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Text S1. Calculations of different heights, inversion jumps, and entrainment rate  24 
1. Inversion-top height (𝒛𝒊ା), inversion-base height (𝒛𝒊 ), and inversion jumps 25 
The top and base heights of the inversion layer are calculated based on the profile of the 26 
variance of liquid water potential temperature (𝜃௟) following Yamaguchi & Randall (2008): 27 𝑧௜ା = 𝑧, where 𝜃௟ᇱଶതതതത = 0.05 ∙ max (𝜃௟ᇱଶതതതത) and 𝑧 > 𝑧௠௔௫ ,                 (1a) 28 𝑧௜ି = 𝑧, where 𝜃௟ᇱଶതതതത = 0.05 ∙ max (𝜃௟ᇱଶതതതത) and 𝑧 < 𝑧௠௔௫ .                 (1b) 29 𝑧௠௔௫  is calculated as 𝑧௠௔௫ = 𝑧, where 𝜃௟ᇱଶതതതത = max (𝜃௟ᇱଶതതതത). We use linear interpolation to 30 
determine 𝑧௜ା and 𝑧௜ି  between grid levels. 31 
 32 
Inversion jumps of moisture and temperature are thus defined as: 33 Δ𝑞௧ = 𝑞௧(𝑧௜ା) − 𝑞௧(𝑧௜ି ),                         (2a) 34 Δ𝜃௟ = 𝜃௟(𝑧௜ା) − 𝜃௟(𝑧௜ି ).                         (2b) 35 
 36 
2. Cloud-base height (𝒛𝒃), cloud-top height (𝒛𝒕), and inversion height (𝒛𝒊) 37 
Following van der Dussen et al. (2016), 𝑧௕ is defined as the minimum height where the cloud 38 
fraction is greater than 0.4, and 𝑧௧ is defined as 𝑧௜ା because the LWP budget analysis is 39 
performed up to the top of the inversion layer.  40 
 41 
When used in the LWP budget, 𝑧௜  is defined as 𝑧௜ା because the evaluation of turbulent fluxes at 42 
this height yields the best closure of the LWP budget, as suggested by van der Dussen et al. 43 
(2016). Otherwise, 𝑧௜  is defined as the height of the maximum potential temperature vertical 44 
gradient in a conventional way. 45 
 46 
3. Entrainment rate (𝒘𝒆) 47 
The entrainment rate (𝑤௘) is determined by the boundary-layer mass budget equation: 48 𝑤௘ = ௗ௭೔ௗ௧ − 𝑤௦௨௕(𝑧௜),                  (3) 49 
where 𝑧௜  is the boundary-layer height, and 𝑤௦௨௕(𝑧௜) is the large-scale subsidence rate at the 50 
top of the boundary layer. 51 
 52 
 53 
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Text S2. Robustness of the results to simulation settings 63 
Simulation settings (i.e., domain size, grid spacing, and cloud microphysical schemes) might 64 
influence our main result that decoupling prolongs the cloud lifetime. For example, the 65 
domain size used might be too small to simulate mesoscale circulations that affect 66 
stratocumulus transitions. The variations in vertical resolution near the PBL inversion influence 67 
the simulation of the entrainment rate, a crucial variable that impacts the cloud lifetime. The 68 
selection of specific cloud microphysics schemes may also affect our results due to their 69 
impacts on precipitation. Figures S13-16 examine the robustness of the results to these 70 
settings. We find that the main result holds well. The entrainment rate under cold-advection 71 
conditions is somewhat sensitive to the domain size, whereas those under warm-advection 72 
conditions are relatively insensitive (Figure S13). The same is true for perturbed horizontal or 73 
vertical resolutions. We also find that the LWP is affected by microphysics schemes, especially 74 
under warm-advection conditions (Figure S15). Even though the modeling results are different 75 
in response to changes in these simulation settings, it is still clear that MBL clouds persist 76 
longer under warm-advection conditions than under cold-advection conditions (Figures S13 77 
and S15). The physical mechanisms that the interplay of entrainment drying and cloud-base 78 
turbulent moisture transport determines cloud lifetime stay the same (Figures S14 and S16).  79 
 80 
  81 
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Table S1. Description of the supplementary sensitivity runs.  82 
 83 

Simulation Description Objective 

BaseRun CADV and WADV, with default KK2000 scheme. They 
serve as base runs for the sensitivity experiments below.  

To examine the cloud 
response to warm-
advection-induced 
decoupling 

dDIV Decrease the large-scale divergence rate from 5.0x10-6 s-1

to -1.0x10-6 s-1 

To examine the impact 
of environmental 
conditions on the 
conclusion 

vDIV 
Allow the large-scale divergence rate to co-vary with SST, 
with its relationship determined from ERA5 reanalysis 
data (see Figure S2) 

dQT 
Decrease the free-tropospheric total water mixing ratio 
by 30% 

iINV 
Increase the initial temperature jump across the inversion 
by 5.5 K 

Diurnal Allow diurnal cycle of insolation 
To examine the impact 
of diurnal cycle on the 
conclusion 

LargeDom Increase the domain size from 4.2 km to 20.16 km 

To examine the impact 
of simulation settings 
on the conclusion 

HiResHoriz Double the horizontal resolution 

HiResVert Refine the vertical resolution near the inversion from 5 m 
to 3 m 

MP_M2005 Use the M2005 microphysics scheme instead 

MP_P3 Use the P3 microphysics scheme instead 

MP_THOM Use the THOM microphysics scheme instead 

Note: KK2000 is a simplified (drizzle only) version of the Khairoutdinov & Kogan (2000) microphysics 84 
scheme used for conversion between cloud and rainwater as well as raindrop evaporation and 85 
sedimentation; M2005 is the Morrison et al. (2005) double-moment microphysics scheme; P3 is the 86 
predicted particle properties scheme (Morrison & Milbrandt, 2015); THOM is the Thompson et al. (2008) 87 
microphysics scheme.  88 
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