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Section S1 Present global fine-mode aerosol optical depth (fAOD) studies 

To date, increasing efforts have been devoted to the detection of fine-mode aerosol 

and estimation of fAOD over land using satellite data from numerous space-borne 

sensors, including the Advanced Along-Track Scanning Radiometer (Sundstrom et al., 

2012), the Multi-angle Imaging SpectroRadiometer (MISR) (Kahn and Gaitley, 2015), 

the Visible Infrared Imaging Radiometer Suite, the Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Levy et al., 2007), and the Polarization and Directionality 

of the Earth’s Reflectances (POLDER) (Dubovik et al., 2019) instrument.  

As a polarimetric imager, POLDER can effectively use the polarized radiation at 

the Top Of Atmosphere (TOA) for fAOD derivation, because this information is mainly 

contributed by fine particles within the accumulation mode (Deuze et al., 2001). 

Launched in December 2004 onboard PARASOL, POLDER/PARASOL was able to 

provide land fAOD with global coverage every 2 days based on the GRASP algorithm 

(Tanré et al., 2011). However, the project was shut down in 2013 and thus had only less 

than 10-year data length, which seriously confines the retrievals for fAOD, especially 

for recent years.  

While MISR takes advantage of its multi-angular observation (9 push broom 

cameras) to constrain the aerosol types (Diner et al., 1998), providing AOD from small 

mode to coarse mode (Kahn and Gaitley, 2015; Garay et al., 2020). Compared to 

POLDER, MISR has much longer monitoring data (2000~ to date), yet the narrow 

swath and long revisiting time (~16 days) make it hard to capture the fast-changing 

aerosol information at the local scale. 
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Among them, MODIS has the longest duration (over 20 years) and a short 

revisiting time (~1 day), ensuring daily global coverage and making it a superior 

candidate for global long-term fAOD monitoring. In the MODIS retrieval, the fine-

mode fraction (FMF), i.e., the ratio of fAOD to AOD, extracts fAOD from AOD [fAOD 

= AOD × FMF] by dark target (DT) algorithm. Previous studies have applied the FMF 

derived from official MODIS aerosol products to calculate global-scale fAOD 

(Bellouin et al., 2005; Lee and Chung et al., 2013; Suman et al., 2014). However, 

accurate MODIS retrievals of fAOD and cAOD over land remain a challenge. This is 

because the retrievals of FMF are based on only four types of aerosol modes and the 

products are merely 11 discrete from 0 and 1 (Mielonen et al., 2011; Suman et al., 2014). 

In addition, frequent unrealistic cases of FMF=0 shows in spatial distribution and the 

evaluations with AERONET observations indicate large uncertainties in MODIS FMF 

(Levy et al., 2007; Yan et al., 2017, 2021; Zhang and Li., 2015). The retrievals of the 

components, and their ratio (FMF), are much more erroneous than the total AOD 

(Jethva et al., 2010; Mielonen et al., 2011; Suman et al., 2014). Evaluations using 

Aerosol Robotic Network (AERONET) observations indicate a large bias in the 

MODIS FMF (Levy et al., 2007; X. Chen et al., 2020; Yan et al., 2017, 2021; Zhang 

and Li, 2015).  

To obtain MODIS-retrieved fAOD with better accuracy, Yan et al. (2017, 2019) 

proposed a lookup table (LUT) spectral deconvolution algorithm (SDA) to improve 

FMF retrievals over land. To improve the retrieval efficiency, Liang et al. (2021) 

adopted the LUT-SDA FMF to create 9-year global land fAOD products which are 
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better than the previous products, but still suffered from 21.4% overestimation in 

comparison with the AERONET-based retrievals.  

 

Section S2 Evaluation metrics 

To assess the performance of the DLFE-Satellite model, the following metrics 

were used: Pearson correlation coefficient (R), root-mean-square error (RMSE), and 

mean absolute error (MAE), formulated as 
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For the fine-mode aerosol optical depth (fAOD), we adopted the relative error (EE) 

envelope of ± (0.05+15%) to determine if an fAOD retrieval is accurate, i.e., if it falls 

within this envelope (Bréon et al., 2011). 

To compare evaluation metrics from multiple modeling results, we employed the 

rate of change in RMSE and MAE, formulated as 
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Table S1. Data used for estimating fAOD in this study. 
Type Parameter Spatial resolution Temporal resolution Source 

MOD02SSH (MODIS 

C6.1 L1B) 

TOA reflectance data: bands 1-7 5-km×5-km 1 day https://ladsweb.modaps.eosdis.nasa.g

ov/ 

MOD09CMG 

(MODIS C6.1 L3) 

Surface reflectance: bands 1-7 0.05°×0.05° 1 day 

Brightness_Temperature (K) : bands 20, 21, 31, 

and 32 

Relative_Azimuth_Angle 

Solar_Zenith_Angle 

View_Zenith_Angle 

MOD08_D3 (MODIS 

C6.1 L3) 

Aerosol_Optical_Depth_Land_Mean (at 500 nm) 1°×1° 1 day 

ERA5 (reanalysis-

era5-single-levels) 

10m_u_component_of_wind (m/s) 0.25°×0.25° 1 hour https://cds.climate.copernicus.eu/ 

10m_v_component_of_wind (m/s) 

2m_dewpoint_temperature (K) 

2m_temperature (K) 

boundary_layer_height (m) 

surface_pressure (Pa) 
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Table S2. SURFRAD sites used for independent validation and their locations. 

Site Longitude (oW) 
Latitude 

(oN) 

Bondville, Illinois (BON) 88.37 40.05 

Fort Peck, Montana (FPK) 105.10 48.31 

Goodwin Creek, Mississippi (GWN) 89.87 34.25 

Penn. State Univ., Pennsylvania (PSU) 77.93 40.72 

Sioux Falls, South Dakota (SXF) 

Table Mountain, Boulder, Colorado (TBL) 

96.62 

105.24 

43.73 

40.12 
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Figure S1. The schematic flowchart of DLFE-Satellite. 
 
 

 
 
Figure S2. The self-supervised learning in pre-training step of DLFE-Satellite. For 
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example, using TOA of MODIS Band 1- Band 6 as the original data, the feature vector 

estimation and mask vector estimation try to recover the original data [0.3, 0.2, 0.5, 0.4, 

0.2, 0.1] and the mask data [0, 1, 0, 0, 1, 1] from the corrupted data [0.3, 0.1, 0.5, 0.4, 

0.5, 0.2] 

 

 

Figure S3. Site-based independent validation. The global AERONET stations were 

randomly partitioned into training (272 stations), validation (72 stations), and testing 

(78 stations) subsets. 
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Figure S4. (a) AERONET (purple dots) and SURFRAD (black triangles) sites used in this study. The base map shows land cover types from the 

MODIS MCD12C1 product (i.e., the International Geosphere-Biosphere Programme scheme), consisting of 16 land cover types. (b) Zoomed-in 

distributions of six SURFRAD sites. Table S2 provides details about these sites. 



 S10 

 

 
Figure S5. Application in global fAOD modeling involved the estimation of fAOD (at 

0.5 μm) from 2001 to 2020 using both the GDLM and DLFE-Satellite methodologies. 

Figures (a) and (b) depict density scatterplots of GDLM and DLFE-Satellite fAOD 

approximations contrasted with AERONET fAODs from 78 testing stations. The black 

dashed line signifies the 1:1 relationship, the red solid line represents the linear fitting 

line, and two black dotted lines delineate the EE envelope of ± (0.05+15%). Figure (c) 

displays the relative difference of R between GDLM and DLFE-Satellite fAOD at each 

AERONET site [relative difference = 100 * (DLFE-Satellite R – GDLM R) / GDLM 

R]. 
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Figure S6. Exploring the correlation of DLFE-satellite generated features with fAOD 

and the model's generalizability across various machine models. (a) The ranking of the 

generated features among all features, based on their contribution as indicated by (1) 

the feature importance according to Random Forest, (2) the Pearson correlation value 

(R), and (3) the Maximal Information Coefficient (MIC) value. (b) R resulting from the 

fAOD estimation in each year from 2001-2020. The three sectors represent the result 

of using the DLFE-Satellite model with XGBoost, LightGBM, and GDLM as DLM2. 

In each sector, blue bars represent the R from the traditional machine learning models 

without DLFE-Satellite, and the orange bars represent the R bias (R bias = R estimated 

by the model with DLEF minus R estimated by the model without DLEF) after applying 

the DLFE-Satellite model with multiple machine-learning models. The distribution of 

R bias after applying the DLFE-Satellite to different models and tasks. In each boxplot, 

the diamond is the mean value of the R bias, The error bars are the 25th and 75th 

percentiles of the total relative difference. 
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Figure S7. (a-d) Density scatterplots showcasing the monthly mean AERONET 

retrievals and fAODs products for DLFE-Satellite (a), MODIS (b), MISR (c), and 

POLDER (d). Only the matched data pairs available for the four products at the same 

time and location were used for comparison. The black dotted line represents the 1:1 

line, and the black dashed line represents the linear fitting line. The shaded areas 

represent the 95% confidence intervals of the linear regression. (e-f) Global spatial 

distribution of fAOD by DLFE-Satellite and PODLER in 2008-2013. 
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Figure S8. Scatter plot between DLFE-Satellite fAOD and AERONET fAOD trends. 

Each scatter represents a trend over one AERONET station during 2001-2021. The 

colors indicate the trend signs between DLFE-Satellite fAOD and AERONET fAOD 

trends (blue: both trends are negative; red: both trends are positive; orange: the trends 

are inconsistent). Only the matched data with >18 years of length were selected for 

trend comparison.  

 
Figure S9. The decadal mean AERONET fAOD averaged for 2001-2010 and 2010-
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2020 in India and China. 
 

 
Figure S10. Global monthly mean time series of MISR fAOD from 2001 to 2020. The 

dashed lines are the linear fitting lines, and the shaded areas represent the monthly mean 

fAOD ± the monthly standard deviation of fAOD. 
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