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Text S1. Calculations of different heights, inversion jumps, and entrainment rate

1. Inversion-top height (z}), inversion-base height (z;), and inversion jumps
The top and base heights of the inversion layer are calculated based on the profile of the
variance of liquid water potential temperature (8;) following Yamaguchi & Randall (2008):

z} = z,where 6/ = 0.05 - max(6;%) and z > Z,4y, (1a)

z; = z,where 6% = 0.05 - max(6;%) and z < Zqy. (1b)

Zimax IS calculated as z,,4, = z, where ;% = max(6;%). We use linear interpolation to
determine z;" and z;” between grid levels.

Inversion jumps of moisture and temperature are thus defined as:
Aq: = q¢(z7) — qc(2]), (2a)
A, = 6,(z) — 6,(z)). (2b)

2, Cloud-base height (z;), cloud-top height (z;), and inversion height (z;)

Following van der Dussen et al. (2016), z, is defined as the minimum height where the cloud
fraction is greater than 0.4, and z, is defined as z;" because the LWP budget analysis is
performed up to the top of the inversion layer.

When used in the LWP budget, z; is defined as z;}" because the evaluation of turbulent fluxes at
this height yields the best closure of the LWP budget, as suggested by van der Dussen et al.
(2016). Otherwise, z; is defined as the height of the maximum potential temperature vertical
gradient in a conventional way.

3. Entrainmentrate (w,)

The entrainment rate (w,) is determined by the boundary-layer mass budget equation:
d .
We = f — Wsup (21, 3)

where z; is the boundary-layer height, and wg,;, (z;) is the large-scale subsidence rate at the
top of the boundary layer.
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Text S2. Robustness of the results to simulation settings

Simulation settings (i.e., domain size, grid spacing, and cloud microphysical schemes) might
influence our main result that decoupling prolongs the cloud lifetime. For example, the
domain size used might be too small to simulate mesoscale circulations that affect
stratocumulus transitions. The variations in vertical resolution near the PBL inversion influence
the simulation of the entrainment rate, a crucial variable that impacts the cloud lifetime. The
selection of specific cloud microphysics schemes may also affect our results due to their
impacts on precipitation. Figures $13-16 examine the robustness of the results to these
settings. We find that the main result holds well. The entrainment rate under cold-advection
conditions is somewhat sensitive to the domain size, whereas those under warm-advection
conditions are relatively insensitive (Figure S13). The same is true for perturbed horizontal or
vertical resolutions. We also find that the LWP is affected by microphysics schemes, especially
under warm-advection conditions (Figure S15). Even though the modeling results are different
in response to changes in these simulation settings, it is still clear that MBL clouds persist
longer under warm-advection conditions than under cold-advection conditions (Figures S13
and S15). The physical mechanisms that the interplay of entrainment drying and cloud-base
turbulent moisture transport determines cloud lifetime stay the same (Figures S14 and S16).
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Table S1. Description of the supplementary sensitivity runs.

Simulation Description Objective
To examine the cloud
CADV and WADV, with default KK2000 scheme. They response to warm-
BaseRun e . Lo
serve as base runs for the sensitivity experiments below. advection-induced
decoupling
Decrease the large-scale divergence rate from 5.0x10 s
dDIv .
to-1.0x10°s
Allow the large-scale divergence rate to co-vary with SST, To examine the impact
vDIV with its relationship determined from ERA5 reanalysis . P
. of environmental
data (see Figure S2) "
- — - conditions on the
Decrease the free-tropospheric total water mixing ratio .
dQTt conclusion
by 30%
. Increase the initial temperature jump across the inversion
iINV
by 5.5 K
To examine the impact
Diurnal Allow diurnal cycle of insolation of diurnal cycle on the
conclusion
LargeDom Increase the domain size from 4.2 km to 20.16 km
HiResHoriz Double the horizontal resolution
HiResVert Refine the vertical resolution near the inversion from5m | 1o examine the impact
to3m of simulation settings
MP_M2005 Use the M2005 microphysics scheme instead on the conclusion
MP_P3 Use the P3 microphysics scheme instead
MP_THOM Use the THOM microphysics scheme instead

Note: KK2000 is a simplified (drizzle only) version of the Khairoutdinov & Kogan (2000) microphysics
scheme used for conversion between cloud and rainwater as well as raindrop evaporation and
sedimentation; M2005 is the Morrison et al. (2005) double-moment microphysics scheme; P3 is the
predicted particle properties scheme (Morrison & Milbrandt, 2015); THOM is the Thompson et al. (2008)
microphysics scheme.
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Figure S1. Normalized PDFs of daily (a) vertical velocity at 700 hPa, (b) estimated inversion
strength, and (c) free-tropospheric humidity (defined as the water vapor mixing ratio
averaged between 700 hPa and 850 hPa) under cold-advection conditions in mid-latitude
stratocumulus regions (i.e., low-cloud fraction > 0.5), derived from 2003-2018 ERA5 reanalysis
data (meteorological factors; Hersbach et al., 2020) and CERES Edition 4A Single Scanner
Footprint products (low-cloud fraction; Minnis et al., 2021). (d-f) are the same as (a-c) but
under warm-advection conditions. Green areas cover the interquartile range. Dashed lines
show initial values specified in the base runs (WADV/CADV), with solid lines for sensitivity runs
(dDIV/dQT/iINV).
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Figure S2. Large-scale divergence rate (Div) as a function of sea surface temperature (SST),

derived from 2003-2018 daily ERA5 reanalysis data. The black dashed line is the fitted
regression line used to determine the varying divergence rate in the sensitivity run vDIV.
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Figure S3. Time-height plots of (a) cloud fraction and (c) the skewness of the vertical velocity
for CADV, with (b) and (d) for WADV. Dashed lines show the inversion height (defined as the
height of the maximum potential temperature vertical gradient) and the cloud-base height,
respectively.
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Figure S4. Time series of the calculated LWP tendency (i.e., the sum of five budget terms; red)
and the simulated LWP tendency (black) from (a) CADV and (b) WADV.
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Figure S5. Time series of the LWP tendency due to cloud-base turbulent fluxes consisting of
(a) moisture fluxes and (b) heat fluxes.
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Figure S6. Time series of the LWP tendency due to entrainment effects consisting of (a)

entrainment drying, (b) entrainment warming, and (c) entrainment-induced cloud deepening.
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Figure S7. Time-height plots of cloud fraction under cold-advection conditions (left column)
and warm-advection conditions (right column) for sensitivity runs dDIV, vDIV, iINV, and dQT
(upper to lower rows, respectively). Dashed lines show the inversion height (defined as the
height of the maximum potential temperature vertical gradient) and the cloud-base height,
respectively.
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Figure S8. Time series of low-cloud fraction, cloud liquid water path, and precipitation at the
surface (upper to lower rows, respectively) for sensitivity runs dDIV, vDIV, iINV, and dQT (left to
right columns, respectively). Solid and dashed lines represent warm-advection cases and cold-

advection cases, respectively. Grey lines represent base runs (WADV/CADV).
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Figure S9. Same as Figure S8, but for time series of the LWP tendency (g/m?/h) due to large-

scale subsidence (Subs), entrainment (Ent), cloud-base turbulent fluxes (Base), radiation (Rad),
and precipitation (Prec) (upper to lower rows, respectively).
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Figure S10. Same as Figure 8, but for the sensitivity run Diurnal.
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Figure S12. Initial total water mixing ratio profiles for sensitivity experiments
CADV_FTMs/WADV_FTMs. The black dashed line is the moisture profile for control
experiments (CADV/WADV).
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Figure S$13. Time series of low-cloud fraction, liquid water path, entrainment rate, inversion
temperature jump, and inversion moisture jump (upper to lower rows, respectively) for
experiments BaseRun, HiResHoriz, LargeDom, and HiResVert under cold-advection conditions
(left column) and warm-advection conditions (right column).
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Figure S14. Same as Figure 513, but for time series of the LWP tendency (g/m?%/h) due to large-
scale subsidence (Subs), entrainment (Ent), cloud-base turbulent fluxes (Base), radiation (Rad),
precipitation (Prec), and the sum of Ent and Base (upper to lower rows, respectively).
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Figure S15. Time series of low-cloud fraction, liquid water path, entrainment rate, inversion
temperature jump, and inversion moisture jump (upper to lower rows, respectively) for
experiments BaseRun, MP_M2005, MP_P3, and MP_THOM under cold-advection conditions
(left column) and warm-advection conditions (right column).
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Figure S16. Same as Figure S15, but for time series of the LWP tendency (g/m?/h) due to large-
scale subsidence (Subs), entrainment (Ent), cloud-base turbulent fluxes (Base), radiation (Rad),
precipitation (Prec), and the sum of Ent and Base (upper to lower rows, respectively).
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