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Abstract The size of a tropical cyclone (TC), measured by the area of either rainfall or wind, is an important
indicator for the potential damage by TC. Modeling studies suggested that aerosols tend to enhance
rainfall in the outer rainbands, which enlarges the eyewall radius and expands the extent of rainfall area.
However, no observational evidence has yet been reported. Using TC rainfall area and aerosol optical depth
(AOD) data, we find that aerosols have a distinguishable footprint in the TC size. Other dynamical factors for
TC size, such as relative SST and Coriolis parameter, are also quantified and discussed. We show that, on
average, TC rainfall size increases 9–20 km for each 0.1 increase of AOD in the western North Pacific. This
finding implies that anthropogenic aerosol pollution can increase not only TC rainfall rate, but also TC rainfall
area, resulting in potentially more destructive flooding affecting larger areas.

Plain Language Summary The size of a tropical cyclone (TC), measured by the area of either rainfall
or wind, is an important indicator for the potential damage by TC. No observational evidence about the
impact of aerosols on the TC size has yet been reported. Using TC rainfall area and aerosol optical depth
(AOD) data, we find that aerosols have a distinguishable footprint in the TC size. On average, TC rainfall size
increases by 9–20 km for each 0.1 increase in AOD in the western North Pacific. This finding implies that
anthropogenic aerosol pollution can increase not only the TC rainfall rate as found in previous studies, but
also the TC rainfall area, resulting in potentially more intensive flooding affecting larger areas. It is worthy to
note that factors other than the aerosols, such as relative sea surface temperature, could also contribute to
the changes of TC rainfall area.

1. Introduction

Understanding tropical cyclone (TC) rainfall characteristics is essential since TCs can induce heavy precipita-
tion and flooding in addition to damages associated with strong winds and storm surges (Kunkel et al., 2013).
Previous studies have shown that TCs are affected by many factors including sea surface temperature (SST),
wind shear, lower-to-middle-level relative humidity (RH), aerosols, and so on (Chiacchio et al., 2017; Guo &
Tan, 2017; Rosenfeld et al., 2012; Tao et al., 2012; Yoshida et al., 2017). In general, there are relatively less
studies regarding the TC rainfall area compared to the TC intensity. A recent study (Lin et al., 2015) noted a
robust dependence of the TC rainfall area or size on relative SST with respect to the tropical mean SST.
Another study (Chavas et al., 2016) also noted that the relative SST is a determinant factor for TC size
measured in wind fields. In addition to the relative SST, are there any other factors, especially anthropogenic
ones, which also influence the TC rainfall area?

Numerous model studies have investigated the impacts of aerosols on TC. They showed that aerosols could
affect precipitation-forming processes, the distribution of TC precipitation and the intensity of TCs (Hazra,
Goswami, et al., 2013; Khain et al., 2008; Rosenfeld et al., 2008, 2012; Tao et al., 2012; Wang, Zhang, et al.,
2014; Zhang et al., 2009). For example, the model studies have indicated that aerosols can invigorate the
convection within TC outer rainbands through an increase in anvil coverage, enlarging the TC eye radius, thus
reducing the TC intensity (Reale et al., 2014; Rosenfeld et al., 2012; Wang, Lee, et al., 2014; Zhang et al., 2009). It
has also been suggested that anthropogenic aerosols can reduce the frequency of TCs through their radiative
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effect by cooling SST (Dunstone et al., 2013). The aerosol invigoration effect, which is invigoration of deep con-
vective clouds by aerosols, occurs when aerosols serving as cloud condensation nuclei (CCN) enter the bottom
of deep convective clouds near the periphery of TC. The elevated CCN concentration fosters vapor condensa-
tion in warm phase and droplet freezing in the cold phase aloft, resulting in additional significant latent heat
release and boosting deep convection (Fan et al., 2018; Li et al., 2008; Rosenfeld et al., 2008; Wang et al.,
2011). Associated with this mechanism called microphysical effects of aerosols on TCs (Wang, Zhang, et al.,
2014), model simulations have shown enlarged rainband and increased precipitation under polluted conditions.
If light-absorbing aerosols exists, the aerosol radiative effects can cause warming in the lower troposphere,
which further strengthens the lower-level convection and enhances precipitation in the rainband region
(Wang, Lee, et al., 2014). Typically, TC can suck in air mass from the distance three times of its radius, so conti-
nental aerosols in a polluted region like China have great chances of getting into the periphery of TCs before
their landing. However, no systematic investigations of the aerosol impact on the TC rainfall area, which is often
as important as the intensity of a TC, based on observations have been reported.

Using the TC radius objectively determined from Tropical Rainfall Measuring Mission (TRMM) satellite rainfall
retrievals (Huffman et al., 2010; Lin et al., 2015), combined with the aerosol optical depth (AOD) obtained by
the Moderate Resolution Imaging Spectroradiometer (MODIS) (Levy et al., 2013) and by the Modern-Era
Retrospective analysis for Research and Applications, version 2 (MERRA-2) (Gelaro et al., 2017; Molod et al.,
2015) from 2000 to 2015, we examine the relationship between AOD and TC rainfall radius in the western
North Pacific (WNP) region to the south of 30°N. Asia is heavily polluted along with their fast-developing
economy, particularly in East Asia. These aerosols could be transported into the WNP and have strong
impacts on the TC rainfall area in this region.

The paper is organized as follows. Section 2 describes the data and methods. The results are shown in
section 3. And section 4 provides the summary and discussions.

2. Data and Methods

The tropical cyclone cases considered in this study are those with maximum wind speed larger than
17.5 m s�1. Only the TC cases observed within the tropical domain are analyzed. Those TC cases that went
through extratropical transition are not included in our analysis since their rainfall characteristics could be
more associated with extratropical transition (Knaff et al., 2014; Lin et al., 2015).

We use daily MODIS AOD retrieval from National Aeronautics and Space Administration (NASA) Terra at 1°
resolution and 6-hourly AOD from MERRA2 Aerosol Reanalysis at 0.625° resolution. In order to be consistent,
we linearly interpolated MERRA2 AOD to 1° resolution as well. Compared to MODIS, MERRA2 provides all-
weather instead of clear-sky-only AOD data and thus much larger sample volume could be examined. The
study period is from 2000 to 2015 when both AOD and TC rainfall radius data were available. For each TC,
MODIS and MERRA2 AOD within the 1° × 1° grid measured one day before the arrival of the TC are used to
represent the AOD for that location so that the effect of TCs on aerosols is minimized. Since the TC size is gen-
erally larger than the grid size, we here adopted AOD at the grid that the TC center would pass in one day.
Using AOD that averaged within a 3° × 3° region that TC would pass, it gave similar results (not shown here).
The TC rainfall radius is objectively determined from TRMM rainfall retrievals combined with TC tracks follow-
ing the method in Lin et al. (2015), where the TC rainfall area was defined as the region that contains most of
TC rainfall by meeting three criteria: azimuthal-mean rainfall greater than 0.5 mm h�1, fractional standard
deviation of rainfall less than 1.0 and a negative radial gradient of azimuthal-mean rainfall. Same as the TC
rainfall area, TC rainfall radius is azimuthally averaged value at each time step. Note that TC rainfall area
determined is sensitive to the criteria used, but it probably will not influence the results unless the impact
of aerosol on TC rainfall has significant radial inhomogeneity.

Based on the climatological distribution of TC occurrence (Knapp et al., 2010) and the spatial distribution of
averaged AOD observed by MODIS between 2000 and 2015, we identified the tropical region in the WNP
region with frequent aerosol pollution events and sufficient TC occurrences, which is with latitudes between
10.0°N and 30.0°N and longitudes between 125.0°E and 178.0°E. We limited our analysis to this region for
minimizing the variability due to factors other than aerosols. To remove the influence of SST, We use monthly
SST data set from Hadley Centre at 1° resolution to isolate the changes of relative SST (Lin et al., 2015), which
is defined as the SST in the TC environment minus the tropical (30°S-30°N) mean SST.
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In the WNP study region, aerosols or particulate pollution from mega-cities in Eastern China can be trans-
ported to the vast oceanic area. The primary aerosol type in this region is soluble aerosols such as sulfate
or nitrate (Chin et al., 2004), which can serve as cloud condensation nuclei (CCN). All types of aerosol reduce
the surface solar radiation by scattering and absorbing solar radiation, while their radiative effects in the
atmosphere differ considerably. The total number of TC samples at a temporal resolution of three hours dur-
ing the 15-year period is 14494. The number of TC rainfall radius samples matched with MODIS AOD (MERRA2
AOD) values reduces to 3585 (14045). The mean and standard deviation of MODIS AOD during the study per-
iod are about 0.19 and 0.10; and the mean and standard deviation of MERRA2 AOD during the study period
are about 0.21 and 0.17.

3. Results

We divide the relative SST into six bins going from -1 °C to 5 °C in 1 °C intervals, and AOD into 6 bins with an
interval of 0.1. The mean TC rainfall radii within each relative SST bin and AOD bin for the WNP region are
shown in Tables S1 and S2, respectively. The TC rainfall radius generally increases with increasing relative SST
(Table S1) except for some bins with small sample sizes. Moreover, the TC rainfall radius increases with
increasing AOD for all bins having sample sizes greater than 100.

The correspondence between AOD and TC rainfall radius is evident over the WNP (Figure 1a for MODIS AOD
and Figure S2a for MERRA2 AOD). A student t-test has been carried out for the relationship between AOD and
TC rainfall radius. The low p-value (p < 0.01) indicates that there is a strong significant linear relationship
between AOD and TC rainfall radius. This dependence becomes more evident when the TC radius is divided
into different AOD bins. Since the relative SST is an important factor determining the TC size, this dependence
may be a coincidence if AOD correlates well with the relative SST. This is not the case because the correlation
(r) between the two is only 0.09 (0.05 for MERRA2 AOD) and not statistically significant. However, there is still a
possibility that the aerosol radiative effect affects the SST although their time scales are different, which may
lessen their correlation.

Another way to isolate the influence of relative SST is to take the relative SST impact into considera-
tion. The increase in TC rainfall radius to relative SST is ~30–40 km K�1 (Lin et al., 2015). To roughly
exclude the impact of relative SST on the TC rainfall radius, we use 35 km K�1 to adjust the TC rain-
fall radius as follows:

RN ¼ Rþ SSTrel�35; (1)

where SSTrel is the relative SST in units of K. RN and R are the adjusted and original TC rainfall radii, respec-
tively, in units of km.

Figure 1. Scatterplot of TC rainfall radius as a function of MODIS AOD for the western North Pacific region a with and b
without the impacts of relative sea surface temperature (SST) between -1 °C and 5 °C. The gray dots represent observa-
tion data. The red squares represent the mean TC rainfall radius in AOD bins that have more than five samples and the
vertical red lines represent root-mean-square errors. The AOD bin width is 0.01. The solid black lines are the linear
regression fits through the data. R is the Spearman’s rank correlation coefficient based on the bin-averaged values (red
boxes). The p-value is calculated using the Student’s t-test.
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The dependence of the TC rainfall radius on MODIS AOD still remains using the adjusted radius (Figure 1b).
Note that similar findings have been found when other values between 30 km K�1 and 40 km K�1 instead of
35 km K�1 are used in Eq. (1). The linear fit to the data binned by AOD shows a similar dependence between
the two. Significant positive relationships between TC rainfall radius and AOD are found above the 95% con-
fidence level when using both the original and adjusted TC radii. This suggests that the dependence of the TC
rainfall radius on aerosols is robust, at least over theWNP. As shown in Figure S1, the positive dependence still
remains within each bin of relative SST, although it is only statistically significant when the sample size is
greater than 100.

We also examined the relationship between AOD and TC rainfall radius over the WNP using AOD from
MERRA2 instead of MODIS (Figure S2). Similar results as those shown in Figure 1 were found: both original
and adjusted TC rainfall radii increased significantly with increasing AOD over the WNP. Figure S3 further
shows that the positive dependence of the TC rainfall radius on MERRA2 AOD still remains in each bin of rela-
tive SST, similar to that seen in Figure S1 using MODIS AOD. Rosenfeld et al. (2012) have shown that aerosols
can also significantly reduce the TC intensity, associated with the enlarged TC eye radius by aerosols’ invi-
goration effect. Thus, with the increase of AOD, TC rainfall radius increases and TC intensity decreases.
Regarding the TC rainfall radius and TC intensity, Lin et al. (2015) have shown that they have no relationship.
We here find that the positive relationships between AOD and TC rainfall radius remain while the slope
changes for binned TC intensity (not shown here).

Figure 1 shows that the linear regression slope is ~200 km per AOD unit, i.e., 20 km per 0.1 AOD, over the
WNP. Figure S2 shows a linear regression slope of around 88–97 km per unit of AOD over theWNP. In general,
the sensitivity of the TC rainfall radius to AOD ranges from ~9 to 20 km per 0.1 AOD. Note that the change in
TC rainfall radius by relative SST is about 30–40 km K�1. The contribution of AOD to TC rainfall radius is thus
also significant.

Theoretical arguments and numerical simulations have suggested that the TC size is inversely proportional to
the Coriolis parameter (Chavas & Emanuel, 2014; Khairoutdinov & Emanuel, 2013). Accordingly, we next
examined the latitudinal variation in TC rainfall radius and AOD over the WNP. As shown in Figure S4a, the
TC rainfall radius decreases slightly with increasing latitude over the oceanic region. However, there is no sig-
nificant variation in MODIS AODwith latitude (Figure S4b). Therefore, the increasing trend in TC rainfall radius
with increasing AOD over the WNP is not likely related to the impact of the Coriolis force that might correlate
with changes in AOD. Interestingly, MERRA2 AOD increases with latitude (Figure S4c). We then expect that
the increase in TC size with AOD should be smaller when using MERRA2 data than when using MODIS data.
This is actually the case as shown in Figure 1 and Figure S2.

We further examine the variation in TC rainfall radial profiles with AOD over the WNP (Figure 2). The out-
ward expansion of TC rainfall with increased AOD is evident for both MODIS and MERRA2 AOD. This is

Figure 2. Azimuthally-averaged radial rainfall rate for three different AOD bins from a MERRA2 and b MODIS. The green,
blue, and red lines represent data for AOD intervals 0–0.2, 0.2–0.4, and greater than 0.4, respectively. Sample sizes (N) are
given. The color shading represents one standard error of the mean.
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consistent with the expanded rainfall fields noted in previous numerical simulations. It also shows that the
TC rainfall rate increases with AOD in the outer regions of the TC on some expense of the inner region,
which suggest that the aerosol invigoration effect is occurring (Wang, Lee, et al., 2014). Slight difference
also exists for the response of rainfall rates to AOD at inner core (radial distance <100 km) between
MODIS and MERRA2. For example, the change pattern of rainfall rates for MODIS AOD from [0.2 0.4] to
>0.4 is similar to that for MERRA2 AOD from [0 0.2] to [0.2 0.4] at inner core of TCs. One likely
explanation is the difference of AOD observations from MERRA2 and MODIS: the MODIS AOD is
observed from satellite which could include the contribution from water vapor, making it likely larger
than actual column aerosol amount. Figure 1 and Figure S2 also demonstrate that there are much less
observations with AOD > 0.4 for MODIS than MERRA2, which could be another reason causing the
different responses found above. Note that the increased TC rainfall rate with AOD will be more
pronounced if we consider that the TC rainfall coverage is also enhanced by aerosols. Associated with
the increasing precipitation rate and expanded rainfall fields, the total precipitation amount for TCs
with maximum winds larger than 17.5 m/s (Klotzbach, 2006) increases with both MODIS and MERRA
AOD, as suggested by Figures 3a and b. Note that stronger TCs tend to have a well-defined
precipitation structure for identification. Same as the AOD-bin-average total precipitation amount, the
AOD-bin-median total precipitation amount also increases with both MODIS and MERRA2 AOD as
shown in Figure 4. Increasing precipitation rates and amounts with increased aerosol loading have also
been found for deep convective clouds and mid-latitude cyclones over the mid-latitude land and
ocean areas (Li et al., 2011; Wang, Zhang, et al., 2014; Zhang et al., 2007).

Figure 2 also shows that the location of the maximum TC rainfall rate (which generally corresponds well
with the TC eyewall) moves farther away from the TC center as AOD increases, implying that the TC eye-
wall radius also increases with increasing AOD. This increase in eyewall diameter was shown to be

Figure 3. TC’s total rainfall amount as a function of a MERRA2 AOD and b MODIS AOD and TC eyewall radius as a function
of c MERRA2 AOD and d MODIS AOD. Only TCs with maximum winds >17.5 m/s are selected. The eyewall radius is
calculated as the distance between the maximum azimuthally-averaged rainfall rate and the TC center. The circles and
bars represent the means and standard deviations of the TC eyewall radius in each AOD bin. The AOD bin width is 0.1. The
solid black lines are the linear regression fits through the data. The fitting functions, Spearman’s rank correlation
coefficients (r), p-values, and sample sizes (N) are shown in each panel.
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associated with decrease in the maximum wind of the TC (Rosenfeld et al., 2012). Figures 3c and d show
the variation in eyewall radius with MERRA2 and MODIS AOD for TCs with maximum winds larger than
17.5 m/s because the structure of eye is more obvious in mature tropical cyclone. There is a significant
increasing trend in TC eyewall radius with AOD. Thus, an increase in aerosol concentrations most likely
induce increases in the TC flood area (increasing the rainfall radius as shown in Figure 2), total
precipitation amount, and the radius of the TC eyewall, consistent with the findings from previous
model simulation studies and expectations from both microphysical effects and radiative effects of
aerosols (Hazra, Mukhopadhyay, et al., 2013; Lynn et al., 2016). This occurs despite a possible decrease
in the maximum wind speed. These findings are not consistent with the findings from a few studies
such as an idealized simulation by Herbener et al. (2014), who found that the storm intensity increased
and the storm size decreased with increasing aerosol number concentration. Note that in the idealized
simulation by Herbener et al. (2014), the aerosols were put directly into eyewall regions, whereas we
assume aerosols enter eyewall from outside here. By contrast, our finding are consistent with and
support the mechanisms and findings found by most previous studies (Carrio & Cotton, 2011; Evan
et al., 2011; Hazra, Goswami, et al., 2013; Reale et al., 2014; Rosenfeld et al., 2012; Wang, Lee, et al.,
2014; Yang et al., 2018; Zhang et al., 2009).

4. Summary and Discussions

This study has shown a robust dependence of the TC rainfall radius on AOD over the WNP. Although various
modeling studies have investigated the impacts of aerosol on TC properties, including its intensity, precipita-
tion and size, this is the first study to explore the potential impact of aerosol on TC size measured in rainfall
area based on available observations. Efforts are paid to isolate some potential factors influencing TC sizes,
such as the relative SST and Coriolis parameter, but the results presented in the paper are mainly based on
correlation analyses.

A likely physical explanation is that anthropogenic aerosols serving as CCN intrude into the TC outer rain-
bands and invigorate the vertical development of the outer rainbands with intensified ice particle detrain-
ment aloft. The expanded convective clouds consequently increase the rainfall area outward of the
rainbands and thus increase the rainfall area and wind field as suggested by numerical simulations (Khain
et al., 2010; Zhang et al., 2009) and satellite measurements (Reale et al., 2014). Numerical simulations have
found that the aerosol invigoration effect (Rosenfeld et al., 2008) occurring in the outer rainbands tends to
reduce the TC strength with increased TC rainfall rate and size (Reale et al., 2014; Zhang et al., 2009). The ana-
lysis here thus provides observational evidence for the aerosol impact on the TC structure. This study implies
that increases in anthropogenic aerosols will cause increases not only in TC precipitation rate as found in pre-
vious studies, but also in the TC rainfall area over the WNP, which may potentially result in more severe flood-
ing once landfall is made.

Figure 4. Boxplots of TC’s total rainfall amount as a function of a MERRA2 AOD and b MODIS AOD. The fitting functions,
Spearman’s rank correlation coefficients (r), p-values, and sample sizes (N) are shown in each panel.
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The observational findingmay provide key observational support to modeling results (Wang, Lee, et al., 2014)
regarding aerosol effects on the development and structure of TCs, while most of existing studies focused
more on the TC intensity rather than the TC rainfall area and size (Reale et al., 2014; Rosenfeld et al., 2012;
Zhang et al., 2009). Our findings may help us improve understanding of the aerosol impacts on the develop-
ment of severe tropical storms through microphysical-radiative interactions. While East Asia and the adjacent
western North Pacific (WNP) is generally polluted with high AOD climatology, severe pollution usually occurs
episodically. The finding of an enlarged rain band and a decreased intensity of TCs under polluted conditions
suggests that we might need to account for both the concentration and variability of aerosols in
predicting TCs.

The possible other factors at play will be investigated vigorously in our future modeling study. TC size and
structure can vary substantially during its life cycle because of various environmental impacts and its internal
dynamics, such as the eyewall replacement, rainband generation and dissipation, among others (Houze
2010). As a result, the aerosol impact is hard to be completely isolated and quantified. Nevertheless, the dis-
tinguishable dependence found here suggests that aerosols probably have a non-negligible impact on TC
rainfall area.
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