): (a) correlation coefficient
(R), (b) median bias, (c) mean absolute error (MAE), (d) root-mean-square error (RMSE), and the percentages of retrievals falling within the (e) expected error
envelope (= EE) of the MODIS Deep Blue product and (f) the uncertainty goal defined by the Global Climate Observing System (GCOS). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Model performance in retrieving AOD from Landsat imagery in specific conti-
nental regions of interest and on a global scale using the spatiotemporally in-
dependent validation approach, i.e., data samples from the years 2015 to 2020
for training and other years for testing.

Region R Median Bias MAE RMSE = EE (%) = GCOS (%)

EAA 0.843 0.012 0.083 0.137 72.75 34.15
SAA 0.890 0.063 0.122 0.161 70.12 30.71
SEA 0.928 − 0.004 0.077 0.110 77.86 35.71
EUR 0.610 0.001 0.047 0.075 83.96 50.30
ENAM 0.750 − 0.001 0.037 0.066 89.32 64.20
WNAM 0.857 0.004 0.044 0.083 85.24 58.00
SAM 0.882 0.012 0.037 0.051 86.01 56.79
NAME 0.757 0.004 0.091 0.144 69.19 33.75
SAF 0.900 − 0.001 0.049 0.068 82.95 46.51
OCE 0.549 − 0.001 0.032 0.046 91.28 65.44
Global 0.866 0.003 0.054 0.094 82.66 51.45

EAA: Eastern Asia; SAA: South Asia; SEA: Southeast Asia; EUR: Europe; ENAM:
Eastern North America; WNAM: Western North America; SAM: South America;
NAME: North Africa and the Middle East; SAF: South Africa; OCE: Oceania.
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and observations and a median bias close to zero (Fig. 4d). Average MAE
and RMSE values stand at 0.054 and 0.094, respectively. Approximately
83 % of the collocated points fall within the EE envelope, and more than
half (51 %) meet the GCOS requirements.

Furthermore, we employ one open-access independent global
observation network, SKYNET, to validate the performance of our model
in retrieving AOD from Landsat imagery for the period 2013–2022 at 31
globally distributed monitoring stations (Fig. S1). This independent
validation demonstrates the reasonable ability of our proposed model to
retrieve AOD in previously unobserved regions, with a median bias of
− 0.017. The retrievals exhibit an average R of 0.746, along with MAE
and RMSE values of 0.068 and 0.105, respectively, when compared to
SKYNET AOD measurements. Additionally, 74 % and 43 % of the
collocated samples (N= 1887) satisfy the requirements of EE and GCOS,
respectively.

3.2.3. Uncertainty analysis
Aerosol retrieval errors can arise from various sources. To assess the

uncertainty of AOD retrievals, we examine the model’s performance
with respect to variations in surface and atmospheric conditions (Fig. 6).
When using NDVI as an indicator of surface conditions (Fig. 6a), our
model demonstrates stability in sparse and low-vegetation areas (NDVI
<0.3), exhibiting median biases slightly below zero and (within) EE
fractions consistently above 80 %. Moreover, as NDVI values increase,
the model’s overall accuracy gradually improves, with median biases
approaching zero. There is also a continuous enhancement in (within)
EE fractions, reaching approximately 90 % in densely vegetated areas
(NDVI ≥0.6). Our model consistently delivers reliable AOD retrievals
across various land-use types (Fig. 6b), particularly excelling in grass-
land (e.g., median bias = − 0.008, and fEE = 91 %) and forest (e.g.,
median bias = − 0.007 and fEE = 90 %) areas. Our model also performs
effectively in retrieving AOD over bare land (e.g., median bias =

− 0.005, and fEE = 86 %) and urban areas (e.g., median bias = − 0.002,
and fEE = 83 %), where populations are densely concentrated amidst
complex surface structures and challenging climate conditions. In low-
elevation areas (< 300 m), the model exhibits stable performance
with slight overall underestimations (median bias = − 0.004 to − 0.006)
and high proportions (83–86 %) of retrievals falling within the EE en-
velope (Fig. 6c). Note the observed shift around the altitude range of

400 m, characterized by a narrower range of biases and a higher fraction
of retrievals falling within the EE envelope, may be associated with the
generally lower AOD values (average ground truth value= 0.11 ± 0.15)
compared to nearby ranges of values (0.18 ± 0.22). In mid-elevation to
high-elevation areas (≥ 500 m) areas, the model’s performance shows
gradual improvement with rising surface elevation, as indicated by the
reduced variability of estimated biases and the increased fraction of
retrievals falling within the EE envelope.

As surface reflectance increases, the model’s performance gradually
declines, with a widening range of AOD biases and a decreasing fraction
of retrievals falling within the EE envelope (Fig. 6d). Nevertheless, the
median bias remains relatively close to zero, and the fEE consistently
exceeds 80 %. The model also performs well for bright surfaces, an area
where traditional physical methods have historically faced challenges
due to difficulties in accurately estimating surface reflectance, leading to
substantial estimation uncertainties. In regions with strongly absorbing
aerosol types (single-scattering albedo, SSA< 0.9), our model maintains
overall estimatedmedian biases below 0.04, with approximately 80% of
the retrievals meeting the requirement of the EE criterion (Fig. 6e).
However, as the SSA increases and aerosol absorptivity weakens, the
model’s estimation uncertainty gradually rises, leading to AOD re-
trievals tending towards underestimation, particularly for weak or non-
absorbing (spheroid) aerosol types, such as dust and smoke. Neverthe-
less, the proportion of AOD retrievals falling within the EE envelope
remains at 66 %, indicating acceptable accuracy. Furthermore, we
evaluate the model’s performance under varying aerosol loads (Fig. 6f).
Under clean conditions (AOD < 0.1), daily AOD values are accurately
retrieved, with more than 90 % of them deemed satisfactory (median
bias = 0.011). However, as pollution levels increase, the model’s esti-
mation uncertainty gradually increases, and the proportion of samples
meeting the EE criterion decreases, particularly under highly polluted
conditions (AOD > 1), with estimation biases fluctuating over a wider
range of values. Additionally, AOD values are generally underestimated,
mainly due to the limited number of data samples with high values.
Nonetheless, more than 72 % of retrievals still meet the MODIS EE
requirements.

Fig. 6. Uncertainty analysis with box plots of bias and the fraction of retrievals falling within the EE envelope (curves) of global AOD from Landsat imagery retrievals
against ground-based measurements for various surface conditions, including (a) NDVI, (b) land-use type, (c) elevation (m), (d) surface reflectance (482 nm), as well
as atmospheric conditions, including (e) AERONET single scattering albedo (SSA, 550 nm) and (f) AOD (550 nm) measurements. Black horizontal solid lines
represent zero biases. In each box, the red dot and middle, lower, and upper horizontal lines represent the AOD bias mean, the median, and the 25th and 75th
percentiles, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.3. Global and regional aerosol retrieval experiments

3.3.1. Mapping global AOD using Landsat imagery
Given the extensive volume of Landsat imagery available globally,

this study only calculates one-month aerosol retrieval results to illus-
trate the global distribution and variation. Fig. 7 presents arguably the
first global retrievals of monthly AOD at the highest resolution (30 m)

over all continents in September 2022 using a total of over 38,000
Landsat 8 and Landsat 9 images. Globally, AOD varies regionally,
influenced by various factors. In densely populated cities and industrial
areas, such as some regions in Asia like Eastern China (Beijing) and
northern India (New Delhi), higher AOD values are typically observed.
They are often attributed to increased pollution levels in the atmosphere
due to industrial, traffic, and anthropogenic emissions (Gunthe et al.,

Fig. 7. Spatial distribution of high-resolution (30 m) global AOD (550 nm) over land for September 2022, derived from Landsat imagery.

Fig. 8. Color composite (RGB: Bands 4–3–2) images and corresponding AOD retrievals (550 nm) from Landsat (AeroTrans, 30 m) and MODIS imagery (MAIAC, 1
km) for full-scene and zoomed-in core-region views (areas outlined in red) under clear conditions: (a-c) Denver, US and (d-f) Madrid, Spain. Identified unsuitable
pixels for aerosol retrievals (e.g., clouds and snow/ice) are in black in the two rightmost mages, and the top and bottom annotations indicate acquisition times (mm/
dd/yyyy, where yyyy = year, mm = month, and dd = day) and orbital records (path-row) of the Landsat images. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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2021; Wei et al., 2023; Chen et al., 2024). Additionally, seasonal
meteorological conditions also affect the spatial distribution of AOD. In
September, some regions like central South America and central
Southern Africa typically experience large-scale wildfires and biomass
burning, releasing smoke and PM into the atmosphere, thereby
increasing AOD values. Furthermore, tropical cyclones and storms may
trigger widespread dust storms in some areas, further elevating AOD
values, especially in desert regions like the Sahara Desert in North Af-
rica. By contrast, in a variety of remote or cleaner areas, such as the
United States (US), Canada, Europe, and Australia, AOD values are much
lower. These regions are typically distant from industrial pollution
sources and are influenced by clean oceanic air currents. Our retrievals
also exhibit a high consistency in spatial patterns with the MODIS 1-km
Multi-Angle implementation of Atmospheric Correction (MAIAC) AOD
product (Fig. S6), particularly in regions with high AOD loadings.
However, differences may arise due to variations in sampling accuracy
stemming from the significant difference in revisit cycles (half a month
versus once or twice a day).

3.3.2. Landsat AOD retrieval over typical regions
Here, two clear regions and four polluted regions are selected for

further examination. These regions encompass diverse land-use types
and serve as representatives of varying surface conditions, climates, and
levels of human activity. All available Landsat 8/9 OLI images from

these regions from 2013 to 2022 are collected to conduct aerosol re-
trievals using our developed model. Fig. 8 presents true-color images
and corresponding AOD retrievals (550 nm) from Landsat imagery for
Denver, US, and Madrid, Spain, on different dates, both illustrative ex-
amples of clean conditions. These regions share similar land surface
characteristics, primarily comprising plains and mountains, dense
vegetation (forests, grasslands, croplands), low population densities,
and consistently low aerosol levels throughout the year. Our model
exhibits high spatial continuity and provides detailed pollution infor-
mation at a high spatial resolution (30 m), capturing subtle spatial
variations within the overall low aerosol background throughout the
months. Importantly, the model is capable of capturing high smoke AOD
values generated by sudden small wildfires on specific days (e.g., 15
September 2018 and 4 September 2020) during the fire season in Den-
ver, US, even across the entire image at relatively low pollution levels
(red arrows in Fig. 8b-c). We also validate the aerosol retrievals using
data from 12 available AERONET stations within the two study areas. A
high level of agreement between observations and retrievals is revealed,
with estimated median biases less than ±1 % and close RMSEs equal to
0.05–0.06. Approximately 90 % and 88 % of the retrievals meet the EE
criterion, with proportions falling within the GCOS range of 68 % and
57 %, respectively.

Fig. 9 displays true-color images and corresponding AOD retrievals
(at 550 nm) from Landsat imagery, along with a comparison to MODIS

Fig. 9. Color composite (RGB: Bands 4–3–2) images and corresponding AOD retrievals (550 nm) from Landsat (AeroTrans, 30 m) and MODIS imagery (MAIAC, 1
km) for full-scene and zoomed-in core-region views (areas outlined by red boxes) under highly polluted conditions, including (a) haze in East Asia (Beijing, China),
(b) smog in Southeast Asia (Chiang Mai, Thailand), (c) wildfires in North America (western US), and (d) dust in Northern Africa (the Sahara Desert). The colored dots
in (a) represent ground-based measurements. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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MAIAC operational AOD products for selected regions experiencing se-
vere pollution conditions. Beijing, China, situated in East Asia, is a
densely populated city that often experiences poor air quality conditions
(Fig. 9a). Spatially, a noticeable trend of increasing AOD from the
northwest to the southeast is observed. This aligns with the transition
from mountainous and forested terrain in the northwest to urban and
agricultural areas in the southeast, where there are more industrial ac-
tivities than in the northwest, known for its high density of intellectual
workforce (e.g., universities and high-tech sector, the so-called China’s
Silicon Valley). The central core urban region experiences heavy haze
pollution with much higher AOD levels (often >2), primarily due to the
substantial release of pollutants from human activities. The spatial
pattern of our retrieval closely resembles the general spatial pattern of
the MAIAC AOD data. However, compared to MAIAC AOD products
with a coarse resolution (~1 km), which contains only a few pixels
within the city, Landsat AOD retrieval offers a more effective capture of
pollution variations in urban areas by providing a much larger number
of valid pixels due to its very higher resolution (~30 m). Significant
discrepancies are observed at image-splicing points, indicated by red
arrows, with an overestimated AOD value at the Beijing site (1.82 ac-
cording to MAIAC compared to our 1.57 against the ground measure-
ment of 1.61). Similarly, there is good agreement between our Landsat
and MODIS MAIAC AOD retrievals during a heavy smog pollution event
in urban and surrounding areas in Southeast Asia, specifically Chiang
Mai, Thailand.

Our model demonstrates good performance in capturing natural
high-pollution events, like regions in the US that experience frequent
wildfires during the warm seasons. Two major forest wildfire events are
seen in a single Landsat image in the western US, showing the excep-
tionally high AOD values within the core smoke region of the wildfires,
as well as the surrounding areas affected by the transmission of smoke
particles (Fig. 9c). By contrast, MAIAC AOD retrievals over the core
pyrotechnic area are missing because these black pixels are identified as
clouds. Another example is the Sahara Desert, located in northern Africa,
which is comprised of rocky deserts and sand dunes. It has low vegeta-
tion cover and limited human activities, making it prone to dust storms
in spring. Our model captures a large dust track with high AOD con-
centrations running from the southwest to the northeast in the image,
with the dust distribution closely aligning with the true color image,
particularly noticeable in the tail end of the dust track in the north
(Fig. 9d). Although showing a similar spatial pattern, MAIAC tends to
overlook the high AODs in the core dust source area in the southeast and
underestimates the AOD in areas affected by thin dust (red arrows). Note
that the spatial distribution differences also arise from variations in the
transit time of the two satellites (often exceeding half an hour). Such
spatial disparities tend to be more pronounced for pollutants with
shorter life cycles, such as those emitted by fires and dust, compared to
those with longer life cycles, like haze and smog. Nevertheless, Landsat
AOD retrieval can be sensitive to changes in land surface reflectance and
surface textures due to very high spatial resolution. While these impacts
are present, they are relatively minor and unavoidable.

3.3.3. Comparison with other AI models, physical algorithms, and studies
Finally, we compare the performance of our model with currently

popular AI models by conducting the same trial-and-error process to
determine optimal parameters for eachmodel, and evaluating themwith
the same inputs through spatiotemporally independent validation, i.e.,
training these models on data from 2015 to 2020 and validating them on
data from the remaining years (Table 3). All widely used tree-based ML
models perform well in retrieving global AOD levels, showing good
correlations with surface observations (R = 0.73–0.84), average MAEs
and RMSEs generally below 0.08 and 0.14, respectively, and a relatively
high proportion of retrievals meeting the EE (> 64 %) and GCOS (> 33
%) criteria. Moreover, boosting-based models (i.e., XGBoost, CatBoost,
and LightDBM) outperform bagging-based ensemble-learning methods
(Extra Trees and Random Forest) in aerosol retrievals due to their
continuous optimization functions, which correct residuals more effec-
tively. However, DL, with its enhanced data-mining capabilities and
improved ability to tackle nonlinear problems, exhibits improved ac-
curacy, especially the latest models like MLP and ResNet (e.g., R > 0.84,
fEE > 80 %). The Transformer model, a recent, powerful, state-of-the-art
DL approach, surpasses all other AI models across all evaluation metrics,
attributed to its superior data-mining and processing capabilities. Spe-
cifically, R improved by 2 % to 17 %, RMSE decreased by 4 % to 28 %,
and especially the median bias reduced by 57 % to 89 %. Similar en-
hancements are observed in the increased portions of retrievals that fall
within the EE (by 3 %–21 %) and GCOS (by 6 %–62 %) error margins.
The 10-CV results performed at sample, spatial, and temporal scales
yield similar conclusions, further substantiating the superiority of the
Transformer model (Table S7). Efficiency tests are also conducted
among various AI models. Tree-based ML models are known for their
fast training speeds and lower memory consumption. However, DL
models, while less efficient, typically require several minutes for
training and have memory usage below 2 GB. Transformer, due to its
more complex structures, requires longer training times, but the process
remains relatively brief, taking approximately 244 s (about 4 min).
Notably, the model needs to be trained only once for any application,
which is acceptable on a global scale.

Also conducted are comparisons with outputs or operational prod-
ucts derived from conventional algorithms and other studies utilizing AI
models to retrieve AOD from Landsat imagery at a global scale (Table 4).
Our model is slightly more accurate (e.g., R = 0.905, fEE = 85.96 %) and
~ 33 times higher in spatial resolution than the widely used MODIS
MAIAC algorithm (e.g., R = 0.878, fEE = 83.62 %), which provides a 1-
km AOD product covering the land (Lyapustin et al., 2018). However,
there are no Landsat MAIAC AOD products available, and in principle,
the MAIAC algorithm cannot be applied to Landsat imagery since it
requires a high-frequency (e.g., daily) time series of images to determine
surface reflectance for short-wavelength channels. Additionally, our
model surpasses the performance of two highly regarded Landsat ACIX-
II Land algorithms (Doxani et al., 2023), including the Image correction
for atmospheric effects (iCOR) (De Keukelaere et al., 2018) and Land
Surface Reflectance Code (LaSRC) (Vermote et al., 2016, 2018). Note
that while these algorithms are utilized for generating Landsat surface

Table 3
Comparison of performances of various machine- and deep-learning models for retrieving AOD from Landsat imagery.

Category Model R Median Bias MAE RMSE = EE (%) = GCOS (%) Training Speed (s) Training memory (MB)

Tree-based Machine Learning

Extra Trees 0.739 0.027 0.074 0.131 68.51 31.72 0.33 13.38
Random Forest 0.779 0.019 0.065 0.118 74.46 39.97 1.20 26.88
XGBoost 0.832 0.008 0.058 0.103 79.15 47.45 2.17 15.23
CatBoost 0.836 0.007 0.058 0.102 78.81 47.13 1.93 10.97
LightGBM 0.838 0.008 0.058 0.101 79.35 46.66 6.83 35.75

Deep Learning

DBN 0.833 0.008 0.062 0.104 76.44 43.14 213.81 1926.12
LSTM 0.838 0.009 0.059 0.101 78.42 43.83 823.25 1116.49
MLP 0.848 0.010 0.056 0.098 80.31 46.33 71.38 1921.89
ResNet 0.849 0.012 0.057 0.099 80.61 48.36 75.48 1921.97
Transformer 0.866 0.003 0.054 0.094 82.65 51.49 244.31 1922.24
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reflectance products, their AOD outputs are not publicly accessible,
restricting access to experts who can effectively utilize these intricate
codes and software for AOD retrievals. As a result, many researchers
have developed their own AOD retrieval algorithms for Landsat imag-
ery, but most are confined to local (urban) regions (Kumar and Mehta,
2023; Lin et al., 2021a; Tian et al., 2018). Currently, there are very few
global Landsat aerosol retrieval studies due to the massive amount of
data involved. In comparison to the two available global aerosol
retrieval studies using extremely randomized trees (ERF; Liang et al.,
2022) and the deep neural network (DNN; She et al., 2022) models (note
that the accuracy may vary slightly from different sites and time pe-
riods), our model has a higher overall accuracy, marked by increased
agreements and reduced uncertainties.

4. Summary and conclusions

The Landsat series of satellites provide Earth observations dating
back to the 1970s, with a high spatial resolution of 30 m every 16 days,
making them highly valuable for a variety of applications, such as land
use/cover classification and change detection, resource assessment, and
environmental monitoring. In this study, we introduce the Transformer
deep-learning model to address numerous intractable nonlinear prob-
lems inherent in the complex processes of decoupling the Earth-
atmosphere system and retrieving AOD over land from Landsat imag-
ery, called the AeroTrans-Landsat model. All Landsat data preprocess-
ing, spatiotemporal matching, and aerosol retrieval tasks are efficiently
executed by integrating the Google Earth Engine (GEE) and Colabor-
atory (Colab) cloud platforms. In this effort, the study gathers all
available images (~22,280 cloud-screened scenes) from Landsat 8 and
9, spanning from their launch to 2022, matching approximately 560
ground monitoring stations. They are then used to develop a robust
model capable of conducting global aerosol retrieval tasks for Landsat
imagery in an automatic and operational manner.

We utilize the XAI (eXplainable Artificial Intelligence)-SHAP
(SHapley Additive exPlanations) method to elucidate the internal
mechanisms of our model, revealing the significance of multi-band
spectral channels and observation geometry in aerosol retrieval,
contributing 80 % and 11 %, respectively. Overall, our model shows
good performance in retrieving AOD, as indicated by the average
sample-based, spatial-based, and temporal-based cross-validation cor-
relation coefficients (R) (root-mean-square error, RMSE) of 0.905
(0.083), 0.845 (0.104), and 0.876 (0.094), respectively. Moreover, in-
dependent spatiotemporal validations demonstrate the model’s good
ability to retrieve AOD levels for new dates and locations (e.g., R =

0.866, RMSE = 0.094). Aerosol retrieval experiments conducted in
typical clear and polluted regions worldwide illustrate the model’s ca-
pacity to capture detailed variations in AOD across surfaces with varying
reflectance properties, particularly in urban areas. Our study provides a
new approach of obtaining high-resolution AOD retrieval using AI from
Landsat imagery over land, offering valuable insights into environ-
mental and air quality assessments. We acknowledge that traditional
aerosol retrieval algorithms based on the radiative transfer model for
Landsat 8 and other sensors like MODIS could be more independent
because they do not rely on ground-based observations. However, these

methods have many assumptions, such as inaccuracies in aerosol-type
assumptions (mostly fixed) and estimates of surface reflectance. In
contrast, the AI-driven method provides alternative retrievals that
complement the traditional methods in their strengths and weaknesses,
aiming to maximize the use of available information by incorporating
both space and ground-based observations to better constrain certain ill-
posed retrievals, although this may come at the expense of sacrificing
some degree of redeem.

Despite achieving acceptable performance, the uneven distribution
of ground stations, especially in regions with few sites (like high-latitude
areas, Central and East Asia, North Africa, and the Middle East), could
impact the global adaptability of the AeroTrans-Landsat model. This
global aerosol retrieval model can also be affected by a limited number
of samples under high pollution conditions, potentially leading to
increased uncertainties in scenarios with high AOD, such as haze, smog,
dust, and forest fires. In our future work, we will explore the possibility
of incorporating simulated samples or introducing additional observa-
tion networks to increase the number of global samples, especially under
high-pollution conditions, with the aim of enhancing the model’s global
modeling capability.
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Table 4
Comparison of overall accuracies between conventional algorithms and AI models for retrieving global AOD from previous studies.

Model R RMSE MAE = EE (%) = GCOS (%) Sensor Reference

MAIAC 0.878 0.080 0.048 83.62 51.26 MODIS Lyapustin et al. (2018)
iCOR 0.826 0.139 – – – Landsat Doxani et al. (2023)
LaSRC 0.832 0.141 – – – Landsat Doxani et al. (2023)
ERF 0.883 0.090 0.047 85.23 – Landsat Liang et al. (2022)
DNN 0.900 0.120 0.080 71.91 – Landsat She et al. (2022)
AeroTrans 0.905 0.083 0.048 85.96 54.55 Landsat This study

DNN: Deep neural network; ERF: Extremely randomized trees; iCOR: Image correction for atmospheric effects; LaSRC: Land Surface Reflectance Code; MAIAC: Multi-
Angle Implementation of Atmospheric Correction.
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Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S., 2019. PyTorch:
an imperative style, high-performance deep learning library. In: Proceedings of the
33rd Conference on Neural Information Processing Systems. Curran Associates Inc.,
Vancouver, Canada, pp. 8024–8035.

Ramanathan, V., Crutzen, P.J., Kiehl, J.T., Rosenfeld, D., 2001. Aerosols, climate, and the
hydrological cycle. Science 294, 2119–2124.

J. Wei et al. Remote Sensing of Environment 315 (2024) 114404 

14 

http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0005
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0005
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0005
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0005
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0010
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0010
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0010
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0010
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0010
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0010
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0010
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0015
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0015
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0015
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0015
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0015
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0020
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0020
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0020
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0020
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0025
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0025
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0025
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0025
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0025
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0030
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0030
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0030
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0035
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0035
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0035
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0035
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0035
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0035
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0040
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0040
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0040
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0045
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0045
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0045
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0045
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0050
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0050
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0050
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0050
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0050
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0050
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0055
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0055
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0055
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0055
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0055
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0055
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0060
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0060
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0060
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0060
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0060
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0065
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0065
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0065
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0065
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0065
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0065
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0070
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0070
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0070
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0075
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0075
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0075
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0075
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0075
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0080
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0080
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0080
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0080
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0085
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0085
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0085
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0085
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0090
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0090
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0090
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0095
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0095
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0095
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0100
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0100
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0100
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0100
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0105
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0105
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0110
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0110
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0115
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0115
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0115
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0115
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0120
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0120
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0120
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0125
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0125
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0125
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0125
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0130
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0130
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0130
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0135
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0135
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0135
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0140
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0140
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0140
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0140
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0140
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0140
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0145
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0145
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0145
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0150
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0150
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0150
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0150
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0155
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0155
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0155
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0155
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0160
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0160
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0160
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0165
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0165
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0165
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0170
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0170
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0170
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0175
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0175
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0175
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0175
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0180
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0180
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0180
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0185
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0185
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0185
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0190
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0190
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0195
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0195
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0195
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0200
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0200
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0200
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0205
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0205
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0205
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0205
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0205
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0205
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0210
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0210
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0210
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0210
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0210
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0210
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0215
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0215


Rodriguez, J.D., Perez, A., Lozano, J.A., 2010. Sensitivity analysis of k-fold cross
validation in prediction error estimation. IEEE Trans. Pattern Anal. 32, 569–575.

Rosenfeld, D., Sherwood, S., Wood, R., Donner, L., 2014. Climate effects of aerosol-cloud
interactions. Science 343, 379–380.

Roy, D.P., Wulder, M.A., Loveland, T.R., CE, W., Allen, R.G., Anderson, M.C., Helder, D.,
Irons, J.R., Johnson, D.M., Kennedy, R., Scambos, T.A., Schaaf, C.B., Schott, J.R.,
Sheng, Y., Vermote, E.F., Belward, A.S., Bindschadler, R., Cohen, W.B., Gao, F.,
Hipple, J.D., Hostert, P., Huntington, J., Justice, C.O., Kilic, A., Kovalskyy, V., Lee, Z.
P., Lymburner, L., Masek, J.G., McCorkel, J., Shuai, Y., Trezza, R., Vogelmann, J.,
Wynne, R.H., Zhu, Z., 2014. Landsat-8: science and product vision for terrestrial
global change research. Remote Sens. Environ. 145, 154–172.

She, L., Zhang, H., Wang, W., Wang, Y., Shi, Y., 2019. Evaluation of the Multi-Angle
Implementation of Atmospheric Correction (MAIAC) aerosol algorithm for
Himawari-8 data. Remote Sens. 11, 2771.

She, L., Zhang, H.K., Bu, Z., Shi, Y., Yang, L., Zhao, J., 2022. A deep-neural-network-
based aerosol optical depth (AOD) retrieval from Landsat-8 top of atmosphere data.
Remote Sens. 14, 1411.

She, L., Li, Z., de Leeuw, G., Wang, W., Wang, Y., Yang, L., Shi, Y., 2024. Time series
retrieval of Multi-wavelength Aerosol optical depth by adapting Transformer
(TMAT) using Himawari-8 AHI data. Remote Sens. Environ. 305, 114115.

Sogacheva, L., Popp, T., Sayer, A.M., Dubovik, O., Garay, M.J., Heckel, A., Hsu, N.C.,
Jethva, H., Kahn, R.A., Kolmonen, P., Kosmale, M., de Leeuw, G., Levy, R.C.,
Litvinov, P., Lyapustin, A., North, P., Torres, O., Arola, A., 2020. Merging regional
and global aerosol optical depth records from major available satellite products.
Atmos. Chem. Phys. 20, 2031–2056.

Su, T., Laszlo, I., Li, Z., Wei, J., Kalluri, S., 2020. Refining aerosol optical depth retrievals
over land by constructing the relationship of spectral surface reflectances through
deep learning: application to Himawari-8. Remote Sens. Environ. 251, 112093.

Sun, L., Wei, J., Bilal, M., Tian, X., Jia, C., Guo, Y., Mi, X., 2016. Aerosol optical depth
retrieval over bright areas using Landsat 8 OLI images. Remote Sens. 8, 23.

Sun, H., Shin, Y., Xia, M., Ke, S., Wan, M., Yuan, L., Guo, Y., Archibald, A., 2022. Spatial
resolved surface ozone with urban and rural differentiation during 1990–2019: A
space-time Bayesian Neural Network downscaler. Environ. Sci. Technol. 56 (11),
7337–7349.

Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., Brisco, B., 2020.
Google Earth Engine for geo-big data applications: a meta-analysis and systematic
review. ISPRS J. Photogramm. Remote Sens. 164, 152–170.

Tao, M., Chen, J., Xu, X., Man, W., Xu, L., Wang, L., Wang, Y., Wang, J., Fan, M.,
Shahzad, M.I., Chen, L., 2023. A robust and flexible satellite aerosol retrieval
algorithm for multi-angle polarimetric measurements with physics-informed deep
learning method. Remote Sens. Environ. 297, 113763.

Tian, X., Liu, Q., Song, Z., Dou, B., Li, X., 2018. Aerosol optical depth retrieval from
Landsat 8 OLI images over urban areas supported by MODIS BRDF/Albedo data.
IEEE Geosci. Remote Sens. Lett. 15, 976–980.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I., 2017. Attention is all you need. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems. Curran
Associates Inc., Long Beach, California, USA, pp. 6000–6010.

Vermote, E., Justice, C., Claverie, M., Franch, B., 2016. Preliminary analysis of the
performance of the Landsat 8/OLI land surface reflectance product. Remote Sens.
Environ. 185, 46–56.

Vermote, E., Roger, J.C., Franch, B., Skakun, S., 2018. LaSRC (Land Surface Reflectance
Code): overview, application and validation using MODIS, VIIRS, LANDSAT and
Sentinel 2 data’s. In: IGARSS 2018–2018 IEEE International Geoscience and Remote
Sensing Symposium, pp. 8173–8176.

Wang, Y., Yuan, Q., Li, T., Shen, H., Zheng, L., Zhang, L., 2019. Evaluation and
comparison of MODIS Collection 6.1 aerosol optical depth against AERONET over
regions in China with multifarious underlying surfaces. Atmos. Environ. 200,
280–301.

Wang, W., Wang, Y., Lyapustin, A., Hashimoto, H., Park, T., Michaelis, A., Nemani, R.,
2022. A novel atmospheric correction algorithm to exploit the diurnal variability in
hypertemporal geostationary observations. Remote Sens. 14, 964.

Wei, J., Huang, B., Sun, L., Zhang, Z., Wang, L., Bilal, M., 2017. A simple and universal
aerosol retrieval algorithm for Landsat series Images over complex surfaces.
J. Geophys. Res. Atmos. 122, 13,338–13,355.

Wei, J., Sun, L., Peng, Y., Wang, L., Zhang, Z., Bilal, M., Ma, Y., 2018. An improved high-
spatial-resolution aerosol retrieval algorithm for MODIS images over land.
J. Geophys. Res. Atmos. 123, 12,291–12,307.

Wei, J., Li, Z., Peng, Y., Sun, L., 2019a. MODIS Collection 6.1 aerosol optical depth
products over land and ocean: validation and comparison. Atmos. Environ. 201,
428–440.

Wei, J., Li, Z., Sun, L., Peng, Y., Zhang, Z., Li, Z., Su, T., Feng, L., Cai, Z., Wu, H., 2019b.
Evaluation and uncertainty estimate of next-generation geostationary
meteorological Himawari-8/AHI aerosol products. Sci. Total Environ. 692, 879–891.

Wei, J., Li, Z., Sun, L., Peng, Y., Liu, L., He, L., Qin, W., Cribb, M., 2020a. MODIS
Collection 6.1 3-km resolution aerosol optical depth product: global evaluation and
uncertainty analysis. Atmos. Environ. 240, 117768.

Wei, X., Chang, N.-B., Bai, K., Gao, W., 2020b. Satellite remote sensing of aerosol optical
depth: advances, challenges, and perspectives. Crit. Rev. Environ. Sci. Technol. 50,
1640–1725.

Wei, J., Li, Z., Lyapustin, A., Sun, L., Peng, Y., Xue, W., Su, T., Cribb, M., 2021.
Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018
in China: spatiotemporal variations and policy implications. Remote Sens. Environ.
252, 112136.

Wei, J., Li, Z., Lyapustin, A., Wang, J., Dubovik, O., Schwartz, J., Sun, L., Li, C., Liu, S.,
Zhu, T., 2023. First close insight into global daily gapless 1 km PM2.5 pollution,
variability, and health impact. Nat. Commun. 14, 8349.

Wulder, M.A., Loveland, T.R., Roy, D.P., Crawford, C.J., Masek, J.G., Woodcock, C.E.,
Allen, R.G., Anderson, M.C., Belward, A.S., Cohen, W.B., Dwyer, J., Erb, A., Gao, F.,
Griffiths, P., Helder, D., Hermosilla, T., Hipple, J.D., Hostert, P., Hughes, M.J.,
Huntington, J., Johnson, D.M., Kennedy, R., Kilic, A., Li, Z., Lymburner, L.,
McCorkel, J., Pahlevan, N., Scambos, T.A., Schaaf, C., Schott, J.R., Sheng, Y.,
Storey, J., Vermote, E., Vogelmann, J., White, J.C., Wynne, R.H., Zhu, Z., 2019.
Current status of Landsat program, science, and applications. Remote Sens. Environ.
225, 127–147.

Wulder, M.A., Roy, D.P., Radeloff, V.C., Loveland, T.R., Anderson, M.C., Johnson, D.M.,
Healey, S., Zhu, Z., Scambos, T.A., Pahlevan, N., Hansen, M., Gorelick, N.,
Crawford, C.J., Masek, J.G., Hermosilla, T., White, J.C., Belward, A.S., Schaaf, C.,
Woodcock, C.E., Huntington, J.L., Lymburner, L., Hostert, P., Gao, F., Lyapustin, A.,
Pekel, J.-F., Strobl, P., Cook, B.D., 2022. Fifty years of Landsat science and impacts.
Remote Sens. Environ. 280, 113195.

Yang, Y., Yang, K., Chen, Y., 2022. Aerosol retrieval algorithm for Sentinel-2 images over
complex urban areas. IEEE Trans. Geosci. Remote Sens. 60, 1–9.

Yeom, J.M., Jeong, S., Ha, J.S., Lee, K.H., Lee, C.S., Park, S., 2022. Estimation of the
hourly aerosol optical depth from GOCI geostationary satellite data: deep neural
network, machine learning, and physical models. IEEE Trans. Geosci. Remote Sens.
60, 1–12.

Zhang, Y., Li, Z., Bai, K., Wei, Y., Xie, Y., Zhang, Y., Ou, Y., Cohen, J., Zhang, Y., Peng, Z.,
Zhang, X., Chen, C., Hong, J., Xu, H., Guang, J., Lv, Y., Li, K., Li, D., 2021. Satellite
remote sensing of atmospheric particulate matter mass concentration: advances,
challenges, and perspectives. Fundam. Res. 1, 240–258.

J. Wei et al. Remote Sensing of Environment 315 (2024) 114404 

15 

http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0220
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0220
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0225
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0225
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0230
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0230
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0230
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0230
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0230
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0230
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0230
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0235
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0235
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0235
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0240
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0240
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0240
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0245
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0245
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0245
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0250
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0250
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0250
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0250
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0250
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0255
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0255
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0255
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0260
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0260
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0265
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0265
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0265
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0265
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0270
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0270
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0270
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0275
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0275
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0275
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0275
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0280
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0280
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0280
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0285
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0285
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0285
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0285
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0290
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0290
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0290
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0295
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0295
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0295
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0295
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0300
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0300
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0300
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0300
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0305
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0305
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0305
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0310
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0310
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0310
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0315
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0315
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0315
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0320
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0320
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0320
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0325
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0325
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0325
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0330
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0330
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0330
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0335
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0335
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0335
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0340
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0340
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0340
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0340
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0345
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0345
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0345
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0350
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0350
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0350
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0350
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0350
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0350
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0350
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0350
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0355
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0355
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0355
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0355
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0355
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0355
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0360
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0360
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0365
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0365
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0365
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0365
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0370
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0370
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0370
http://refhub.elsevier.com/S0034-4257(24)00430-9/rf0370

	Global aerosol retrieval over land from Landsat imagery integrating Transformer and Google Earth Engine
	1 Introduction
	2 Materials and methods
	2.1 Data sources
	2.1.1 Landsat 8/9 imagery
	2.1.2 Ground-based measurements

	2.2 Landsat aerosol retrieval framework
	2.2.1 AeroTrans-Landsat model
	2.2.2 Google Earth Engine platform

	2.3 Validation method

	3 Results and discussion
	3.1 Feature contribution analysis using XAI
	3.2 Evaluation and uncertainty analysis
	3.2.1 Model cross-validation
	3.2.2 Spatiotemporal predictability
	3.2.3 Uncertainty analysis

	3.3 Global and regional aerosol retrieval experiments
	3.3.1 Mapping global AOD using Landsat imagery
	3.3.2 Landsat AOD retrieval over typical regions
	3.3.3 Comparison with other AI models, physical algorithms, and studies


	4 Summary and conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A Supplementary data
	References


